Page 1,362«..1020..1,3611,3621,3631,364..1,3701,380..»

Stem Cell Therapy | Regenerative Medicine Treatment …

Posted: September 10, 2019 at 7:48 pm

What is stem cell therapy? Stem cell therapy uses cells harvested from different parts of a patients body, typically your fat cells or bone marrow, to treat painful conditions. What if there was a way to get the benefits of stem cells without the invasive, painful procedure of harvesting them from your body? In Tulsa, Oklahoma, we offer just the solution!

What is a Stem Cell?

A stem cell is an undifferentiated cell with the potential to replace dying cells and regenerate damaged tissue to heal your body from pain and symptoms associated with musculoskeletal disorders. Stem cells still have the capability of turning into multiple cells such as cartilage, tendon, skin, muscle, bone, and more.

Where Do Stem Cells Come From?

For stem cell therapy, samples come from adipose tissue or bone marrow. Because toxins are stored in your fat cells, we dont use these sources. Also, bone marrow collection is painful, and our patients are already in pain, so we dont use that method either.

On top of these drawbacks, stem cells in the patients body have aged and may be less effective at rapid healing.

We prefer regenerative medicine treatments containing mesenchymal stem cells.

Our doctor uses injections containing growth factors and mesenchymal stem cells. Our samples come from Whartons jelly, a birth tissue rich in youthful healing. These young, healthy cells have not aged with you and have proven to be effective in stimulating your bodys natural healing processes. Regenerative cellular tissue (sourced ethically from tissue banks and donors) has enormous therapeutic potential for cell regeneration, making the therapy useful for a variety of medical treatments to repair acute and chronic tissue damage.

Injections containing growth factors and stem cells for pain potentially resolve many chronic problems that occur due to old age and the overuse of muscles, bones, and ligaments. The therapeutic growth factors and regenerative cellular tissue in these treatments are excellent for reducing many musculoskeletal condition symptoms.

In Tulsa, Oklahoma, we use all-natural regenerative cell therapy to treat a range of chronic conditions and diseases that cause the following issues:

Our medical practice offers breakthrough treatments containing mesenchymal stem cells as all-natural healing alternatives to invasive surgeries and long-term, addictive, and pain-masking medications. Contact our medical clinic to schedule an initial consultation to explore how our regenerative medicine treatments can help you.

Go here to see the original:
Stem Cell Therapy | Regenerative Medicine Treatment ...

Posted in Oklahoma Stem Cells | Comments Off on Stem Cell Therapy | Regenerative Medicine Treatment …

STEM CELL THERAPY & TREATMENTS Texas Regional Health

Posted: September 10, 2019 at 7:47 pm

Stem cell therapy is a ground-breaking method of treating degenerative and chronic diseases. It is ideal for treating painful, and debilitating conditions such as Osteoarthritis, muscle & joint pain, and acute injuries. These treatments involve using products from living organisms to regenerate tissue and improve the bodys ability to heal itself naturally.

We understand that throughout life you may suffer from different aches and pains from sports, accidents, sickness and simply old age thats why were here to support you. Our team of specialists is ready to aid you on the journey to a healthier body by helping with the following conditions:

Schedule Appointment

There are many stem cell treatments, but here at Texas Regional Health & Wellness, we use Human Umbilical Cord Therapy (HUCT) stem cells.Umbilical cord tissue provides an abundant supply of mesenchymal stem cells. They are used to help reduce inflammation, control the immune system and aid in the regeneration of the central nervous system. We chose HUCT stem cells because theyre less mature than other cells making them more efficient in treating medical conditions. Also, since the bodys immune system is unable to recognize these stem cells as foreign, they are not rejected.

There is no need for us to collect stem cells from the patients hip bone or fat under anesthesia, which especially for small children and their parents, can be an unpleasant ordeal.

The advantages of stem cell therapy are remarkable! Here are a few points which make this type of treatment so effective:

Visit our clinic today and discover what Texas Regional Health & Wellness can do for you!

We ensure our clients safety, and comfortability is always put first so that they enjoy using our treatments as much as we love making them healthier. Our stem cell therapy treatments allow them to get back to enjoying life to the fullest.

Stem Cell Therapy is the worlds most natural and effective anti-inflammatory, antiviral, antibiotic, self-modulating, and trophic treatment which gives a mega charge to your bodys immune system for healing and repair to take place.

Your life is as important to you as it is to us. Its time to make the next step by picking up your phone and calling Texas Regional at:

(281)-208-7335

Theres always a better way to be healthier.Make the right choice for your future with Texas Regional Health & Wellness

Link:
STEM CELL THERAPY & TREATMENTS Texas Regional Health

Posted in Texas Stem Cells | Comments Off on STEM CELL THERAPY & TREATMENTS Texas Regional Health

Fast Facts: Stem Cells 101 Vital Record

Posted: September 10, 2019 at 7:47 pm

Darwin Prockop, M.D., Ph.D., director of the Texas A&M Health Science Center Institute for Regenerative Medicine at Scott & White, answers your questions about this complex and rapidly developing field.

Stem cells have the ability to divide and create more cellsboth new stem cells and differentiated cellsindefinitely.

Were still discovering some of the amazing capabilities of these cells, but based on research at the Texas A&M Health Science Center recently, we do know that they can help repair bone and potentially both cause and cure cancer.

Stem cells have long been thought to hold the key for curing disease, regenerating organs and even keeping a body young. Weve since learned its a lot more complicated than that, but they still hold possibilities for the future of medicine.

Stem cells can be broadly split into three categories: embryonic, adult and induced pluripotent.

One major difference between the various types of stem cells is in how many different types of cells they can create. Multipotent cells can develop into more than one cell type of the body. Pluripotent cells are able to form, or differentiate into, all tissues types. However, they are not able to create a new animal. Totipotent cells, on the other hand, are pluripotent cells that are able to give rise to the supporting extra-embryonic structures of the placenta.

Embryonic stem cells (ES cells) are isolated from an embryohuman or otherwiseabout five days after fertilization and grown in a dish. The benefit of these cells is that they have the potential to become any type of cell in the body. These are what most people think of when they think stem cells, but theyve largely fallen out of favor in the scientific community, both for ethical and practical reasons. Researchers have found that ES cells really only function properlywithout creating tumorsin a developing embryo.

Adult stem cells, which are also called somatic stem cells or tissue-specific stem cells, can be found in several places within the body. Each location holds a specific type of stem cell, specialized to that part of the body.

They are found all over the body, as they are needed to replace cells that get worn out or damaged. For example, epithelial stem cells in the gut can make more cells to replace the gut lining and neural stem cells can give rise to new brain cells.

The hematopoietic stem cellsin bone marrow and umbilical cord blood, which make red and white blood cells as well as platelets, are the easiest to isolate, and have been used in therapy for decades. Bone marrow stromal cells are a different type of adult stem cell, also found in bone marrow, that can make many types of cells. A multipotent subset of this type, bone marrow stromal stem cells, which are also called skeletal stem cells, are able to form bone, cartilage, stromal cells that support blood formation, fat and fibrous tissue. Other places in the body known to have adult stem cells include the brain, heart, skin, teeth, liver and skeletal muscle.

Sometimes transdifferentiationthe process of a specialized type of stem cell creating cells of a different type of tissuecan occur, but for the most part, these stem cells can only make more the same cell type. Even with their limitationsor maybe because of themadult stem cells are safer and more predictable than other types of stem cells.

Induced pluripotent stem cells (iPS cells) are something like a combination of adult and embryonic stem cells in that they are derived from adult tissue but behave like ES cells. They divide without limit and can differentiate into nearly any type of cell.

Mesenchymal stem cells (MSCs, also sometimes called mesenchymal stromal cells) are somewhat confusing, because although they currently mean adult stem cells from non-blood tissues, some people are also starting to use it to mean the similar cells derived from induced pluripotent stem cells to create multipotent cells that can differentiate into bone, muscle, cartilage and fat.

Our preclinical data were the basis of the first clinical trial of MSCs, which focused on children with a genetic disease called osteogenesis imperfecta that causes severe brittleness of bone. The children improved, and although the improvement was temporary, the results opened the door to the further clinical trials of the cells.

In the United States, the National Institutes of Health (NIH) have sponsored a multi-center trial for use of MSCs for treating acute respiratory distress syndrome (ARDS).

Induced pluripotent stem cells are an important area of active research because they have most of the benefits of embryonic stem cells but none of the ethical issues. However, there are still major regulatory problems because an intrinsic property of the cells is that they form tumors in animal models, an ominous sign that they may form cancers in patients. They are used in clinical trials, primarily for treating macular degeneration, because it is relatively easy to detect and tumors in the eyes and remove them.

Adult stem cells are a far more active area of clinical trial research, with over 400 clinical trials using MSCs alone. Thousands of patients have received the cells and there have been no documented cases of any adverse events. Most of these trials have been too small for thorough evaluation, but most have been generating promising results.

Darwin Prockop, M.D., Ph.D., professor of molecular and cellular medicine, is the director of the Texas A&M Health Science Center Institute for Regenerative Medicine at Scott & White and a member of the National Academy of Sciences and the Institute of Medicine. He will be receiving the inaugural Lifetime Achievement Award in Cell Therapy by the International Society for Cell Therapy, the leading organization in the field, in Singapore on May 26, 2016. Papers from his laboratory have been cited over 24,000 times by other scientists.

Christina Sumners

Read more:
Fast Facts: Stem Cells 101 Vital Record

Posted in Texas Stem Cells | Comments Off on Fast Facts: Stem Cells 101 Vital Record

Understanding Stem Cell Therapy in Parkinsons Disease …

Posted: September 10, 2019 at 7:46 pm

On April 29, 2018, the Washington Post published an article examining commercial stem cell clinics in the United States that market non-FDA approved treatments directly to the public for a variety of health issues, including arthritis, macular degeneration and of particular note to us, Parkinsons disease (PD).

A typical treatment at one of these clinics involves removing fat cells from the abdomen (some clinics remove bone marrow or blood for this procedure), treating the cells in various ways in order to isolate mesenchymal stem cells or stromal cells from the removed tissue, and finally injecting these cells back into the body. The cells are re-introduced into the body in different locations (into the bloodstream, cerebral spinal fluid, nose, eye, etc.) depending on which disease is being targeted. Such treatments are performed for a fee, sometimes a large one, and are not covered by insurance.

Commercial clinics do not as a rule publish their results in peer-reviewed journals to demonstrate to the scientific community that the treatments work. Rather, they usually rely on anecdotes from patients as proof of efficacy. Some clinics are tracking their results by measuring variables such as quality of life before or after the procedure. However, without comparing the patients to a similar group who does not receive the treatment, it is hard to know whether any improvement is due to placebo effect or to the treatment itself.

