Page 1,711«..1020..1,7101,7111,7121,713..1,7201,730..»

Biotechnology | Jamestown Community College

Posted: September 6, 2016 at 10:46 am

We are living in the midst of a biotechnology revolution.

In the not too distant future, organ transplants will be a thing of the past. Doctors will use your DNA to determine treatment options. And these treatments will be available for animals and humans alike. Fueling all of this change is biotechnology. You can be one of these innovators not only by becoming a researcher, but also by following a variety of other career paths, including becoming a doctor, veterinarian, patent lawyer, health inspector, orenvironmental biotechnologist.

We prepare students for transfer to a four-year college to major in biology, biochemistry, pharmacology, molecular genetics, immunology, and related fields. Our program is also good preparation for medical, veterinary, dental, and pharmaceutical school and it provides the robust, interdisciplinary training modern baccalaureate science programs demand.

You don't have to move hundreds of miles away to work in biotechnology. We now have many biotechnology employers right in the area. They NEED YOU to be successful.

Biotechnology students at JCC perform on-site research in multiple areas, including immunology, breast cancer, heartworm, and Lyme disease. Students can gain even more experience by taking part in the Science Undergraduate Research Initiative: Biotech(SURI). We're also involved with area high schools through the HURI SURI program, which is designed to give high school students a chance to perform actual research through an interdisciplinary, college level course called Biology: A Molecular Approach.

Several biotechnology students attended the Experimental Biology Conference in Washington, DC in April 2011 and the American Association of Immunologists meeting in Boston in May 2012.

Go here to see the original:
Biotechnology | Jamestown Community College

Posted in Biotechnology | Comments Off on Biotechnology | Jamestown Community College

UAH – College of Science – Departments & Programs – Biotechnology

Posted: September 6, 2016 at 10:46 am

Welcome to Biotechnology at UAH.

The Graduate Program in Biotechnology Science and Engineering is an Interdisciplinary Program with faculty from the Departments of Chemistry, Biological Sciences and Chemical Engineering. Adjunct faculty from the Marshall Space Flight Center and Hudson Alpha Institute of Biotechnology and companies are also involved in the program.

The program's mission is to provide Ph.D. level graduates who are broadly trained in the areas of science and engineering pertinent to biotechnology and who will benefit the economic, educational, and cultural development of Alabama. Graduates of the program are expected to be able to make significant contributions to biotechnology in academic, governmental, and business settings.

The interdisciplinary program in Biotechnology Science and Engineering provides broad training in sciences and engineering dealing with the handling and the processing of macromolecules and living systems. Students receive advanced training in one of three specializations: Structural Biology, Biomolecular Sciences or Bioprocess Engineering. The principal core of instructors and research advisors are drawn from the Departments of Biological Sciences, Chemistry, and Chemical and Materials Engineering. The program includes significant involvement from local biotechnology companies as well as NASA's Marshall Space Flight Center.

Biotechnology is not a single area of study, but a multidisciplinary field concerned with the practical application of biological organisms and their subcellular components to industrial or service manufacturing, to environmental management and health, and to medicine. It is a series of enabling technologies drawn from the fields of microbiology, cellular biology, molecular biology, genetics, biochemistry, immunology, fermentation technology, environmental science and engineering which allow one to synthesize, breakdown or transform materials to suit human needs. Biotechnology ("Current Trends in Chemical Technology, Business, and Employment," American Chemical Society, Washington, DC. 1998) can therefore be defined as the safe study and manipulation of biological molecules for development of products or techniques for medical and industrial application. Although biotechnology in the broadest sense is not new, the current ability and demand for manipulating living organisms or their subcellular components to provide useful products, processes or services has reached new heights. Modern biotechnology has resulted from scientific scrutiny of old and familiar processes and from new advances in molecular biology, genetic engineering and fermentation technologies.

The future industrial landscape will continue to include research, development and the manufacturing of products such as proteins and nucleic acids that will be based wholly or in large part on biological processes.

Shelby Center,Room 369J The University of Alabama in Huntsville301 Sparkman Drive Huntsville, AL 35899

Dr. Joseph D. Ng email: uahbiotechnology@gmail.com phone: 256.824.6166 fax: 256.824.6305

Read the original:
UAH - College of Science - Departments & Programs - Biotechnology

Posted in Biotechnology | Comments Off on UAH – College of Science – Departments & Programs – Biotechnology

Biotechnology – The New York Times

Posted: September 6, 2016 at 10:46 am

Latest Articles

Six years after the Affordable Care Act cleared the way for biosimilars, as the generic versions of biotechnology drugs are called, progress has been slow.

By ANDREW POLLACK

Scientists discovery that liquids are repelled from one another on a thin enough surface could have implications for materials science and bioengineering.

By JOANNA KLEIN

Among other applications, a new artificial stingray can teach scientists more about how the heart beats.

By STEPH YIN

A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.

By THE EDITORIAL BOARD

As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.

By STEPHANIE STROM

The worlds top scientists say opponents of genetically modified foods are standing in the way of nutrition for people around the world.

By NIRAJ CHOKSHI

The report from the National Academies of Sciences, Engineering and Medicine is not expected to end the highly polarized debate over the technology.

By ANDREW POLLACK

Bioengineered food products are safe. So why do we try to hide the facts about them?

By JASON KELLY

Efforts to expand use of biotechnology to crops other than corn, soybeans, cotton and canola have been hindered by opposition from consumer and environmental groups.

By ANDREW POLLACK

Federal officials have approved a cheaper version of Johnson & Johnsons blockbuster drug Remicade, a biotech medicine for inflammatory diseases.

General Mills said on Friday that it would start labeling all products that contain genetically modified ingredients to comply with a law set to go into effect in Vermont.

The salary, bonus and stock awards given to Fords chief executive, Mark Fields, jumped 17 percent in 2015.

The senators will consider whether the government should require labeling on foods containing genetically engineered ingredients, an issue that has split the food industry.