Safety data is also limited, although there have been some publicized lawsuits claiming that these treatments resulted in harm. Stem cell researchers in general question whether cells harvested in such a way contain sufficient amounts of adult-derived stem cells to be meaningful. It is also unclear how this type of procedure would target the stem cells to the correct location. If stem cells are introduced in the nose for example, it is unclear how they would find their way to the basal ganglia and make the correct connection in order to help a person with Parkinsons disease.

In order for the medical community to accept this type of treatment as safe and beneficial, it would need to be shown to work in a placebo-controlled clinical trial for which participants do not pay, are aware of the known risks and benefits, and are carefully monitored throughout the trial. In addition, the trial would need to track adverse events, as well as record and share the outcomes of trial participants as they compare to the group of patients receiving a placebo treatment. So far this has not happened. The FDA is in fact studying mesenchymal stem cells in the laboratory in order to determine the best way to use them to help people, but these studies have not yet led to approved treatments. Most recently, the FDA filed federal complaints against two clinics that are marketing stem cell products without regulatory approval.

Researchers are working on it. Stem cells, often derived from a patient with Parkinsons disease, are currently being studied extensively in the laboratory, both to further our understanding of the molecular mechanisms that cause cell death in PD, and also as a test environment for new medications. However, there are currently no stem cell treatments for Parkinsons disease that have been developed and tested to the point that we are sure that they help and do not cause harm. Researchers however, are furiously underway to develop such a treatment. The research is focused on deciphering the best source of stem cells to use, the best ways to turn the stem cells into dopaminergic neurons (the type of neurons that are depleted in Parkinsons disease) and the best ways to introduce the cells into the brain for maximal effect and minimal harm.

1. Embryonic stem cells (ESCs) Stem cells derived from a human embryo, typically at a very early developmental stage. Early embryos created by in vitro fertilization (IVF) and are not going to be used, are typically the source of these cells. (This is as opposed to fetal stem cells which are typically derived from an older embryo.)2. Adult derived stem cells (also called tissue-specific stem cells) Stem cells found among, and then isolated from, differentiated cells in an adult. The most well understood of these are hematopoietic stem cells found in adult blood and bone marrow, which have been used clinically for decades, mostly to treat blood cancers and other disorders of the blood and immune systems.3. Umbilical cord stem cells Hematopoietic stem cells are also found in umbilical cord blood retrieved after delivery. These too are used clinically to treat blood cancers and some rare genetic disorders4. Mesenchymal stem cells also known as stromal cells are present in many tissues such as bone, cartilage and fat. They remain poorly understood, but likely have regenerative potential. These are the cells that are harvested at the commercial stem cell clinics described above.5. Induced pluripotent stem cells (iPSCs) Stem cells created from adult skin or blood cells that have been reprogrammed to revert to an embryonic state.6. Human parthenogenetic stem cells Stem cells created from an unfertilized human ovum.

Four groups dedicated to using stem cell therapies to treat Parkinsons disease have formed an international consortium known as G Force PD. Each of the four centers is planning a clinical trial to start in the next 1-4 years. They differ on the source of stem cells that they will be using (ESCs vs iPSCs). All will be injecting the cells directly into the basal ganglia part of the brain where the ends of the dopamine producing neurons live. The Parkinsons community eagerly awaits the implementation of these trials.

When open for enrollment, should I consider participating in a stem cell trial?When faced with an illness like PD, you can at times feel that it is worthwhile to try anything that may lead to a cure. Its important to always make sure however, that youre dealing with trusted information, proven therapies, and clinical trials that have been properly vetted by the medical community.

What if you want to get involved? Participation in a clinical trial that is investigating the use of stem cell treatments for Parkinsons disease will allow you to be involved in bringing such treatments to fruition. It is incredibly important to note however, that clinical trials that are entered on clinicaltrials.gov, the NIH-managed directory of all clinical trials, are not vetted by the NIH, and commercial stem cell clinics we mentioned earlier can put their treatments on this site to recruit patients. Most people dont realize this, which led clinicaltrials.gov to put a new disclaimer on their site stating: The safety and scientific validity of this study is the responsibility of the study sponsor and investigators.

Therefore, in order to use clinicaltrials.gov safely, focus on the trials conducted at academic medical centers in the United States. Once you have identified a trial that you might be interested in, talk it over with your doctor before committing to anything.

Be aware that a clinical trial utilizing stem cells will likely require the cells to be injected directly into the brain, which will inevitably be associated with a certain amount of risk. You will need to discuss details of this risk with your doctor and the trial organizers.

Does APDA fund any stem cell research?APDA is committed to funding research to further our understanding of PD and to bring new treatments to patients as quickly as possible. Recent funding of Dr. Xiabo Mao, at Johns Hopkins University School of Medicine in Baltimore, MD, allowed him to use iPSCs to model PD and test a potential new avenue of treatment.

Be cautious of any clinic promoting a treatment that has not been proven by the FDA to be safe and effective. There is some promise in the area of using stem cells as a possible treatment for PD, but much more research needs to be done before such a therapy will be approved for clinical use.

Do you have a question or issue that you would like Dr. Gilbert to explore? Suggest a Topic

Dr. Rebecca Gilbert

APDA Vice President and Chief Scientific Officer

Dr. Gilbert received her MD degree at Weill Medical College of Cornell University in New York and her PhD in Cell Biology and Genetics at the Weill Graduate School of Medical Sciences. She then pursued Neurology Residency training as well as Movement Disorders Fellowship training at Columbia Presbyterian Medical Center. Prior to coming to APDA, she was an Associate Professor of Neurology at NYU Langone Medical Center. In this role, she saw movement disorder patients, initiated and directed the NYU Movement Disorders Fellowship, participated in clinical trials and other research initiatives for PD and lectured widely on the disease.

View all posts by Dr. Rebecca Gilbert

DISCLAIMER: Any medical information disseminated via this blog is solely for the purpose of providing information to the audience, and is not intended as medical advice. Our healthcare professionals cannot recommend treatment or make diagnoses, but can respond to general questions. We encourage you to direct any specific questions to your personal healthcare providers.

Follow this link:
Understanding Stem Cell Therapy in Parkinsons Disease ...

Posted in Washington Stem Cells | Comments Off on Understanding Stem Cell Therapy in Parkinsons Disease …

Kansas Regenerative Stem Cell Seminar – Stem Cell Centers …

Posted: September 10, 2019 at 7:46 pm

1How much is the seminar?

This is a complimentary seminar. No cost and no obligation. The doctor will be reviewing the latest research on how stem cells are able to help revive and rejuvenate worn, damaged joints and tissues (such as knees, shoulders and hips). Please contact us if you have any questions!

2How much downtime should I expect after regenerative cell therapy?

Typically, there is no little to no downtime from regenerative cellular therapy.

3Is more than one treatment needed?

Not every person is the same. Obviously that possibility exists and thats why we take our patients through our advanced assessment so we can carefully determine if you are one of those special cases. It is important to understand that once a joint regenerates, there would be no need for further treatment unless a new injury occurred or over-time,that joint degenerated again.

4How much does it cost?

Every person is unique and would require a one on one consultation with a provider to see if you are a candidate. The good news is, we've made it a goal to never let price get in the way of your health. If together we find regenerative therapy is right for you, and will improve your quality of life, there are several flexible payment options available.

5What determines the outcome of my regenerative cell therapy?

Various factors will determine the outcome of your Regenerative Cell Therapy treatment, such as the extent of damage, disease and the location being treated. Most people respond well to this therapy option and experience relief from pain in just a short period of time. For instance, this therapy has been known provide full relief to patients after only one treatment.

6How are regenerative cells collected?

Our Regenerative Cell Treatment is a revolutionary breakthrough treatment option for people suffering from inflammation, reduced mobility, sports injuries, tissue and ligament damage, or chronic pain. Regenerative Cell Therapy is an injectable regenerative tissue matrix solution, that oftentimes leaves the patient feeling relief after only ONE treatment. This cutting edge treatment takes the best components from all the current non-invasive treatment options and puts them into one. This Regenerative Cell Treatment is collected from mothers who have donated their placental tissue after delivering a child by c-section birth.

7Is there anything else I can do to increase the effectiveness of my therapy?

Yes! Our treatment plans are comprehensive. Not only will we provide you with the most cutting-edge treatment options, but we will also assist you through rehabilitation. Following the custom program created for your specific needs will thoroughly increase the effectiveness.

8How long does the repair process take?

Generally, the repair process begins immediately and the good news is that it can continue to repair for up to eight additional months from the date of the initial procedure.

9Can the procedure fail?

Like any other procedure, there is no 100% guarantee. In certain cases, it is possible that you may need additional treatments or your stem cells do not have enough repair potential relative to your personal injury.

10If the regenerative cell therapy does not work can I still have surgery?

Yes. There is nothing about these procedures that would preclude you from having traditional surgery. We evaluate each case carefully, however, so if its possible to tell that the best course of action is truly conventional surgery we will advise you on that.

11Will insurance cover it

Unfortunately insurance and Medicare do not cover stem cell therapy (yet). We have made this treatment option extremely affordable because of this.

Original post:
Kansas Regenerative Stem Cell Seminar - Stem Cell Centers ...

Posted in Kansas Stem Cells | Comments Off on Kansas Regenerative Stem Cell Seminar – Stem Cell Centers …

Stem Cell Treatment Lima | Orthopaedic Institute of Ohio

Posted: September 10, 2019 at 7:46 pm

Stem Cell Treatment

Arthritic conditions and some types of injuries affecting the joints and extremities have been historically challenging to treat. Until recently, treatment focus was on managing symptoms, rather than getting to the core of the problem. Today, there is a revolutionary treatment available at the Orthopaedic Institute of Ohio that restores healing to injured areas and reverses the painful effects of arthritis. Stem cell injections are now offered to stimulate the patients own body to repair damage and restore function after injury or disease.

Stem cells are undifferentiated cells in the body that have the unique ability to transform into any cell or tissue. This exceptional property allows for reparative function when the stem cells are delivered into injured or diseased areas of the body in need of regeneration. This concentration of regenerative cells combines with cells already working to restore the area, boosting the power of the body to heal itself quickly and thoroughly. At the same time stem cells repair damaged cartilage and bone, they also reduce uncomfortable side effects like swelling, inflammation and pain.

Concentrated bone marrow aspirate or cBMA is a therapy that uses stem cells taken from the pelvis bone and delivers them to the injured area to stimulate the bodys natural healing responses. The bone marrow is removed through an outpatient procedure using a local anesthetic. The extracted bone marrow is then placed into a centrifuge to separate the stem cells from the rest of the marrow material. Next, the stem cells are injected into the treatment area, where they will likely reduce symptoms and improve the function of the joint or limb within a matter of weeks.