By JENNIFER STEINHAUER and STEPHANIE STROM

A diverse biotechnology company hopes its genetically engineered mosquitoes can help stop the spread of a devastating virus. But thats just a start.

By ANDREW POLLACK

States should be free to require the labeling of genetically modified food if they want to.

By THE EDITORIAL BOARD

Bioengineers at Rice University recently found that different drops from single fingerpricks on multiple subjects varied substantially.

By DONALD G. McNEIL Jr.

With the success of growing the body parts in a lab, bioengineers are taking a step toward creating replacement organs that can be transplanted into people.

By NICHOLAS ST. FLEUR

Marc Tessier-Lavigne, who will leave Rockefeller University to lead Stanford University, has also worked as an executive in the biotech industry,

The two biotech companies initial public offerings are testing the waters after a recent sell-off in biotech.

Businesses allow parents to leverage their wealth, contacts and the hope of investors to jump-start research into the diseases that afflict their children.

By PAUL SULLIVAN

Six years after the Affordable Care Act cleared the way for biosimilars, as the generic versions of biotechnology drugs are called, progress has been slow.

By ANDREW POLLACK

Scientists discovery that liquids are repelled from one another on a thin enough surface could have implications for materials science and bioengineering.

By JOANNA KLEIN

Among other applications, a new artificial stingray can teach scientists more about how the heart beats.

By STEPH YIN

A proposed law would make it unnecessarily difficult to check a label, by requiring the scanning of electronic codes in the store.

By THE EDITORIAL BOARD

As of Friday, nearly all food labels in the state must disclose when products include genetically engineered ingredients.

By STEPHANIE STROM

The worlds top scientists say opponents of genetically modified foods are standing in the way of nutrition for people around the world.

By NIRAJ CHOKSHI

The report from the National Academies of Sciences, Engineering and Medicine is not expected to end the highly polarized debate over the technology.

By ANDREW POLLACK

Bioengineered food products are safe. So why do we try to hide the facts about them?

By JASON KELLY

Efforts to expand use of biotechnology to crops other than corn, soybeans, cotton and canola have been hindered by opposition from consumer and environmental groups.

By ANDREW POLLACK

Federal officials have approved a cheaper version of Johnson & Johnsons blockbuster drug Remicade, a biotech medicine for inflammatory diseases.

General Mills said on Friday that it would start labeling all products that contain genetically modified ingredients to comply with a law set to go into effect in Vermont.

The salary, bonus and stock awards given to Fords chief executive, Mark Fields, jumped 17 percent in 2015.

The senators will consider whether the government should require labeling on foods containing genetically engineered ingredients, an issue that has split the food industry.

By JENNIFER STEINHAUER and STEPHANIE STROM

A diverse biotechnology company hopes its genetically engineered mosquitoes can help stop the spread of a devastating virus. But thats just a start.

By ANDREW POLLACK

States should be free to require the labeling of genetically modified food if they want to.

By THE EDITORIAL BOARD

Bioengineers at Rice University recently found that different drops from single fingerpricks on multiple subjects varied substantially.

By DONALD G. McNEIL Jr.

With the success of growing the body parts in a lab, bioengineers are taking a step toward creating replacement organs that can be transplanted into people.

By NICHOLAS ST. FLEUR

Marc Tessier-Lavigne, who will leave Rockefeller University to lead Stanford University, has also worked as an executive in the biotech industry,

The two biotech companies initial public offerings are testing the waters after a recent sell-off in biotech.

Businesses allow parents to leverage their wealth, contacts and the hope of investors to jump-start research into the diseases that afflict their children.

By PAUL SULLIVAN

Read more:
Biotechnology - The New York Times

Posted in Biotechnology | Comments Off on Biotechnology – The New York Times

Biotech Jobs – Search Biotech Job Listings | Monster.com

Posted: September 6, 2016 at 10:46 am

We have an immediate position for a Data Manager - CDISC with our top pharmaceutical client, if you are interested please send your updated resume to greg @ collabinfo.com or call me at 732-788-3483. Title:Data Manager - CDISC Duration: 6+ Months with extension Location: San Francisco Bay Area, CA Task and Responsibilities: The candidate must be able to drive goal-based internal and exter...

We have an immediate position for a Regulatory Affairs Manager with our top pharmaceutical client, if you are interested please send your updated resume to nancy @ collabinfo.com or call me at 609-662-0262. Title: Regulatory Affairs Manager Duration: 12+ Months with extension Location: Raritan, NJ Job Description The RSI Manager provides regional strategic implementation support for proje...

Overview: The Research Assistant (Animal Physiology Core) coordinates and conducts the services for a core physiology laboratory for the evaluation of animal behavior, physiology, and metabolism in rodent models. Responsibilities: Performs research procedures on mice including but not limited to blood pressure monitoring, body mass composition, hypoxia/hyperoxia experiments, telemetry, behavior...

The Coding Documentation Improvement Specialist (CDIS) conducts medical record documentation and coding quality reviews to ensure correct coding and documentation of encounter data for Risk Adjustment and Fee for Service product lines. The CDIS also recommends processes for accurate coding and documentation practices through communication and education with their assigned provider teams to ensure ...

Talk about meaningful work. Talk about an important role. Let's talk about your next career move. Delivering quality care starts with ensuring our relationships with community partners are intact, and that processes and documentation standards are being met and kept at the highest level possible. This means working behind the scenes ensuring a provider-centric approach to the delivery of services ...

Optumcare is a network of health care providers in the Southwest, whose mission is to connect and support providers by working together to deliver the most effective and compassionate care to each and every patient they serve. Optum Medical Networks focus is to do the right things for patients, physicians, and the community. Optum Medical Networks Core Business is contracting directly with healt...