Our cBMA therapy can be used to address a variety of areas and concerns, including:

Our surgeons at Orthopaedic Institute of Ohio will evaluate your injury to determine whether stem cell injections might bring the desired relief. Since we offer a wide range of treatment options, we can tailor your procedure to your unique situation to produce the best possible outcome for you.

Stem cell injections typically take about two hours to perform in our office. We will provide a local anesthetic to the donor area to ensure your comfort during the procedure. The bone marrow will be removed using a suction syringe placed at the back of the hip. The collected marrow will be processed in a centrifuge, and the remaining stem cells and healing components are then delivered directly to the treatment area. Some areas may need ultrasound or X-Ray guidance.

Patients are usually sore for a few days after the stem cell injections, particularly at the donor site. Most feel ready to return to regular activities within about one week. Physical therapy may be prescribed to optimize the effects of stem cell therapy. Patients often begin to see positive results within two to six weeks after their procedure.

If you are suffering chronic pain and reduced mobility due to an injury that wont heal completely or an arthritic condition, stem cell injections may be an option for you. Contact the Orthopaedic Institute of Ohio today at 419-222-6622 to schedule a consultation and learn more about this revolutionary treatment.

See the rest here:
Stem Cell Treatment Lima | Orthopaedic Institute of Ohio

Posted in Ohio Stem Cells | Comments Off on Stem Cell Treatment Lima | Orthopaedic Institute of Ohio

Stem Cell Injections Shoulder | Cost of Stem Cell Therapy …

Posted: September 10, 2019 at 7:46 pm

Am I a Candidate for Stem Cell Injections?

It is important to note that stem cell therapy is not for everyone. The orthopedic specialist at Shoulder Clinic of Idaho can discuss the role of stem cell injections for patients with mild to moderate osteoarthritis, and for tendon injuries that have not responded to other conservative treatments. Older patients are sometimes offered alternative treatments because as the body ages, the ability to regenerate tissue from its own stem cells diminishes. After age 60, autologous (the bodys own) stem cell therapy typically fails to provide regeneration because there are not enough stem cells in the bone marrow. Patients in Boise, Meridian, Nampa, and the surrounding communities of the Treasure Valley will learn, in great detail, of about stem cell injection options from their orthopedic specialist at The Shoulder Clinic of Idaho.

Once a bone marrow sample is collected, and the white blood cells, platelets and adult stem cells are harvested, these three healing agents are combined and can be injected directly into a patients damaged shoulder joint. These special cells are thought to work together to promote regeneration of the shoulder and to decrease pain.

Stem cell therapy for arthritis uses a patients own pluripotent adult stem cells instead of more controversial embryonic or fetal stem cells. Autologous cells replicate the healing benefits of embryonic stem cells without ethical concerns. Stem cell therapy may provide an alternative treatment option for patients suffering from various forms of arthritis, including osteoarthritis. Moreover, stem cells may lessen symptoms of early arthritis, potentially delaying the need of joint replacement surgery.

The rotator cuff is a critical structure within the shoulder that provides stability and strength to the joint. When one of the muscle-tendon units that compose the rotator cuff experiences a tear, treatment is often necessary.In cases of a partially torn rotator cuff, a patients own bone marrow can be extracted from the hip area. The sample of bone marrow is then spun in a special machine in order to separate the platelets, white blood cells and adult stem cells from the red blood cells. Once the three healing agents are separated, they are combined again, and the physician can inject the stem cells directly into the injured rotator cuff region to help regenerate tissue and accelerate healing.

Relatively speaking, stem cell injections are relatively new and not commonly used in the shoulder, although the discovery of stem cell treatment dates back to 1981. The most well-established and widely used stem cell treatment is the transplantation of blood stem cells to treat diseases and conditions of the blood and immune system; or to restore the blood system after treatments for specific types of cancers. The US National Marrow Donor Program has a full list of diseases treatable by blood stem cell transplant. Wellover one million patients worldwide have been treated with adult stem cells and have experienced improved health.

Stem cell research arose from the need to explore new therapeutic possibilities for intractable and lethal diseases. For the shoulder, there are diseases which current treatment modalities do not offer satisfactory, efficient or durable results. These diseases have been targets of stem cell treatment. Stem cell injections continue to gain popularity as a safe and effective regenerative medicine technique designed to accelerate healing and regeneration following a shoulder injury.

To learn more about stem cell injections for the shoulder, and other biologic treatments as an alternative to shoulder surgery, please contact the orthopedic shoulder specialists at The Shoulder Clinic of Idaho, serving patients in Boise, Meridian, Nampa, and the surrounding communities of the Treasure Valley.

Read more here:
Stem Cell Injections Shoulder | Cost of Stem Cell Therapy ...

Posted in Idaho Stem Cells | Comments Off on Stem Cell Injections Shoulder | Cost of Stem Cell Therapy …

Stell Cell Genetics | Stem Cell TV

Posted: September 10, 2019 at 7:44 pm

Alzheimer's Disease Collaborative Group. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genet. 11: 219-222, 1995. [PubMed: 7550356] [Full Text: https://dx.doi.org/10.1038/ng1095-219%5D

Ataka, S., Tomiyama, T., Takuma, H., Yamashita, T., Shimada, H., Tsutada, T., Kawabata, K., Mori, H., Miki, T. A novel presenilin-1 mutation (leu85pro) in early-onset Alzheimer disease with spastic paraparesis. Arch. Neurol. 61: 1773-1776, 2004. [PubMed: 15534188] [Full Text: https://jamanetwork.com/journals/jamaneurology/fullarticle/10.1001/archneur.61.11.1773%5D

Athan, E. S., Williamson, J., Ciappa, A., Santana, V., Romas, S. N., Lee, J. H., Rondon, H., Lantigua, R. A., Medrano, M., Torres, M., Arawaka, S., Rogaeva, E., and 10 others. A founder mutation in presenilin 1 causing early-onset Alzheimer disease in unrelated Caribbean Hispanic families. JAMA 286: 2257-2263, 2001. [PubMed: 11710891] [Full Text: https://jamanetwork.com/journals/jama/fullarticle/vol/286/pg/2257%5D

Bai, G., Chivatakarn, O., Bonanomi, D., Lettieri, K., Franco, L., Xia, C., Stein, E., Ma, L., Lewcock, J. W., Pfaff, S. L. Presenilin-dependent receptor processing is required for axon guidance. Cell 144: 106-118, 2011. [PubMed: 21215373] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(10)01375-9%5D

Bai, X., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S. H. W., Shi, Y. An atomic structure of human gamma-secretase. Nature 525: 212-217, 2015. [PubMed: 26280335] [Full Text: https://doi.org/10.1038/nature14892%5D

Beck, J. A., Poulter, M., Campbell, T. A., Uphill, J. B., Adamson, G., Geddes, J. F., Revesz, T., Davis, M. B., Wood, N. W., Collinge, J., Tabrizi, S. J. Somatic and germline mosaicism in sporadic early-onset Alzheimer's disease. Hum. Molec. Genet. 13: 1219-1224, 2004. [PubMed: 15115757] [Full Text: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddh134%5D

Beglopoulos, V., Sun, X., Saura, C. A., Lemere, C. A., Kim, R. D., Shen, J. Reduced beta-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J. Biol. Chem. 279: 46907-46914, 2004. [PubMed: 15345711] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=15345711%5D

Bertoli Avella, A. M., Teruel, B. M., Llibre Rodriguez, J. J., Gomez Viera, N., Borrajero Martinez, I., Severijnen, E. A., Joosse, M., van Duijn, C. M., Heredero Baute, L., Heutink, P. A novel presenilin 1 mutation (L174M) in a large Cuban family with early onset Alzheimer disease. Neurogenetics 4: 97-104, 2002. [PubMed: 12484344]

Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C.-M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L., Younkin, S. G, Sisodia, S. S. Familial Alzheimer's disease-linked presenilin 1 variants elevate A-beta-1-42/1-40 ratio in vitro and in vivo. Neuron 17: 1005-1013, 1996. [PubMed: 8938131] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(00)80230-5%5D

Bruni, A. C., Bernardi, L., Colao, R., Rubino, E., Smirne, N., Frangipane, F., Terni, B., Curcio, S. A. M., Mirabelli, M., Clodomiro, A., Di Lorenzo, R., Maletta, R., and 23 others. Worldwide distribution of PSEN1 Met146Leu mutation: a large variability for a founder mutation. Neurology 74: 798-806, 2010. [PubMed: 20164095] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=20164095%5D

Buckler, A. J., Chang, D. D., Graw, S. L., Brook, J. D., Haber, D. A., Sharp, P. A., Housman, D. E. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Nat. Acad. Sci. 88: 4005-4009, 1991. [PubMed: 1850845] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=1850845%5D

Cai, D., Netzer, W. J., Zhong, M., Lin, Y., Du, G., Frohman, M., Foster, D. A., Sisodia, S. S., Xu, H., Gorelick, F. S., Greengard, P. Presenilin-1 uses phospholipase D1 as a negative regulator of beta-amyloid formation. Proc. Nat. Acad. Sci. 103: 1941-1946, 2006. [PubMed: 16449386] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=16449386%5D

Cai, D., Zhong, M., Wang, R., Netzer, W. J., Shields, D., Zheng, H., Sisodia, S. S., Foster, D. A., Gorelick, F. S., Xu, H., Greengard, P. Phospholipase D1 corrects impaired beta-APP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons. Proc. Nat. Acad. Sci. 103: 1936-1940, 2006. [PubMed: 16449385] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=16449385%5D

Chau, D.-M., Crump, C. J., Villa, J. C., Scheinberg, D. A., Li, Y.-M. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of gamma-secretase. J. Biol. Chem. 287: 17288-17296, 2012. [PubMed: 22461631] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=22461631%5D

Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim. S., Schenk, D., Fraser, P., St George Hyslop, P., Selkoe, D. J. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med. 3: 67-72, 1997. [PubMed: 8986743]

Clark, R. F., Hutton, M., Talbot, C., Wragg, M., Lendon, C., Busfield, F., Han, S. W., Perez-Tur, J., Adams, M., Fuldner, R., Roberts, G., Karran, E., Hardy, J., Goate, A. The role of presenilin 1 in the genetics of Alzheimer's disease. Cold Spring Harbor Symp. Quant. Biol. 61: 551-558, 1996. [PubMed: 9246481] [Full Text: http://symposium.cshlp.org/cgi/pmidlookup?view=long&pmid=9246481%5D

Crook, R., Verkkoniemi, A., Perez-Tur, J., Mehta N., Baker, M., Houlden, H., Farrer, M., Hutton, M., Lincoln, S., Hardy, J., Gwinn, K., Somer, M., Paetau, A., Kalimo, H., Ylikoski, R., Poyhonen, M., Kucera, S., Haltia, M. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nature Med. 4: 452-455, 1998. [PubMed: 9546792]

Cruts, M., Van Broeckhoven, C. Presenilin mutations in Alzheimer's disease. Hum. Mutat. 11: 183-190, 1998. [PubMed: 9521418] [Full Text: https://doi.org/10.1002/(SICI)1098-1004(1998)11:33.0.CO;2-J%5D

Cruts, M., van Duijn, C. M., Backhovens, H., Van den Broeck, M., Wehnert, A., Serneels, S., Sherrington, R., Hutton, M., Hardy, J., St George-Hyslop, P. H., Hofman, A., Van Broeckhoven, C. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum. Molec. Genet. 7: 43-51, 1998. [PubMed: 9384602]

Davis, J. A., Naruse, S., Chen, H., Eckman, C., Younkin, S., Price, D. L., Borchelt, D. R., Sisodia, S. S., Wong, P. C. An Alzheimer's disease-linked PS1 variant rescues the developmental abnormalities of PS1-deficient embryos. Neuron 20: 603-609, 1998. [PubMed: 9539132] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(00)80998-8%5D

De Jonghe, C., Cruts, M., Rogaeva, E. A., Tysoe, C., Singleton, A., Vanderstichele, H., Meschino, W., Dermaut, B., Vanderhoeven, I., Backhovens, H., Vanmechelen, E., Morris, C. M., Hardy, J., Rubinsztein, D. C., St George-Hyslop, P. H., Van Broeckhoven, C. Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer's disease by increased A-beta-42 secretion. Hum. Molec. Genet. 8: 1529-1540, 1999. [PubMed: 10401002]

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., Goate, A., Kopan, R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518-522, 1999. [PubMed: 10206645] [Full Text: https://doi.org/10.1038/19083%5D

De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., Van Leuven, F. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387-390, 1998. [PubMed: 9450754] [Full Text: https://doi.org/10.1038/34910%5D

De Strooper, B. Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron 38: 9-12, 2003. [PubMed: 12691659] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896627303002058%5D

Dermaut, B., Cruts, M., Slooter, A. J. C., Van Gestel, S., De Jonghe, C., Vanderstichele, H., Vanmechelen, E., Breteler, M. M., Hofman, A., van Duijn, C. M., Van Broeckhoven, C. The glu318-to-gly substitution in presenilin 1 is not causally related to Alzheimer disease. (Letter) Am. J. Hum. Genet. 64: 290-292, 1999. [PubMed: 9915968] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(07)61682-6%5D

Dermaut, B., Kumar-Singh, S., Engelborghs, S., Theuns, J., Rademakers, R., Saerens, J., Pickut, B. A., Peeters, K., van den Broeck, M., Vennekens, K., Claes, S., Cruts, M., Cras, P., Martin, J.-J., Van Broeckhoven, C., De Deyn, P. P. A novel presenilin 1 mutation associated with Pick's disease but not beta-amyloid plaques. Ann. Neurol. 55: 617-626, 2004. [PubMed: 15122701] [Full Text: https://doi.org/10.1002/ana.20083%5D

Devi, G., Fotiou, A., Jyrinji, D., Tycko, B., DeArmand, S., Rogaeva, E., Song, Y.-Q., Medieros, H., Liang, Y., Orlacchio, A., Williamson, J., St George-Hyslop, P., Mayeux, R. Novel presenilin 1 mutations associated with early onset of dementia in a family with both early-onset and late-onset Alzheimer disease. Arch. Neurol. 57: 1454-1457, 2000. [PubMed: 11030797] [Full Text: https://jamanetwork.com/journals/jamaneurology/fullarticle/vol/57/pg/1454%5D

Dineley, K. T., Xia, X., Bui, D., Sweatt, J. D., Zheng, H. Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha-7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J. Biol. Chem. 277: 22768-22780, 2002. [PubMed: 11912199] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=11912199%5D

Dolzhanskaya, N., Gonzalez, M. A., Sperziani, F., Stefl, S., Messing, J., Wen, G. Y., Alexov, E., Zuchner, S., Velinov, M. A novel p.Leu(381)Phe mutation in presenilin 1 is associated with very early onset and unusually fast progressing dementia as well as lysosomal inclusions typically seen in Kufs disease. J. Alzheimers Dis. 39: 23-27, 2014. [PubMed: 24121961] [Full Text: https://content.iospress.com/openurl?genre=article&id=doi:10.3233/JAD-131340%5D

Donoviel, D. B., Hadjantonakis, A.-K., Ikeda, M., Zheng, H., St George Hyslop, P., Bernstein, A. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13: 2801-2810, 1999. [PubMed: 10557208] [Full Text: http://www.genesdev.org/cgi/pmidlookup?view=long&pmid=10557208%5D

Duff, K., Eckman, C., Zehr, C., Yu, X, Prada, C.-M., Perez-tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M. N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., Youndkin, S. Increased amyloid-beta-42(43) in brains of mice expressing mutant presenilin 1. Nature 383: 710-713, 1996. [PubMed: 8878479] [Full Text: https://doi.org/10.1038/383710a0%5D

Esselens, C., Oorschot, V., Baert, V., Raemaekers, T., Spittaels, K., Serneels, L., Zheng, H., Saftig, P., De Strooper, B., Klumperman, J., Annaert, W. Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J. Cell Biol. 166: 1041-1054, 2004. [PubMed: 15452145] [Full Text: http://jcb.rupress.org/cgi/pmidlookup?view=long&pmid=15452145%5D

Feng, R., Rampon, C., Tang, Y.-P., Shrom, D., Jin, J., Kyin, M., Sopher, B., Miller, M. W., Ware, C. B., Martin, G. M., Kim, S. H., Langdon, R. B., Sisodia, S. S., Tsien, J. Z. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32: 911-926, 2001. Note: Erratum: Neuron 33: 313 only, 2002. [PubMed: 11738035] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(01)00523-2%5D

Fox, N. C., Kennedy, A. M., Harvey, R. J., Lantos, P. L., Roques, P. K., Collinge, J., Hardy, J., Hutton, M., Stevens, J. M., Warrington, E. K., Rossor, M. N. Clinicopathological features of familial Alzheimer's disease associated with the M139V mutation in the presenilin 1 gene: pedigree but not mutation specific age at onset provides evidence for a further genetic factor. Brain 120: 491-501, 1997. [PubMed: 9126060]

Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., Nicoll, M., Maxwell, M., Hai, B., Ellis, M. C., Parks, A. L., Xu, W., Li, J., Gurney, M., Myers, R. L., Himes, C. S., Hiebsch, R., Ruble, C., Nye, J. S., Curtis, D. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of beta-APP, and presenilin protein accumulation. Dev. Cell 3: 85-97, 2002. [PubMed: 12110170] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S1534-5807(02)00189-2%5D

Ganguly, A., Feldman, R. M. R., Guo, M. Ubiquilin antagonizes presenilin and promotes neurodegeneration in Drosophila. Hum. Molec. Genet. 17: 293-302, 2008. [PubMed: 17947293] [Full Text: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddm305%5D

Georgakopoulos, A., Marambaud, P., Efthimiopoulos, S., Shioi, J., Cui, W., Li, H.-C., Schutte, M., Gordon, R., Holstein, G. R., Martinelli, G., Mehta, P., Friedrich, V. L., Jr., Robakis, N. K. Presenilin-1 forms complexes with the cadherin/catenin cell-cell adhesion system and is recruited to intercellular and synaptic contacts. Molec. Cell 4: 893-902, 1999. [PubMed: 10635315] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S1097-2765(00)80219-1%5D

Godbolt, A. K., Beck, J. A., Collinge, J., Garrard, P., Warren, J. D., Fox, N. C., Rossor, M. N. A presenilin 1 R278I mutation presenting with language impairment. Neurology 63: 1702-1704, 2004. [PubMed: 15534260] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=15534260%5D

Goldman, J. S., Johnson, J. K., McElligott, K., Suchowersky, O., Miller, B. L., Van Deerlin, V. M. Presenilin 1 Glu318Gly polymorphism: interpret with caution. Arch. Neurol. 62: 1624-1627, 2005. [PubMed: 16216949] [Full Text: https://jamanetwork.com/journals/jamaneurology/fullarticle/10.1001/archneur.62.10.1624%5D

Grilli, M., Diodato, E., Lozza, G., Brusa, R., Casarini, M., Uberti, D., Rozmahel, R., Westaway, D., St George-Hyslop, P., Memo, M., Ongini, E. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc. Nat. Acad. Sci. 97: 12822-12827, 2000. [PubMed: 11070093] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=11070093%5D

Guo, M., Hong, E. J., Fernandes, J., Zipursky, S. L., Hay, B. A. A reporter for amyloid precursor protein gamma-secretase activity in Drosophila. Hum. Molec. Genet. 12: 2669-2678, 2003. [PubMed: 12944419] [Full Text: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddg292%5D

Gustafson, L., Brun, A., Englund, E., Hagnell, O., Nilsson, K., Stensmyr, M., Ohlin, A.-K., Abrahamson, M. A 50-year perspective of a family with chromosome-14-linked Alzheimer's disease. Hum. Genet. 102: 253-257, 1998. [PubMed: 9544835]

Halliday, G. M., Song, Y. J. C., Lepar, G., Brooks, W. S., Kwok, J. B., Kersaitis, C., Gregory, G., Shepherd, C. E., Rahimi, F., Schofield, P. R., Kril, J. J. Pick bodies in a family with presenilin-1 Alzheimer's disease. Ann. Neurol. 57: 139-143, 2005. [PubMed: 15622541] [Full Text: https://doi.org/10.1002/ana.20366%5D

Handler, M., Yang, X., Shen, J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127: 2593-2606, 2000. [PubMed: 10821758] [Full Text: http://dev.biologists.org/cgi/pmidlookup?view=long&pmid=10821758%5D

Hartmann, D. From Alzheimer's disease to skin tumors: the catenin connection. Proc. Nat. Acad. Sci. 98: 10522-10523, 2001. [PubMed: 11553799] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=11553799%5D

Harvey, R. J., Ellison, D., Hardy, J., Hutton, M., Roques, P. K., Collinge, J., Fox, N. C., Rossor, M. N. Chromosome 14 familial Alzheimer's disease: the clinical and neuropathological characteristics of a family with a leucine-to-serine (L250S) substitution at codon 250 of the presenilin 1 gene. J. Neurol. Neurosurg. Psychiat. 64: 44-49, 1998. [PubMed: 9436726] [Full Text: http://jnnp.bmj.com/cgi/pmidlookup?view=long&pmid=9436726%5D

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T.-C., Gelpi, E., Halle, A., Korte, M., Latz, E., Golenbock, D. T. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493: 674-678, 2013. [PubMed: 23254930] [Full Text: https://doi.org/10.1038/nature11729%5D

Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., Cole, G. Correlative memory deficits, A-beta elevation, and amyloid plaques in transgenic mice. Science 274: 99-103, 1996. [PubMed: 8810256] [Full Text: http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=8810256%5D