Growing pharma client with an extensive portfolio of approved and investigational products in cardiovascular therapies and a significant pain treatment franchise is seeking a Director/Sr. Director Regulatory Affairs. ****This role is the point person for the FDA and reports directly to the CMO. The Director/Sr Director of Regulatory Affairs provides regulatory expertise and support for commercia...

Our client is currently seeking a Data Manager. This is NOT a DATABASE ADMIN- THIS ROLE IS A DATA MANAGER*** Primary purpose and function of this position: Ensures data management activities and deliverables for area(s) of responsibility are completed in line with business requirements and company objectives. Evaluates and approves service level agreements. Oversees service providers to perform ...

University of Wisconsin-Madison Wisconsin Center for Dairy Research Specialty Cheese Outreach Specialist PVL#87485 The UW-Madison, College of Ag. And Life Sciences, WI Center for Dairy Research, a National leader in the research and development for the dairy industry is looking for a Specialty Cheese Outreach Specialist. Position provides outreach support to the dairy industry related to suppo...

Position Description: Welcome to one of the toughest and most fulfilling ways to help people, including yourself. We offer the latest tools, most intensive training program in the industry and nearly limitless opportunities for advancement. Join us and start doing your life's best work. Our customer service teams have a serious responsibility to make every contact informative, productive, positi...

Overview: Boulder Brands is committed to offering food solutions that give consumers opportunities to improve their lives one product at a time. The companys health and wellness platform consists of brands that target specific health trends: the Glutino and Udis Gluten Free brands for gluten-free diets; the Earth Balance brand for plant-based diets; EVOL foods for consumers seeking simple ...

Position Description: Energize your career with one of Healthcares fastest growing companies. You dream of a great career with a great company where you can make an impact and help people. We dream of giving you the opportunity to do just this. And with the incredible growth of our business, its a dream that definitely can come true. Already one of the worlds leading Healthcare companies, U...

Job Title: Senior Scientist Bioscience Position Responsibilities Maintains and troubleshoots testing equipment. Participates in investigations for PET process areas, related to QC processes or data. Trains QC employees in GMP, SHE, QC methods and processes. Troubleshoots methods and processes. Performs testing on a range of samples, including chemical raw materials, components (inc...

Job Title: Global Medical Affairs Leader Position Responsibilities Responsible for delivering specific medical initiatives in support of GMT (Global Medical Team) objectives. These could include, but are not necessarily restricted to, medical evidence planning, scientific communications, competitor intelligence, patient engagement and ensuring interface & alignment with payer, and regulatory i...

Sr. Product ManagerJob ID 351904 Location US-WA-Seattle Posted Date 2/3/2016 Company Amazon Corporate LLC Position Category Project/Program/Product Management--Non-tech Recruiting Team North American Teams - Consumer - Retail Plus Job DescriptionWant to join a team that is continuing to innovate on a first-generation device? Amazon Dash makes it easier to shop on AmazonFresh. The leadi...

Geologist/Hydrogeologist I Work Location: Olympia, Washington ID: 2514 Job Type: Full Time Travel: 20% For more than 60 years, Brown and Caldwell has been creating leading-edge environmental solutions for public agencies and private industry. We strive to be the environmental company of choice-to our clients, who benefit from our passion for delivering exceptional quality, and to our empl...

Headquartered in beautiful San Diego, CA we are a cutting edge, advanced biotechnology company specializing in application of RNA technologies for the treatment of disease and improved quality of life. We are looking for top notch Research Associates to join our RAPIDLY growing firm. The main objective will be to support discovery efforts using western blotting. So if you are a Research Associate ...

If you are a Process Engineer (Biotechnology-Pharmaceutical) with experience, please read on! Top Reasons to Work with Us We are a Global engineering consulting firm serving the pharmaceutical and biotechnology industries. Head-quartered near San Francisco, California, and with operations in the Eastern US and Canada, our company is involved in almost every facet of global pharmaceutical and bio...

Are you ready for your next challenge? Discover it here at UnitedHealth Group and help us reinvent the health system. We're going beyond basic care to health programs integrated across the entire continuum of care. Put your skills and talents to work in an effort that is seriously shaping the way health care services are delivered. As a Health Coach you will establish personal wellness plans focus...

Position Description: Talk about meaningful work. Talk about an important role. Let's talk about your next career move. Due to our expanding business, UnitedHealth Group is seeking Clinical Administrative Coordinators who share our passion for helping others live healthier lives. As one of the world's leading health care companies, UnitedHealth Group is pursuing innovative new ways to operate our...

See the original post here:
Biotech Jobs - Search Biotech Job Listings | Monster.com

Posted in Biotechnology | Comments Off on Biotech Jobs – Search Biotech Job Listings | Monster.com

Biology: MS in Biotechnology – California State University …

Posted: September 6, 2016 at 10:46 am

The Master's in Biotechnology Program is a Professional Science Master's Program, approved by the Council of Graduate Schools. This application focused graduate program is designed to train students in biotechnology. We are preparing the next generation of leaders in biotechnology.

This Section Contains

Our graduates are:

TOP

Biotechnology is a multidisciplinary endeavor that increasingly requires employees fluent in both science and business to enable the development of new technologies and products based on the unique applications of the cellular and molecular life sciences. The Master's Degree in Biotechnology at the California State University, Fresno offers students, who are fundamentally educated in various scientific disciplines, the opportunities to acquire the knowledge and skills required to comprehend and commercialize these emerging technologies and/or their products.

TOP

TOP

As a leading university in the Central Valley, California State University, Fresno will lead the way for new and innovative applications of biotechnology both in the state and throughout the nation.

TOP

More:
Biology: MS in Biotechnology - California State University ...

Posted in Biotechnology | Comments Off on Biology: MS in Biotechnology – California State University …

Home | Master of Science in Biotechnology | Northwestern’s …

Posted: September 6, 2016 at 10:46 am

Northwestern University's Master of Biotechnology program (MBP) prepares scientists and engineers for fulfilling and dynamic careers in biotechnology and associated professions by offering integrated coursework, extensive laboratory research, and training in current industry practices.

Our real-world approach, relies on the input of our Industrial Advisory Board to ensure the program keeps students up-to-date on the latest biotech industry changes and challenges. Graduates leave with a full set of competencies designed specifically to satisfy the demands of modern biotechnology and pharmaceutical companies.

Degree Name

Master of Science in Biotechnology

Duration

15-21 months (5-7 quarters, full-time), including up to 6 months (2 quarters) of internship

Location

Evanston, IL

Start Date

MBP matriculates students once a year, in September.

Application Deadline

MBP online application is open from October to May, but prospective students are encouraged to apply early, since the number of vacancies left past March is limited.

Program Curriculum

Program specific industry-focused courses, including bioprocess engineering

1,000 hours of research (4 quarters) in a Northwestern University or industry lab

Dozens of electives, including selected Kellogg School of Management courses

Comprehensive professional and soft skill development

2 certificates and 2 minors (optional)

Program Highlights

35-40 person cohort

Extensive placement assistance

Travel grants to attend conferences and professional development events

Guidance by the Industrial Advisory Board (IAB)

Cost

The majority of MBP students are recent graduates seeking careers in biotechnology and associated professions, as well as the competitive advantage a higher degree provides. At least half are typically biology majors; the rest are engineers, biotechnologists, and other science majors. The expected class size is 3540 students per year.

Learn more about our student body

Our interdisciplinary approach provides students with the flexibility and knowledge to pursue a number of biotechnology professions. In addition to becoming research and process development specialists, MBP graduates have taken up roles as consultants, regulatory affairs associates, and analysts.

Our program can also prepare students to meet the demands of doctoral programs. MBP graduates have pursued PhDs in Chemical Engineering and the Biological Sciences while others have gone on to work towards their MD or JD.

Learn more about career opportunities

Visit link:
Home | Master of Science in Biotechnology | Northwestern's ...

Posted in Biotechnology | Comments Off on Home | Master of Science in Biotechnology | Northwestern’s …

Adult Stem Cell Banking Omaha NE | Sculpt Contemporary …

Posted: September 5, 2016 at 7:45 pm

Adult Stem Cell Bank at SCULPT Contemporary Cosmetic Surgery in Omaha, Nebraska

SCULPT Contemporary Cosmetic Surgery of Omaha, Nebraska in conjunction with American Cryostem (an FDA registered Stem Cell Bank)provides an affordable methodfor you to store your Adult Stem Cells with Regenerative Cells today.

Your stored Adult Stem Cells will make available to you todaythe treatments of tomorrowwhich are currently in development in the areas of Personalized and Regenerative Medicine. Regardless of your current age, by storing your Adult Stem Cells today, you can stop the aging process of your cells, preserving them in their present state. As the aging process progresses, so do your Adult Stem Cells. Today, your stem cells are the youngest they will ever be.

Re-defining your future

Your adipose tissue, or fat, actually contains a plethora of Adult Stem Cells that are responsible for restoring and healing your organs and tissues at the cellular level. Adult Stem Cells are not the same as embryonic stem cells.

SCULPT: Contemporary Cosmetic Surgery fat banking service consists of harvesting a small amount of your fatty tissue in a simple mini-lipo procedure. Your fat is shipped to an FDA registered lab where the fat is processed to seclude and separate the Stromal Vascular Fraction (SVF) which contains Adult Stem Cells and Regenerative Cells so they can be stored for your own personal use in the future.

Personalized and regenerative medicine

Adult Stem Cells and Regenerative Cells from adipose tissue heal and repair your organs and tissues within your body. This exciting area of medicine is constantly developing into patient-specific cell therapy for the treatment of medical conditions. Treatment methods may someday include using Adult Stem Cells that have these powerful Regenerative Cells and other genetic materials to heal and repair a diseased body.

Adult Stem Cells from adipose tissue can evolve into a variety of different cells including:

1.osteogenic (bone), chondrogenic (cartilage), myogenic (muscle), neurogenic (brain, nerve), cardiomyogenic (heart), hepatic (liver), adipogenic (fat), endothelial (vascular), endocrine (pancreas), hematapoietic (bone marrow) etc.Regenerative Medicine has the opportunity to begin producing complex skin, cartilage, and bone substitutes in as little as 5 years. Tissue and organ patches designed to help regenerate damaged tissues and organs such as the heart and kidneys are within reach in 10 years. 1

U.S. Department of Health and Human Services, 2006

Scientific advancement of stem cells and regenerative cell usage in therapeutic, reconstructive, orthopedic, and cosmetic applications are truly the future of personalized and regenerative medicine.

Timeless benefits of storing adult stem cells

Presently, over 100 diseases and conditions have been identified worldwide for the use of Adult Stem Cells and Regenerative Cells derived from fat in order to repair and restore the body. These diseases include Stroke, Heart Attack, Spinal Cord Injury and Disease, Muscle Disorder, Kidney Damage, Urinary Incontinence, Lung Injury, Joint Problems, Diabetes, Parkinsons Disease, Emphysema, Multiple Sclerosis, Hypertension, Alzheimers Dementia, etc.

For cosmetic procedures and uses, Adult Stem Cells and Regenerative Cells are CURRENTLY being utilized in Stem Cell Breast Augmentations, Facial Rejuvenation, Treatment of Asymmetric Breasts, Breast Cancer Reconstruction, Post Liposuction Asymmetry, Body Asymmetry, Wound Care, Wrinkles, Scars, Burns, Hair Loss, etc. Storing your Adult Stem Cells has the potential of one day SAVING YOUR LIFE!

Why adipose derived adult stem cells?

Adult Stem Cells are found throughout the body in all of your tissues including bone marrow, umbilical cord blood, and adipose tissue (fat). These powerful cells have the power to repair the body and restore vital structures, tissues and organs. Scientific research in Adult Stem Cells from fat is currently being focused on their ability to evolve into a variety of different cells.