Hull, M., Fiebich, B. L., Dykierek, P., Schmidtke, K., Nitzsche, E., Orszagh, M., Deuschl, G., Moser, E., Schumacher, M., Lucking, C., Berger, M., Bauer, J. Early-onset Alzheimer's disease due to mutations of the presenilin-1 gene on chromosome 14: a 7-year follow-up of a patient with a mutation at codon 139. Europ. Arch. Psychiat. Clin. Neurosci. 248: 123-129, 1998. [PubMed: 9728730]

Ikeuchi, T., Sisodia, S. S. The notch ligands, delta-1 and jagged-2, are substrates for presenilin-dependent 'gamma-secretase' cleavage. J. Biol. Chem. 278: 7751-7754, 2003. [PubMed: 12551931] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12551931%5D

Ishikawa, A., Piao, Y.-S., Miyashita, A., Kuwano, R., Onodera, O., Ohtake, H., Suzuki, M., Nishizawa, M., Takahashi, H. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer's disease. Ann. Neurol. 57: 429-434, 2005. [PubMed: 15732120] [Full Text: https://doi.org/10.1002/ana.20393%5D

Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., Borchelt, D. R. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Molec. Genet. 13: 159-170, 2004. [PubMed: 14645205] [Full Text: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddh019%5D

Jarrett, J. T., Berger, E. P., Lansbury, P. T. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32: 4693-4697, 1993. [PubMed: 8490014]

Johnson, K. A., Lopera, F., Jones, K., Becker, A., Sperling, R., Hilson, J., Londono, J., Siegert, I., Arcos, M., Moreno, S., Madrigal, L., Ossa, J., Pineda, N., Ardila, A., Roselli, M., Albert, M. S., Kosik, K. S., Rios, A. Presenilin-1-associated abnormalities in regional cerebral perfusion. Neurology 56: 1545-1551, 2001. [PubMed: 11402113] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=11402113%5D

Jorgensen, P., Bus, C., Pallisgaard, N., Bryder, M., Jorgensen, A. L. Familial Alzheimer's disease co-segregates with a met146ile substitution in presenilin-1. Clin. Genet. 50: 281-286, 1996. [PubMed: 9007311] [Full Text: https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0009-9163&date=1996&volume=50&issue=5&spage=281%5D

Kaether, C., Capell, A., Edbauer, D., Winkler, E., Novak, B., Steiner, H., Haass, C. The presenilin C-terminus is required for ER-retention, nicastrin-binding and gamma-secretase activity. EMBO J. 23: 4738-4748, 2004. [PubMed: 15549135] [Full Text: http://emboj.embopress.org/cgi/pmidlookup?view=long&pmid=15549135%5D

Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A., Goldstein, L. S. B. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414: 643-648, 2001. [PubMed: 11740561] [Full Text: https://doi.org/10.1038/414643a%5D

Kamal, A., Stokin, G. B., Yang, Z., Xia, C., Goldstein, L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28: 449-459, 2000. [PubMed: 11144355] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(00)00124-0%5D

Kang, D. E., Soriano, S., Xia, X., Eberhart, C. G., De Strooper, B., Zheng, H., Koo, E. H. Presenilin couples the paired phosphorylation of beta-catenin independent of Axin: implications for beta-catenin activation in tumorigenesis. Cell 110: 751-762, 2002. [PubMed: 12297048] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0092867402009704%5D

Katayama, T., Imaizumi, K., Honda, A., Yoneda, T., Kudo, T., Takeda, M., Mori, K., Rozmahel, R., Fraser, P., St. George-Hyslop, P., Tohyama, M. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J. Biol. Chem. 276: 43446-43454, 2001. [PubMed: 11551913] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=11551913%5D

Kauwe, J. S. K., Jacquart, S., Chakraverty, S., Wang, J., Mayo, K., Fagan, A. M., Holtzman, D. M., Morris, J. C., Goate, A. M. Extreme cerebrospinal fluid amyloid-beta levels identify family with late-onset Alzheimer's disease presenilin 1 mutation. Ann. Neurol. 61: 446-453, 2007. [PubMed: 17366635] [Full Text: https://doi.org/10.1002/ana.21099%5D

Kopan, R., Goate, A. A common enzyme connects Notch signaling and Alzheimer's disease. Genes Dev. 14: 2799-2806, 2000. [PubMed: 11090127] [Full Text: http://www.genesdev.org/cgi/pmidlookup?view=long&pmid=11090127%5D

Kosik, K. S., Munoz, C., Lopez, L., Arcila, M. L., Garcia, G., Madrigal, L., Moreno, S., Rios Romenets, S., Lopez, H., Gutierrez, M., Langbaum, J. B., Cho, W., Suliman, S., Tariot, P., Ho, C., Reiman, E. M., Lopera, F. Homozygosity of the autosomal dominant Alzheimer disease presenilin 1 E280A mutation. Neurology 84: 206-208, 2015. [PubMed: 25471389] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=25471389%5D

Kounnas, M. Z., Danks, A. M., Cheng, S., Tyree, C., Ackerman, E., Zhang, X., Ahn, K., Nguyen, P., Comer, D., Mao, L., Yu, C., Pleynet, D., and 9 others. Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer's disease. Neuron 67: 769-780, 2010. [PubMed: 20826309] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0896-6273(10)00628-8%5D

Kovacs, D. M., Fausett, H. J., Page, K. J., Kim, T.-W., Moir, R. D., Merriam, D. E., Hollister, R. D., Hallmark, O. G., Mancini, R., Felsenstein, K. M., Hyman, B. T., Tanzi, R. E., Wasco, W. Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med. 2: 224-229, 1996. [PubMed: 8574969]

Kumar-Singh, S., Theuns, J., Van Broeck, B., Pirici, D., Vennekens, K., Corsmit, E., Cruts, M., Dermaut, B., Wang, R., Van Broeckhoven, C. Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased A-beta-42 and decreased A-beta-40. Hum. Mutat. 27: 686-695, 2006. [PubMed: 16752394] [Full Text: https://doi.org/10.1002/humu.20336%5D

Kwok, J. B. J., Halliday, G. M., Brooks, W. S., Dolios, G., Laudon, H., Murayama, O., Hallupp, M., Badenhop, R. F., Vickers, J., Wang, R., Naslund, J., Takashima, A., Gandy, S. E., Schofield, P. R. Presenilin-1 mutation L271V results in altered exon 8 splicing and Alzheimer's disease with non-cored plaques and no neuritic dystrophy. J. Biol. Chem. 278: 6748-6754, 2003. [PubMed: 12493737] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12493737%5D

Kwok, J. B. J., Taddei, K., Hallupp, M., Fisher, C., Brooks, W. S., Broe, G. A., Hardy, J., Fulham, M. J., Nicholson, G. A., Stell, R., St. George Hyslop, P. H., Fraser, P. E., and 6 others. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer's disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport 8: 1537-1542, 1997. [PubMed: 9172170] [Full Text: http://Insights.ovid.com/pubmed?pmid=9172170%5D

Lambert, J.-C., Mann, D. M. A., Harris, J. M., Chartier-Harlin, M.-C., Cumming, A., Coates, J., Lemmon, H., StClair, D., Iwatsubo, T., Lendon, C. The -48 C/T polymorphism in the presenilin 1 promoter is associated with an increased risk of developing Alzheimer's disease and an increased A-beta load in brain. J. Med. Genet. 38: 353-355, 2001. [PubMed: 11389157] [Full Text: http://jmg.bmj.com/cgi/pmidlookup?view=long&pmid=11389157%5D

Landman, N., Jeong, S. Y., Shin, S. Y., Voronov, S. V., Serban, G., Kang, M. S., Park, M. K., Di Paolo, G., Chung, S., Kim, T.-W. Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc. Nat. Acad. Sci. 103: 19524-19529, 2006. [PubMed: 17158800] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=17158800%5D

Laudon, H., Hansson, E. M., Melen, K., Bergman, A., Farmery, M. R., Winblad, B., Lendahl, U., von Heijne, G., Naslund, J. A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280: 35352-35360, 2005. [PubMed: 16046406] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=16046406%5D

Lazarov, O., Robinson, J., Tang, Y.-P., Hairston, I. S., Korade-Mirnics, Z., Lee, V. M.-Y., Hersh, L. B., Sapolsky, R. M., Mirnics, K., Sisodia, S. S. Environmental enrichment reduces A-beta levels and amyloid deposition in transgenic mice. Cell 120: 701-713, 2005. [PubMed: 15766532] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(05)00089-9%5D

Lee, S.-F., Shah, S., Li, H., Yu, C., Han, W., Yu, G. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch. J. Biol. Chem. 277: 45013-45019, 2002. [PubMed: 12297508] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12297508%5D

Leissring, M. A., Akbari, Y., Fanger, C. M., Cahalin, M. D., Mattson, M. P., LaFerla, F. M. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149: 793-797, 2000. [PubMed: 10811821] [Full Text: http://jcb.rupress.org/cgi/pmidlookup?view=long&pmid=10811821%5D

Lemere, C. A., Lopera, F., Kosik, K. S., Lendon, C. L., Ossa, J., Saido, T. C., Yamaguchi, H., Ruiz, A., Martinez, A., Madrigal, L., Hincapie, L., Arango, J. C., Anthony, D. C., Koo, E. H., Goate, A. M., Selkoe, D. J., Arango, J. C. The E280A presenilin 1 Alzheimer mutation produces increased A-beta-42 deposition and severe cerebellar pathology. Nature Med. 2: 1146-1150, 1996. [PubMed: 8837617]

Lewis, P. A., Perez-Tur, J., Golde, T. E., Hardy, J. The presenilin 1 C92S mutation increases A-beta-42 production. Biochem. Biophys. Res. Commun. 277: 261-263, 2000. [PubMed: 11027672] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0006-291X(00)93646-5%5D

Li, D., Parks, S. B., Kushner, J. D., Nauman, D., Burgess, D., Ludwigsen, S., Partain, J., Nixon, R. R., Allen, C. N., Irwin, R. P., Jakobs, P. M., Litt, M., Hershberger, R. E. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 79: 1030-1039, 2006. [PubMed: 17186461] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(07)63465-X%5D

Li, J., Xu, M., Zhou, H., Ma, J., Potter, H. Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 90: 917-927, 1997. [PubMed: 9298903] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(00)80356-6%5D

Li, Y.-M., Xu, M., Lai, M.-T., Huang, Q., Castro, J. L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil, J. G., Register, R. B., Sardana, M. K., Shearman, M. S., Smith, A. L., Shi, X.-P., Yin, K.-C., Shafer, J. A., Gardell, S. J. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405: 689-694, 2000. [PubMed: 10864326] [Full Text: https://doi.org/10.1038/35015085%5D