Adult Stem Cells from Fat are the most plentiful type of Adult Stem Cells found in the body. They are easily-accessible through a simple mini-lipo procedure. Since fat contains plentiful amounts of Adult Stem Cells and Regenerative Cells, they are ideal because they have the ability to divide, grow and evolve into multiple types of tissues and organs.

Advantages

Adipose Derived Adult Stem Cells offer key advantages over Adult Stem Cells collected from other sources:

1.Fat is easy to collect

2.Mini-lipo is an economical method for extraction of these cells

3.Fat contains large amounts of Adult Stem Cells that are up to 1000x greater in quantity than the number found in bone marrow4,5

4.Fat harvesting is a simple outpatient procedure that is performed right in the office. Generally, it is minimally invasive with a short recovery period.

Why store your adult stem cells today?

As you age, so do your Adult Stem Cells. The younger your Stem Cells are, the greater their ability to divide, repair and heal your organs and tissues. Aging allows an accumulation of external environmental factors, cellular toxicity, and daily diminishing of the body that, collectively, adversely affect your cells. These factors cause damage to your DNA and have permanent effects on your overall health, vitality and life span. By harvesting and banking your Adult Stem Cells now, you are capturing your current cellular age, while they are vital and as young as they will ever be, thus providing them a way of optimal storage for future use in cosmetic and medical uses. Today is the youngest you will ever be, therefore, preserve this moment in time.

Bio-Insurance an investment in the future

Just as insurance protects you from unforeseen financial risks, storing your Adult Stem Cells and Regenerative Cells is investing in your future health regardless of your current age. Knowing that your cells are available for future unforeseen medical situations is reassuring as well as potentially life-saving.

For more information, please call our offices at 402-884-6700 for a free, private consultation.

Disclaimer: New uses for adult stem cells are being discovered rapidly; however, banking adult stem cells does not guarantee that the cells will provide a cure or be applicable for every situation. Ultimate use will be determined by the treating physician. Medical treatments using adult stem cells are still under development.

Read the original post:
Adult Stem Cell Banking Omaha NE | Sculpt Contemporary ...

Posted in Nebraska Stem Cells | Comments Off on Adult Stem Cell Banking Omaha NE | Sculpt Contemporary …

STEM Programs – Minnesota Zoo

Posted: September 5, 2016 at 7:45 pm

Through the Minnesota Zoos Math and Science (ZOOMS) Program, students and teachers discover just what it takes to engineer a modern zoo. Funded by 3M, ZOOMS provides both teachers and students the opportunity to apply important science, technology, engineering, and math (STEM) concepts to real world situations using the Minnesota Zoo as a context. Through topics such as Engineering FORAnimals (exhibit design),Engineering FROM Animals(biomimicry), andEngineering BYAnimals (animals as engineers), teachers and students are challenged to consider and tackle the complexities in both the natural world and constructed environments. The ZOOMS program supports teachers with integrating standards-based ZOOMS resources, design challenges, and field trips into their curriculum to better equip students with the STEM skills to engineer and problem solve just like zookeepers, exhibit designers and conservationists at the Minnesota Zoo! Start seeing the zoo in a whole new way!

STEM at the Zoo: ZOOMS Workshop for Informal Educators

Dates: April 24-26, 2017 Time: 8 am-4 pm

Join us this spring for a three- day workshop held at the Minnesota Zoo. This professional development opportunity is offered to informal educators from zoos and aquariums that are looking to expand their institutions STEM programming and implement the ZOOMS model, a zoo-based integrated STEM program. We will explore the role of zoos and aquariums in providing high-quality STEM education, give examples of the programming we offer through ZOOMS, and provide tools and resources that you can take back to your home institution.

Check out more information.

Register Online

Cancellation Policy 75% refund through March 13th 50% refund March 14th-April 10th No refund after April 11th

How is STEM applied at the Minnesota Zoo? Get inspired through the exploration of exhibit design, biomimicry, and animal engineers to further equip your students with STEM skills used by real zoo professionals.

Professional Development Opportunities

For a more complete list of teacher professional development offerings or to register to attend a workshop, visit here.

The ZOOMS design challenge offers students a chance to develop a solution to a real problem faced by Zoo Keepers and staff at the Minnesota Zoo.From designing an enrichment, to building a model of a renovated animal exhibit, the problem will challenge students to use their science and math knowledge, creativity, problem solving, and research skills during the engineering design process in order to best solve the problem and present a solution. Selected students are invited to showcase their design challenge solution in the ZOOMS Design Exhibition in March at the Minnesota Zoo for a chance to win a backstage pass experience with our animals!

See the ZOOMS Design Challenge in Action!

Courtesy of South Washington County Schools

2016-2017 ZOOMS Enrichment and Exhibit Design Challenges

Need a reminder for upcoming ZOOMS opportunities? FollowMNZoo Teach & Learn Loop Facebookpage or sign up at mnzoo.org/teachandlearnto receive the MnZoo Teach & Learn Times E-newsletter.

Immerse students in the world of engineering at the zoo in this customized full or multi-day residency. Guided by a zoo naturalist, students will be led through hands on inquiry-based activities, an exploration of exhibit and enrichment design, behind the scenes experiences, encounters with zoo professionals in STEM and more. Students will leave with a deeper understanding of how science, technology, engineering, and math is used and applied at the zoo.

Fee: $25 per student per day; $250 per day minimum plus applicable admission fees.

These 45-minute interactive classes are fun and engaging and provide a great opportunity to reinforce standard-based concepts being explored in your curriculum. Topics range from tropical rainforests to animal adaptations to ocean conservation.

Learn more about Zoo Classes.

EngineeringbyAnimals: Inventive Nature Humans arefarfrom the only living creatures on earth that affect their environments in fascinating ways. EngineeringbyAnimals looks at examples of wildlife that show animals goingbeyondtheir built-in physical adaptations, using and evenalteringtheir habitats to increase the chances of their own survival. During this program you will also have a chance to test your own animal ingenuity during its Survival Solutions activity!

EngineeringforAnimals: Exhibit Design & Beyond Zoos have come a long way in the last 75 years: blank concrete cells with steel bars have given way to lush, naturally-inspired enclosures with live plants and jungle-gyms that put our own playgrounds to shame. During this program youll visit a variety of the Minnesota Zoos cutting-edge animal enclosureslive, and learn about the smart engineering that goes into designing a modern zoo exhibit. Youll also test your own ingenuity by whipping up exhibit designs for animals that dont even exist yet!

To register for a program or to find a more complete list of Interactive Video Conferencing programs, visit here.

Its true! People use math every day, and the keepers and scientists at the zoo are no exception! The Minnesota Zoo Math Days have been designed to inspire students grades 4th-12th to learn more about math applications in the workplace. Through hands on activity stations, students will answer grade appropriate math problems related to a wide variety of animal issues such as animal weights, diets and conservation.

Math Day 2016 will be open for registration August 2016.

For more information on Math Day, visit here.

STEM Quest Curriculum Guide: Analyzing Human Impact in Malaysia

To find a complete list of teacher resources, visit here.

Minnesota Zoo is proud to partner with !

SciGirls, an award winning PBS KIDS series, website and national outreach initiative, is changing how millions of tween girls think about science, technology, engineering and math, or STEM! In each episode, animated characters Izzie and her best friend Jake find themselves in jams only science can fix. To set things right, Izzie calls on bright, curious real-life SciGirls, who put STEM to work and save the day. Izzie also invites viewers to hang out on the website pbskids.org/scigirls a totally safe, social networking environment where girls can play games, connect, create personal profiles and avatars, share projects and watch every episode.

As a partner to SciGirls, the ZOOMS program integrates standards-based activities, hands on inquiry, and exploration in zoo classes, camps, and curriculum activities in order to inspire girls to get excited about STEM. To learn more, visit teacher resources or http://mnzoo.org/education/camps/.

SciGirls is produced for PBS by tpt National Productions and is made possible by the National Science Foundation. Additional support by LOreal USAs For Girls in Science program, Northrup Grumman Foundation, and PPG Industries Foundation. SciGirls / 2014 Twin Cities Public Television, Inc. pbskids.org/scigirls ZOOMS is sponsored by

For further questions regarding STEM programming at the Minnesota Zoo, please contact STEM@mnzoo.org.

Link:
STEM Programs - Minnesota Zoo

Posted in Minnesota Stem Cells | Comments Off on STEM Programs – Minnesota Zoo

Johns Hopkins Team Creates Stem Cells From Schizophrenia …

Posted: September 5, 2016 at 7:44 pm

Using skin cells from adult siblings with schizophrenia and a genetic mutation linked to major mental illnesses, Johns Hopkins researchers have created induced pluripotent stem cells (iPS cells) using a new and improved "clean" technique.

Reporting online February 22 in Molecular Psychiatry, the team confirms the establishment of two new lines of iPS cells with mutations in the gene named Disrupted In Schizophrenia 1, or DISC1.They made the cells using a nonviral "epiosomal vector" that jumpstarts the reprogramming machinery of cells without modifying their original genetic content with foreign DNA from a virus.

The stem cells from these two new lines, the scientists say, can be coaxed to become brain cells such as neurons. Because they have the DISC1 mutation, they stand to play an important role in the screening of drugs for treatments of major mental illnesses such as schizophrenia, bipolar disorder and major depression, as well as provide clues about the causes of these diseases.

"Most people think of stem cells only as potential transplant therapy to replace damaged cells or tissue, but for psychiatric diseases, which have proven a challenge to scientific understanding just as a sheer cliff challenges a climber, these cells provide a toehold,"says Russell L. Margolis, M.D., professor of psychiatry and neurology, and director of the Johns Hopkins Schizophrenia Program."Nature put in only a few little grab holds, and now we are generating our own so we can scale the cliff of mental illness faster."

The benefit of maintaining the original genome of cells being reprogrammed outweighs the fact that the episomal vector approach is both time- and labor-intensive, says Guo-li Ming, Ph.D., associate professor of neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine.

"The efficiency of the new technique is very, very low," Ming reports, citing a rate of 0.0006 percent or less and comparing it to the rate of efficiency of virally infected reprogrammed cells, which hovers at about 0.001 percent. "Human cells grow slowly, and this kind of reprogramming takes time."

However, the episomal vector method solves tricky problems associated with the more efficient viral approach, which involves inserting foreign genes into the cell's genome and potentially interrupting or influencing other genes that can change cell behavior. It also relieves worry about weird cell behavior later due to reactivation of introduced genes that remain in the genome, the researchers say.

The skin biopsy samples used in the study came from an American family first reported 25 years ago to have multiple family members affected with schizophrenia. A genetic analysis conducted by Margolis and colleagues six years ago discovered that a mutation in the DISC1 gene was common to all members of the family with severe mental illness. Two years ago, Margolis and Christopher A. Ross, M.D., Ph.D., director of the division of neurobiology, collected the skin samples and delivered them to Ming's team, which thus far has successfully reprogrammed two of those samples into the new iPS cell lines.

Skin cell samples from the remaining family members, as well as from unrelated individuals with schizophrenia, are still works in progress in the Ming lab, potentially becoming additional stem cell lines, according to Ming.

First, using the cultured skin cells, the team delivered a package of so-called reprogramming factors into the cytoplasm -- as opposed to the nucleus, where the cell's genetic material resides -- via bits of DNA (episomal vectors) that are serially diluted during cell division after making their special delivery. These cells then were grown in culture while the scientists monitored them for changes.

It took a wildly variable window of time -- anywhere between three weeks and three months -- for the elongated and single-layered skin cells to begin to change shape and cluster together, a telling sign that they were on the path to becoming stem cells, Ming explains.