Lleo, A., Berezovska, O., Herl, L., Raju, S., Deng, A., Bacskai, B. J., Frosch, M. P., Irizarry, M., Hyman, B. T. Nonsteroidal anti-inflammatory drugs lower A-beta-42 and change presenilin 1 conformation. Nature Med. 10: 1065-1066, 2004. [PubMed: 15448688] [Full Text: https://dx.doi.org/10.1038/nm1112%5D

Lopera, F., Ardilla, A., Martinez, A., Madrigal, L., Arango-Viana, J. C., Lemere, C. A., Arango-Lasprilla, J. C., Hincapie, L., Arcos-Burgos, M., Ossa, J. E., Behrens, I. M., Norton, J., Lendon, C., Goate, A. M., Ruiz-Linares, A., Rosselli, M., Kosik, K. S. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 277: 793-799, 1997. [PubMed: 9052708] [Full Text: https://jamanetwork.com/journals/jama/fullarticle/vol/277/pg/793%5D

Lu, P., Bai, X., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S. H. W., Shi, Y. Three-dimensional structure of human gamma-secretase. Nature 512: 166-170, 2014. [PubMed: 25043039] [Full Text: https://doi.org/10.1038/nature13567%5D

Marambaud, P., Wen, P. H., Dutt, A., Shioi, J., Takeshima, A., Siman, R., Robakis, N. K. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114: 635-645, 2003. [PubMed: 13678586] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/S0092867403006512%5D

Matsubara-Tsutsui, M., Yasuda, M., Yamagata, H., Nomura, T., Taguchi, K., Kohara, K., Miyoshi, K., Miki, T. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am. J. Med. Genet. 114: 292-298, 2002. [PubMed: 11920851] [Full Text: https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0148-7299&date=2002&volume=114&issue=3&spage=292%5D

Mercken, M., Takahashi, H., Honda, T., Sato, K., Murayama, M., Nakazato, Y., Noguchi, K., Imahori, K., Takashima, A. Characterization of human presenilin 1 using N-terminal specific monoclonal antibodies: evidence that Alzheimer mutations affect proteolytic processing. FEBS Lett. 389: 297-303, 1996. [PubMed: 8766720] [Full Text: https://linkinghub.elsevier.com/retrieve/pii/0014-5793(96)00608-4%5D

Moehlmann, T., Winkler, E., Xia, X., Edbauer, D., Murrell, J., Capell, A., Kaether, C., Zheng, H., Ghetti, B., Haass, C., Steiner, H. Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on A-beta(42) production. Proc. Nat. Acad. Sci. 99: 8025-8030, 2002. [PubMed: 12048239] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=12048239%5D

Moonis, M., Swearer, J. M., Dayaw, M. P. E., St. George-Hyslop, P., Rogaeva, E., Kawarai, T., Pollen, D. A. Familial Alzheimer disease: decreases in CSF amyloid-beta-42 levels precede cognitive decline. Neurology 65: 323-325, 2005. [PubMed: 16043812] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=16043812%5D

Morelli, L., Prat, M. I., Levy, E., Mangone, C. A., Castano, E. M. Presenilin 1 met146leu variant due to an A-T transversion in an early-onset familial Alzheimer's disease pedigree from Argentina. Clin. Genet. 53: 469-473, 1998. [PubMed: 9712537] [Full Text: https://onlinelibrary.wiley.com/resolve/openurl?genre=article&sid=nlm:pubmed&issn=0009-9163&date=1998&volume=53&issue=6&spage=469%5D

Moretti, P., Lieberman, A. P., Wilde, E. A., Giordani, B. I., Kluin, K. J., Koeppe, R. A., Minoshima, S., Kuhl, D. E., Seltzer, W. K., Foster, N. L. Novel insertional presenilin 1 mutation causing Alzheimer disease with spastic paraparesis. Neurology 62: 1865-1868, 2004. [PubMed: 15159497] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=15159497%5D

Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., Duff, K., Jantzen, P., DiCarlo, G., Wilcock, D., Connor, K., Hatcher, J., Hope, C., Gordon, M., Arendash, G. W. A-beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408: 982-985, 2000. Note: Erratum Nature 412: 660 only, 2001. [PubMed: 11140686] [Full Text: https://doi.org/10.1038/35050116%5D

Murrell, J., Ghetti, B., Cochran, E., Macias-Islas, M. A., Medina, L., Varpetian, A., Cummings, J. L., Mendez, M. F., Kawas, C., Chui, H., Ringman, J. M. The A431E mutation in PSEN1 causing familial Alzheimer's disease originating in Jalisco state, Mexico: an additional fifteen families. (Letter) Neurogenetics 7: 277-279, 2006. [PubMed: 16897084] [Full Text: https://dx.doi.org/10.1007/s10048-006-0053-1%5D

Ni, C.-Y., Murphy, M. P., Golde, T. E., Carpenter, G. Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294: 2179-2181, 2001. [PubMed: 11679632] [Full Text: http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=11679632%5D

Nielsen, A. L., Holm, I. E., Johansen, M., Bonven, B., Jorgensen, P., Jorgensen, A. L. A new splice variant of glial fibrillary acidic protein, GFAP-epsilon, interacts with the presenilin proteins. J. Biol. Chem. 277: 29983-29991, 2002. [PubMed: 12058025] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12058025%5D

Nornes, S., Newman, M., Verdile, G., Wells, S., Stoick-Cooper, C. L., Tucker, B., Frederich-Sleptsova, I., Martins, R., Lardelli, M. Interference with splicing of presenilin transcripts has potent dominant negative effects on presenilin activity. Hum. Molec. Genet. 17: 402-412, 2008. [PubMed: 17981814] [Full Text: https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddm317%5D

Norton, J. B., Cairns, N. J., Chakraverty, S., Wang, J., Levitch, D., Galvin, J. E., Goate, A. Presenilin-1 G217R mutation linked to Alzheimer disease with cotton wool plaques. Neurology 73: 480-482, 2009. [PubMed: 19667325] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=19667325%5D

O'Riordan, S., McMonagle, P., Janssen, J. C., Fox, N. C., Farrell, M., Collinge, J., Rossor, M. N., Hutchinson, M. Presenilin-1 mutation (E280G), spastic paraparesis, and cranial MRI white-matter abnormalities. Neurology 59: 1108-1110, 2002. [PubMed: 12370477] [Full Text: http://www.neurology.org/cgi/pmidlookup?view=long&pmid=12370477%5D

Page, K., Hollister, R., Tanzi, R. E., Hyman, B. T. In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proc. Nat. Acad. Sci. 93: 14020-14024, 1996. [PubMed: 8943053] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=8943053%5D

Parimoo, S., Patanjali, S. R., Shukla, H., Chaplin, D. D., Weissman, S. M. cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments. Proc. Nat. Acad. Sci. 88: 9623-9627, 1991. [PubMed: 1946377] [Full Text: http://www.pnas.org/cgi/pmidlookup?view=long&pmid=1946377%5D

Pasternak, S. H., Bagshaw, R. D., Guiral, M., Zhang, S., Ackerley, C. A., Pak, B. J., Callahan, J. W., Mahuran, D. J. Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. J. Biol. Chem. 278: 26687-26694, 2003. [PubMed: 12736250] [Full Text: http://www.jbc.org/cgi/pmidlookup?view=long&pmid=12736250%5D

Pastor, P., Roe, C. M., Villegas, A., Bedoya, G., Chakraverty, S., Garcia, G., Tirado, V., Norton, J., Rios, S., Martinez, M., Kosik, K. S., Lopera, F., Goate, A. M. Apolipoprotein E-epsilon-4 modifies Alzheimer's disease onset in an E280A PS1 kindred. Ann. Neurol. 54: 163-169, 2003. [PubMed: 12891668] [Full Text: https://doi.org/10.1002/ana.10636%5D

Link:
Stell Cell Genetics | Stem Cell TV

Posted in Stell Cell Genetics | Comments Off on Stell Cell Genetics | Stem Cell TV

Stell Cell Genetics | Stem Cell TV | Page 4

Posted: September 10, 2019 at 7:44 pm

The potential therapeutic benefits of HESC research provide strong grounds in favor of the research. If looked at from a strictly consequentialist perspective, its almost certainly the case that the potential health benefits from the research outweigh the loss of embryos involved and whatever suffering results from that loss for persons who want to protect embryos. However, most of those who oppose the research argue that the constraints against killing innocent persons to promote social utility apply to human embryos. Thus, as long as we accept non-consequentialist constraints on killing persons, those supporting HESC research must respond to the claim that those constraints apply to human embryos.

In its most basic form, the central argument supporting the claim that it is unethical to destroy human embryos goes as follows: It is morally impermissible to intentionally kill innocent human beings; the human embryo is an innocent human being; therefore it is morally impermissible to intentionally kill the human embryo. It is worth noting that this argument, if sound, would not suffice to show that all or even most HESC research is impermissible, since most investigators engaged in HESC research do not participate in the derivation of HESCs but instead use cell lines that researchers who performed the derivation have made available. To show that researchers who use but do not derive HESCs participate in an immoral activity, one would further need to establish their complicity in the destruction of embryos. We will consider this issue in section 2. But for the moment, let us address the argument that it is unethical to destroy human embryos.

A premise of the argument against killing embryos is that human embryos are human beings. The issue of when a human being begins to exist is, however, a contested one. The standard view of those who oppose HESC research is that a human being begins to exist with the emergence of the one-cell zygote at fertilization. At this stage, human embryos are said to be whole living member[s] of the species homo sapiens [which] possess the epigenetic primordia for self-directed growth into adulthood, with their determinateness and identity fully intact (George & Gomez-Lobo 2002, 258). This view is sometimes challenged on the grounds that monozygotic twinning is possible until around days 1415 of an embryos development (Smith & Brogaard 2003). An individual who is an identical twin cannot be numerically identical to the one-cell zygote, since both twins bear the same relationship to the zygote, and numerical identity must satisfy transitivity. That is, if the zygote, A, divides into two genetically identical cell groups that give rise to identical twins B and C, B and C cannot be the same individual as A because they are not numerically identical with each other. This shows that not all persons can correctly assert that they began their life as a zygote. However, it does not follow that the zygote is not a human being, or that it has not individuated. This would follow only if one held that a condition of an entitys status as an individual human being is that it be impossible for it to cease to exist by dividing into two or more entities. But this seems implausible. Consider cases in which we imagine adult humans undergoing fission (for example, along the lines of Parfits thought experiments, where each half of the brain is implanted into a different body) (Parfit 1984). The prospect of our going out of existence through fission does not pose a threat to our current status as distinct human persons. Likewise, one might argue, the fact that a zygote may divide does not create problems for the view that the zygote is a distinct human being.