"Seeing the colonies was heartening evidence of reprogramming, but not proof of ground state of pluripotent stem cells," Ming says. "We had to go through a series of characterization process, which generally takes about six months or more, depending on your rigor, to prove that. "

The team then conducted a series of tests to verify not only that the genes they used to introduce the reprogramming factors were undetectable from the transformed cells, but also to prove their pluripotency. First, they confirmed that these cells could generate differentiated cells from all three germ layers -- the endoderm, mesoderm and ectoderm -- which eventually give rise to all of an animal's tissues and organs. By changing the recipe of the culture media in which the cells were growing, the team coaxed the cells to become not only neurons, but also fat cells and bone and muscle tissue, for instance.

To confirm these were bona fide iPS cells with the ability to differentiate into all different cells types, the researchers performed a stringent test that involved injecting the presumed stem cells into mice whose immune systems were suppressed and noted that cells from three germ layers were present in the tumors that formed.

"The hard work of generating and characterizing these iPS cells is a prelude for future studies," Ming says. "Now, we can look at neural cells differentiated from these iPS cells in order to investigate the mechanisms and functions of the DISC1 gene in the nervous system, and understand the role it may play in diseases such as schizophrenia. These future studies may lead to the identification of new molecules that might serve as drug targets."

This research was supported by the National Institutes of Health, the Maryland Stem Cell Research Fund, the National Alliance for Research on Schizophrenia and Depression, and the International Mental Health Research Organization.

Johns Hopkins authors on the paper, in addition to Ming and Margolis, are Cheng-Hsuan Chiang, Yijing Su, Zhexing Wen, Nadine Yoritomo, Christopher A. Ross and Hongjun Song, all of Johns Hopkins.

View post:
Johns Hopkins Team Creates Stem Cells From Schizophrenia ...

Posted in Maryland Stem Cells | Comments Off on Johns Hopkins Team Creates Stem Cells From Schizophrenia …

Guidelines for Preventing Opportunistic Infections Among …

Posted: September 5, 2016 at 7:43 pm

Persons using assistive technology might not be able to fully access information in this file. For assistance, please send e-mail to: mmwrq@cdc.gov. Type 508 Accommodation and the title of the report in the subject line of e-mail.

Please note: An erratum has been published for this article. To view the erratum, please click here.

Clare A. Dykewicz, M.D., M.P.H. Harold W. Jaffe, M.D., Director Division of AIDS, STD, and TB Laboratory Research National Center for Infectious Diseases

Jonathan E. Kaplan, M.D. Division of AIDS, STD, and TB Laboratory Research National Center for Infectious Diseases Division of HIV/AIDS Prevention --- Surveillance and Epidemiology National Center for HIV, STD, and TB Prevention

Clare A. Dykewicz, M.D., M.P.H., Chair Harold W. Jaffe, M.D. Thomas J. Spira, M.D. Division of AIDS, STD, and TB Laboratory Research

William R. Jarvis, M.D. Hospital Infections Program National Center for Infectious Diseases, CDC

Jonathan E. Kaplan, M.D. Division of AIDS, STD, and TB Laboratory Research National Center for Infectious Diseases Division of HIV/AIDS Prevention --- Surveillance and Epidemiology National Center for HIV, STD, and TB Prevention, CDC

Brian R. Edlin, M.D. Division of HIV/AIDS Prevention---Surveillance and Epidemiology National Center for HIV, STD, and TB Prevention, CDC

Robert T. Chen, M.D., M.A. Beth Hibbs, R.N., M.P.H. Epidemiology and Surveillance Division National Immunization Program, CDC

Raleigh A. Bowden, M.D. Keith Sullivan, M.D. Fred Hutchinson Cancer Research Center Seattle, Washington

David Emanuel, M.B.Ch.B. Indiana University Indianapolis, Indiana

David L. Longworth, M.D. Cleveland Clinic Foundation Cleveland, Ohio

Philip A. Rowlings, M.B.B.S., M.S. International Bone Marrow Transplant Registry/Autologous Blood and Marrow Transplant Registry Milwaukee, Wisconsin

Robert H. Rubin, M.D. Massachusetts General Hospital Boston, Massachusetts and Massachusetts Institute of Technology Cambridge, Massachusetts

Kent A. Sepkowitz, M.D. Memorial-Sloan Kettering Cancer Center New York, New York

John R. Wingard, M.D. University of Florida Gainesville, Florida

John F. Modlin, M.D. Dartmouth Medical School Hanover, New Hampshire

Donna M. Ambrosino, M.D. Dana-Farber Cancer Institute Boston, Massachusetts

Norman W. Baylor, Ph.D. Food and Drug Administration Rockville, Maryland

Albert D. Donnenberg, Ph.D. University of Pittsburgh Pittsburgh, Pennsylvania

Pierce Gardner, M.D. State University of New York at Stony Brook Stony Brook, New York

Roger H. Giller, M.D. University of Colorado Denver, Colorado

Neal A. Halsey, M.D. Johns Hopkins University Baltimore, Maryland

Chinh T. Le, M.D. Kaiser-Permanente Medical Center Santa Rosa, California

Deborah C. Molrine, M.D. Dana-Farber Cancer Institute Boston, Massachusetts

Keith M. Sullivan, M.D. Fred Hutchinson Cancer Research Center Seattle, Washington

CDC, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation have cosponsored these guidelines for preventing opportunistic infections (OIs) among hematopoietic stem cell transplant (HSCT) recipients. The guidelines were drafted with the assistance of a working group of experts in infectious diseases, transplantation, and public health. For the purposes of this report, HSCT is defined as any transplantation of blood- or marrow-derived hematopoietic stem cells, regardless of transplant type (i.e., allogeneic or autologous) or cell source (i.e., bone marrow, peripheral blood, or placental or umbilical cord blood). Such OIs as bacterial, viral, fungal, protozoal, and helminth infections occur with increased frequency or severity among HSCT recipients. These evidence-based guidelines contain information regarding preventing OIs, hospital infection control, strategies for safe living after transplantation, vaccinations, and hematopoietic stem cell safety. The disease-specific sections address preventing exposure and disease for pediatric and adult and autologous and allogeneic HSCT recipients. The goal of these guidelines is twofold: to summarize current data and provide evidence-based recommendations regarding preventing OIs among HSCT patients. The guidelines were developed for use by HSCT recipients, their household and close contacts, transplant and infectious diseases physicians, HSCT center personnel, and public health professionals. For all recommendations, prevention strategies are rated by the strength of the recommendation and the quality of the evidence supporting the recommendation. Adhering to these guidelines should reduce the number and severity of OIs among HSCT recipients.