There are, however, other grounds on which some have sought to reject that the early human embryo is a human being. According to one view, the cells that comprise the early embryo are a bundle of homogeneous cells that exist in the same membrane but do not form a human organism because the cells do not function in a coordinated way to regulate and preserve a single life (Smith & Brogaard 2003, McMahan 2002). While each of the cells is alive, they only become parts of a human organism when there is substantial cell differentiation and coordination, which occurs around day-16 after fertilization. Thus, on this account, disaggregating the cells of the 5-day embryo to derive HESCs does not entail the destruction of a human being.

This account is subject to dispute on empirical grounds. That there is some intercellular coordination in the zygote is revealed by the fact that the development of the early embryo requires that some cells become part of the trophoblast while others become part of the inner cell mass. Without some coordination between the cells, there would be nothing to prevent all cells from differentiating in the same direction (Damschen, Gomez-Lobo and Schonecker 2006). The question remains, though, whether this degree of cellular interaction is sufficient to render the early human embryo a human being. Just how much intercellular coordination must exist for a group of cells to constitute a human organism cannot be resolved by scientific facts about the embryo, but is instead an open metaphysical question (McMahan 2007a).

Suppose that the 5-day human embryo is a human being. On the standard argument against HESC research, membership in the species Homo sapiens confers on the embryo a right not to be killed. This view is grounded in the assumption that human beings have the same moral status (at least with respect to possessing this right) at all stages of their lives.

Some accept that the human embryo is a human being but argue that the human embryo does not have the moral status requisite for a right to life. There is reason to think that species membership is not the property that determines a beings moral status. We have all been presented with the relevant thought experiments, courtesy of Disney, Orwell, Kafka, and countless science fiction works. The results seem clear: we regard mice, pigs, insects, aliens, and so on, as having the moral status of persons in those possible worlds in which they exhibit the psychological and cognitive traits that we normally associate with mature human beings. This suggests that it is some higher-order mental capacity (or capacities) that grounds the right to life. While there is no consensus about the capacities that are necessary for the right to life, some of the capacities that have been proposed include reasoning, self-awareness, and agency (Kuhse & Singer 1992, Tooley 1983, Warren 1973).

The main difficulty for those who appeal to such mental capacities as the touchstone for the right to life is that early human infants lack these capacities, and do so to a greater degree than many of the nonhuman animals that most deem it acceptable to kill (Marquis 2002). This presents a challenge for those who hold that the non-consequentialist constraints on killing human children and adults apply to early human infants. Some reject that these constraints apply to infants, and allow that there may be circumstances where it is permissible to sacrifice infants for the greater good (McMahan 2007b). Others argue that, while infants do not have the intrinsic properties that ground a right to life, we should nonetheless treat them as if they have a right to life in order to promote love and concern towards them, as these attitudes have good consequences for the persons they will become (Benn 1973, Strong 1997).

Some claim that we can reconcile the ascription of a right to life to all humans with the view that higher order mental capacities ground the right to life by distinguishing between two senses of mental capacities: immediately exercisable capacities and basic natural capacities. (George and Gomez-Lobo 2002, 260). According to this view, an individuals immediately exercisable capacity for higher mental functions is the actualization of natural capacities for higher mental functions that exist at the embryonic stage of life. Human embryos have a rational nature, but that nature is not fully realized until individuals are able to exercise their capacity to reason. The difference between these types of capacity is said to be a difference between degrees of development along a continuum. There is merely a quantitative difference between the mental capacities of embryos, fetuses, infants, children, and adults (as well as among infants, children, and adults). And this difference, so the argument runs, cannot justify treating some of these individuals with moral respect while denying it to others.

Given that a human embryo cannot reason at all, the claim that it has a rational nature has struck some as tantamount to asserting that it has the potential to become an individual that can engage in reasoning (Sagan & Singer 2007). But an entitys having this potential does not logically entail that it has the same status as beings that have realized some or all of their potential (Feinberg 1986). Moreover, with the advent of cloning technologies, the range of entities that we can now identify as potential persons arguably creates problems for those who place great moral weight on the embryos potential. A single somatic cell or HESC can in principle (though not yet in practice) develop into a mature human being under the right conditionsthat is, where the cells nucleus is transferred into an enucleated egg, the new egg is electrically stimulated to create an embryo, and the embryo is transferred to a womans uterus and brought to term. If the basis for protecting embryos is that they have the potential to become reasoning beings, then, some argue, we have reason to ascribe a high moral status to the trillions of cells that share this potential and to assist as many of these cells as we reasonably can to realize their potential (Sagan & Singer 2007, Savulescu 1999). Because this is a stance that we can expect nearly everyone to reject, its not clear that opponents of HESC research can effectively ground their position in the human embryos potential.

See the original post:Stell Cell Research Stem Cell Clinic

Go here to see the original:
Stell Cell Genetics | Stem Cell TV | Page 4

Posted in Stell Cell Genetics | Comments Off on Stell Cell Genetics | Stem Cell TV | Page 4

Connecticut Stem Cells | Stem Cell TV

Posted: September 10, 2019 at 7:44 pm

Connecticut Stem Cell Research Grants-in-Aid Program

The Connecticut Stem Cell Research Grants-in-Aid Program was established by the Connecticut General Assembly in June 2005 when it passed Connecticut General Statutes 19a-32d through 19a-32g. This legislation appropriates $20 million dollars to support embryonic and human adult stem cell research through June 30, 2007. In addition, for each of the fiscal years ending June 30, 2008 through June 30, 2015, the legislation specifies that an additional $10 million dollars should be disbursed to support additional research. In total, at least $100 million in public support will be available over the next ten years for stem cell research.

Lay Summary Example

Below is an example of a lay summary excerpt from a technical report required of all grantees that meets the expectations of the Stem Cell Research Advisory Committee:

5. Detailed lay language summary:

There is great promise in embryonic stem cell-based therapies to treat a variety of neurological disorders. It is key that we understand how the transplanted cells may interact with the host brain to guarantee the safety of this approach. We observe that robust transplants of embryonic stem cell-derived neural progenitors in the hippocampus are richly vascularized, associated with multiple blood vessels. In addition, the transplanted cells can migrate on these blood vessels some distance away from the initial transplant site. We are now studying how interactions with the blood vessels may nurture the transplant and support its successful integration into the host. We are also examining the factors that might promote or inhibit the migration of transplanted cells on the surface of existing blood vessels. This interaction could be used to target grafted cells to a specific site. Alternatively this could be a dangerous process we would like to block, as it could lead to cells present in undesirable places.

Significance of recent findings: When embryonic stem cell-derived neural progenitors are transplanted to the central nervous system, the general expectation is that they will remain where transplanted, or perhaps migrate short distances. Our observation that these cells can migrate on blood vessels long distances sets up a red flag: cells may well end up a great distance from where they were intended to be. By understanding the molecular basis for this migration, we hope to be able to control it, specifically inhibit it when the desire is to keep a transplant in place. Alternatively, it may be desirable to use this blood vessel highway to target cells to specific distant sites.

Frequently Asked Questions

How did Connecticuts Stem Cell Research Program come about?

The Connecticut Stem Cell Research Grant Project is the direct result of legislation passed by the General Assembly in 2005 (Connecticut General Statutes 19a-32d through 19a-32g.). This legislation provides public funding in support of stem cell research on embryonic and human adult stem cells. This legislation also bans the cloning of human beings in Connecticut.

Back to Questions

What kinds of research will be eligible for funding?

The Stem Cell Research Fund supports embryonic and human adult stem cell research, including basic research to determine the properties of stem cells.

Back to Questions

Where is the money coming from for this research?

Stem cell research fundscome from the Stem Cell Research Fund. This Fund will receive a total of $100 million dollars of state money over ten years. The General Assembly had set aside $20 million of state money for the purpose of stem cell research through June 2007. An additional $10 million dollars a year over the subsequent eight years will come from the Connecticut Tobacco Settlement Fund. The Stem Cell Research Fund may also contain any funds received from any public or private contributions, gifts, grants, donations or bequests.

Back to Questions

Who oversees the Stem Cell Research Fund?

The Commissioner of the State Department of Public Health (DPH) may make grants-in-aid from the fund. The Connecticut Stem Cell Research Advisory Committee (Advisory Committee), a legislatively appointed committee established by Connecticut General Statutes 19a-32d through 19a-32g, directs the Commissioner with respect to the awarding of grants-in-aid, and develops the stem cell research application process. The Stem Cell Research Advisory Committee is also required to keep the Governor and the General Assembly apprised of the current status of stem cell research in Connecticut through annual reports commencing June 2007.

The legislation further established a Connecticut Stem Cell Research Peer Review Committee (Peer Review Committee) to review all applications with respect to the scientific and ethical meritsand to make recommendations to the Advisory Committee and the Commissioner of DPH.

Back to Questions

How are the members of the Stem Cell Research Advisory Committee determined?

The Stem Cell Research Advisory Committee is made up of 17 members. By statute, the Advisory Committee is chaired by the Commissioner of the Connecticut Department of Public Health (DPH). Other members of the committee are appointed by the Governor and by various leaders of the General Assembly from the fields of stem cell research, stem cell investigation, bioethics, embryology, genetics, cellular biology and business. Committee members commit to a two-year or four-year term of service.

Back to Questions

Who evaluates the merits of the grant applications and decides how the grants are distributed?

The Stem Cell Research Peer Review Committee reviews all grant applications for scientific and ethical merit, guided by the National Academies Guidelines for Human Embryonic Stem Cell Research. The Stem Cell Research Peer Review Committee makes its recommendations on grants to the Stem Cell Research Advisory Committee for consideration. The members of the Stem Cell Peer Review Committee must have demonstrated and practical knowledge, understanding and experience of the ethical and scientificimplications of embryonic and adult stem cell research. The DPH Commissioner appoints all committee members for either two or four-year terms. The Stem Cell Research Advisory Committee directs the Commissioner of the Department of Public Health with respect to the awarding of grants-in-aid.

Back to Questions

Who may apply for the stem cell research grants?

Any non-profit, tax-exempt academic institution of higher education, any hospital that conducts biomedical research or any entity that conducts biomedical research or embryonic or human adult stem cell research may apply for grants from the Connecticut Stem Cell Research Fund.

Back to Questions

What efforts are being made to assure the people of the state of Connecticut that all committee dealings and any research are ethically conducted?

The State of Connecticut is committed to implementing the Stem Cell Research Program according to the highest ethical and scientific standards, and committed to conducting all business activities in a transparent and consumer friendly manner. Meetings of the committee where decisions are being made will comply with Freedom of Information Act requirements for public meetings and public records. Proceedings of all scheduled meetings of the Advisory Board will be transcribed and made available to the public, and when possible, meetings will be televised via local public access television.

Members of the Stem Cell Research Advisory Committee are considered to be public officials and are subject to state ethics laws, which require full accountability and transparency. Both the Peer Review and Advisory Committees are responsible for overseeing the standards of research funded from this grant program. Reports on scientific progress are required of grant recipients. Annual financial disclosures are required for all members of the Stem Cell Research Advisory Committee.

Back to Questions

Who else is involved with overseeing this project?

The State of Connecticut Department of Public Health, working in conjunction with the legislatively mandated Advisory and Peer Review Committees, is responsible for the overall implementation of the stem cell legislation.Withinthe DPH, the Office of Research and Development is the organizational unit tasked with managing the stem cell research project components.

In addition, the stem cell legislation names Connecticut Innovations as the administrative staff of the Stem Cell Research Advisory Committee, assisting the Advisory Committee in developing and implementing the application process, including application reviews and execution of agreements.

Back to Questions

What is the timeline for the application process?

The Advisory Committee developed and issued the first Request for Proposals on May 10, 2006. As of the July 10, 2006 deadline, 70 applications for public funding were received. Applications were made available for peer review on August 4, 2006.On November 21, 2006, the Stem Cell Research Advisory Committee awarded almost $19.8 million for 21 stem cell research proposals.

The second Request for Proposals was issued on July 25, 2007. As of the November 1, 2007 deadline, 94 applications for public funding were received. The Peer Review Committee completed their review and reported by teleconference on March 5, 2008. On April 1, 2008, the SCRAC awarded $9.84 million for 22 stem cell research projects.

The third Request for Proposals was issued on September 24, 2008. As of the December 8, 2008 deadline, 77 applications for public funding were received. The Peer Review Committee completed their review and reported by teleconference on March 17, 2009. On March 31, 2009, the SCRAC awarded $9.8 million for 24 stem cell research projects.

Back to Questions

Which grant applications received funding in 2006?

An Integrated Approach to Neural Differentiation of Human Embryonic Stem Cells, Yale University, Michael P. Snyder, Principal Investigator, $3,815,476.72

Directing hES Derived Progenitor Cells into Musculoskeletal Lineages, University of Connecticut Health Center and University of Connecticut, David W. Rowe, M. D., Principal Investigator, $3,520,000

Human Embryonic Stem Cell Core Facility at Yale Stem Cell Center, Yale University, Haifan Lin, Principal Investigator, $2,500,000

Human ES Cell Core At University of Connecticut and Wesleyan University, University of Connecticut Health Center, Ren-He Xu, Principal Investigator, $2,500,000

DsRNA and Epigenetic Regulation in Embryonic Stem Cells, University of Connecticut Health Center, Gordon G. Carmichael, $880,000.

Alternative Splicing in Human Embryonic Stem Cells, University of Connecticut Health Center, Brenton R. Graveley, Principal Investigator, $880,000

SMAD4-based ChIP-chip Analysis to Screen Target Genes of BMP and TGF Signaling in Human ES Cells, University of Connecticut Health Center, Ren-He Xu, Principal Investigator, $880,000

Directing Production and Functional Integration of Embryonic Stem Cell-Derived Neural Stem Cells, Wesleyan University, Laura B. Grabel, Principal Investigator, $878,348.24

Role of the Leukemia Gene MKL in Developmental Hematopoiesis Using hES Cells, Yale University, Diane Krause, Principal Investigator, $856,653.72

Migration and Integration of Embryonic Stem Cell Derived Neurons into Cerebral Cortex, University of Connecticut, Joseph LoTurco, Principal Investigator, $561,631.84

Optimizing Axonal Regeneration Using a Polymer Implant Containing hESC-derived Glia, University of Connecticut, Akiko Nishiyama, $529,871.76

Development of Efficient Methods for Reproducible and Inducible Transgene Expression in Human Embryonic Stem Cells, University of Connecticut Health Center, James Li, Principal Investigator, $200,000

Pragmatic Assessment of Epigenetic Drift in Human ES Cell Lines, University of Connecticut, Theodore Rasmussen, Ph.D., Principal Investigator, $200,000

Cell Cycle and Nuclear Reprogramming by Somatic Cell Fusion, University of Connecticut Health Center, Winfried Krueger, Principal Investigator, $200,000

Function of the Fragile X Mental Retardation Protein in Early Human Neural Development, Yale University, Yingqun Joan Huang, Principal Investigator, $200,000

Quantitative Analysis of Molecular Transport and Population Kinetics of Stem Cell Cultivation in a Microfluidic System, University of Connecticut, Tai-His Fan, Principal Investigator, $200,000

Embryonic Stem Cell as a Universal Cancer Vaccine, University of Connecticut Health Center, Bei Liu, Zihai Li, M. D., Principal Investigators, $200,000

Lineage Mapping of Early Human Embryonic Stem Cell Differentiation, University of Connecticut, Craig E. Nelson, $200,000

Directed Isolation of Neuronal Stem Cells from hESC Lines, Yale University School of Medicine, Eleni A. Markakis, Principal Investigator, $184,407

Magnetic Resonance Imaging of Directed Endogenous Neural Progenitor Cell Migration, Yale University School of Medicine, Erik Shapiro, Principal Investigator, $199,975

Generation of Insulin Producing Cells from Human Embryonic Stem Cells, University of Connecticut, Gang Xu, Principal Investigator, $200,000

Back to Questions

Which grant applications received funding in 2008?

Maintaining and Enhancing the Human Embryonic Stem Cell Core at the Yale Stem Cell Center, Yale University Stem Cell Center, New Haven, Haifan Lin, PhD, Principal Investigator, $1,800,000.

Translational Studies in Monkeys of hESCs for Treatment of Parkinsons Disease, Yale University School of Medicine, New Haven, D. Eugene Redmond, Jr., MD, Principal Investigator, $1,120,000.

Production and Validation of Patient-Matched Pluipotent Cells for Improved Cutaneous Repair, University of Connecticut Center of Regenerative Biology, Storrs, Theodore Rasmussen, PhD., Principal Investigator, $634,880.

Directed Differentiation of ESCs into Cochlear Precursors for Transplantation as Treatment of Deafness, University of Connecticut, Storrs, Ben Bahr, PhD, Principal Investigator, $500,000.

Synaptic Replenishment Through Embryonic Stem Cell Derived Neurons in a Transgenic Mouse Model of Alzheimer's Disease, University of Connecticut Health Center, Farmington, Nada Zecevic, MD, PhD, Principal Investigator, $499,813.

Tyrosone Phosphorylation Profiles Associated with Self-Renewal and Differentiation of hESC, University of Connecticut Health Center, Farmington, Bruce Mayer, PhD., Principal Investigator, $450,000.

Directed Differentiation of ESCs into Cochlear Precursors for Transplantation as Treatment of Deafness, University of Connecticut Health Center, Farmington, D. Kent Morest, MD, Principal Investigator, $450,000.

Targeting Lineage Committed Stem Cells to Damaged Intestinal Mucosa, University of Connecticut Health Center, Farmington, Daniel W. Rosenberg, PhD., Principal Investigator, $450,000.

Modeling Motor Neuron Degeneration in Spinal Muscular Atrophy Using hESCs, University of Connecticut Health Center, Farmington, Xuejun Li, PhD., Principal Investigator, $450,000.

Human Embryonic and Adult Stem Cell for Vascular Regeneration, Yale University School of Medicine, New Haven, Laura E. Niklason, MD, PhD, $450,000.

Effect of Hypoxia on Neural Stem Cells and the Function in CAN Repair, Yale University, New Haven, Flora M. Vaccarino, Principal Investigator, $449,771.40.

Wnt Signaling and Cardiomyocyte Differentiation from hESCs, Yale University, New Haven, Dianqing Wu, Principal Investigator, $446,818.50.

Flow Cytometry Core for the Study of hESC, University of Connecticut Health Center, Farmington, Hector Leonardo Aguila, PhD., Principal Investigator, $250,000.

Cortical neuronal protection in spinal cord injury following transplantation of dissociated neurospheres derived from human embryonic stem cells, Yale University School of Medicine, New Haven, Masanori Sasaki, MD, PhD, Principal Investigator, $200,000.

Molecular Control of Pluripotency in Human Embryonic Stem Cell, Yale Stem Cell Center, New Haven, Natalia Ivanova, Principal Investigator, $200,000.

Cytokine-induced Production of Transplantable Hematopoietic Stem Cells from Human ES Cells, University of Connecticut Health Center, Farmington, Laijun Lai, PhD, Principal Investigator, $200,000.

Functional Use of Embryonic Stem Cells for Kidney Repair, Yale University, New Haven, Lloyd G. Cantley, Principal Investigator, $200,000.

VRK-1-mediated Regulation of p53 in the Human ES Cell Cycle, Yale University, New Haven, Valerie Reinke, Principal Investigator, $200,000.

Definitive Hematopoitic Differentiation of hESCs under Feeder-Free and Serum-Free Conditions, Yale University, Caihong Qiu, PhD, Principal Investigator, $200,000.

Differentiation of hESC Lines to Neural Crest Derived Trabecular Meshwork Like Cells Implications in Glaucoma, University of Connecticut Health Center, Farmington, Dharamainder Choudhary, PhD., Principal Investigator, $200,000.

The Role of the piRNA Pathway in Epigenetic Regulation of hESCs, Yale University, New Haven, Qiaoqiao Wang, PhD., Principal Investigator, $200,000.

Early Differentiation Markers in hESCs: Identification and Characterization of Candidates, University of Connecticut Center for Regenerative Biology, Storrs, Mark G. Carter, PhD., Principal Investigator, $200,000.

Regulation hESC-dervied Neural Stem Cells by Notch Signaling, Yale University, New Haven, Joshua Breunig, MD, Principal Investigator, $188,676.

Back to Questions

Which grant applications received funding in 2009?

Continuing and Enhancing the UCONN-Wesleyan Stem Cell Core, University of Connecticut Stem Cell Center, Farmington, Ren-He Xu, MD, PhD, Principal Investigator, $1,900,000.00.

Williams Syndrome Associated TFII-I Factor and Epigenetic Marking-Out in hES and Induced Pluripotent Stem Cells, University of Connecticut Health Center, Farmington, Dashzeveg Bayarsaihan, PhD., Principal Investigator, $500,000.00.

Cellular transplantation of neural progenitors derived from human embryonic stem cells to remyelinate the nonhuman primate spinal cord, Yale University, New Haven, Jeffrey Kocsis, PhD., Principal Investigator, $500,000.00.

Mechanisms of Stem Cell Homing to the Injured Heart, University of Connecticut Health Center, Linda Shapiro, PhD., Principal Investigator, $500,000.00.

Originally posted here:Stem Cell Research Program - Grants - portal.ct.gov

Follow this link:
Connecticut Stem Cells | Stem Cell TV

Posted in Connecticut Stem Cells | Comments Off on Connecticut Stem Cells | Stem Cell TV

Page 1,362«..1020..1,3611,3621,3631,364..1,3701,380..»