In 1992, the Institute of Medicine (1) recommended that CDC lead a global effort to detect and control emerging infectious agents. In response, CDC published a plan (2) that outlined national disease prevention priorities, including the development of guidelines for preventing opportunistic infections (OIs) among immunosuppressed persons. During 1995, CDC published guidelines for preventing OIs among persons infected with human immunodeficiency virus (HIV) and revised those guidelines during 1997 and 1999 (3--5). Because of the success of those guidelines, CDC sought to determine the need for expanding OI prevention activities to other immunosuppressed populations. An informal survey of hematology, oncology, and infectious disease specialists at transplant centers and a working group formed by CDC determined that guidelines were needed to help prevent OIs among hematopoietic stem cell transplant (HSCT)* recipients.

The working group defined OIs as infections that occur with increased frequency or severity among HSCT recipients, and they drafted evidence-based recommendations for preventing exposure to and disease caused by bacterial, fungal, viral, protozoal, or helminthic pathogens. During March 1997, the working group presented the first draft of these guidelines at a meeting of representatives from public and private health organizations. After review by that group and other experts, these guidelines were revised and made available during September 1999 for a 45-day public comment period after notification in the Federal Register. Public comments were added when feasible, and the report was approved by CDC, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. The pediatric content of these guidelines has been endorsed also by the American Academy of Pediatrics. The hematopoietic stem cell safety section was endorsed by the International Society of Hematotherapy and Graft Engineering.

The first recommendations presented in this report are followed by recommendations for hospital infection control, strategies for safe living, vaccinations, and hematopoietic stem cell safety. Unless otherwise noted, these recommendations address allogeneic and autologous and pediatric and adult HSCT recipients. Additionally, these recommendations are intended for use by the recipients, their household and other close contacts, transplant and infectious diseases specialists, HSCT center personnel, and public health professionals.

For all recommendations, prevention strategies are rated by the strength of the recommendation (Table 1) and the quality of the evidence (Table 2) supporting the recommendation. The principles of this rating system were developed by the Infectious Disease Society of America and the U.S. Public Health Service for use in the guidelines for preventing OIs among HIV-infected persons (3--6). This rating system allows assessments of recommendations to which adherence is critical.

HSCT is the infusion of hematopoietic stem cells from a donor into a patient who has received chemotherapy, which is usually marrow-ablative. Increasingly, HSCT has been used to treat neoplastic diseases, hematologic disorders, immunodeficiency syndromes, congenital enzyme deficiencies, and autoimmune disorders (e.g., systemic lupus erythematosus or multiple sclerosis) (7--10). Moreover, HSCT has become standard treatment for selected conditions (7,11,12). Data from the International Bone Marrow Transplant Registry and the Autologous Blood and Marrow Transplant Registry indicate that approximately 20,000 HSCTs were performed in North America during 1998 (Statistical Center of the International Bone Marrow Transplant Registry and Autologous Blood and Marrow Transplant Registry, unpublished data, 1998).

HSCTs are classified as either allogeneic or autologous on the basis of the source of the transplanted hematopoietic progenitor cells. Cells used in allogeneic HSCTs are harvested from a donor other than the transplant recipient. Such transplants are the most effective treatment for persons with severe aplastic anemia (13) and offer the only curative therapy for persons with chronic myelogenous leukemia (12). Allogeneic donors might be a blood relative or an unrelated donor. Allogeneic transplants are usually most successful when the donor is a human lymphocyte antigen (HLA)-identical twin or matched sibling. However, for allogeneic candidates who lack such a donor, registry organizations (e.g., the National Marrow Donor Program) maintain computerized databases that store information regarding HLA type from millions of volunteer donors (14--16). Another source of stem cells for allogeneic candidates without an HLA-matched sibling is a mismatched family member (17,18). However, persons who receive allogeneic grafts from donors who are not HLA-matched siblings are at a substantially greater risk for graft-versus-host disease (GVHD) (19). These persons are also at increased risk for suboptimal graft function and delayed immune system recovery (19). To reduce GVHD among allogeneic HSCTs, techniques have been developed to remove T-lymphocytes, the principal effectors of GVHD, from the donor graft. Although the recipients of T-lymphocyte--depleted marrow grafts generally have lower rates of GVHD, they also have greater rates of graft rejection, cytomegalovirus (CMV) infection, invasive fungal infection, and Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disease (20).

The patient's own cells are used in an autologous HSCT. Similar to autologous transplants are syngeneic transplants, among whom the HLA-identical twin serves as the donor. Autologous HSCTs are preferred for patients who require high-level or marrow-ablative chemotherapy to eradicate an underlying malignancy but have healthy, undiseased bone marrows. Autologous HSCTs are also preferred when the immunologic antitumor effect of an allograft is not beneficial. Autologous HSCTs are used most frequently to treat breast cancer, non-Hodgkin's lymphoma, and Hodgkin's disease (21). Neither autologous nor syngeneic HSCTs confer a risk for chronic GVHD.

Recently, medical centers have begun to harvest hematopoietic stem cells from placental or umbilical cord blood (UCB) immediately after birth. These harvested cells are used primarily for allogeneic transplants among children. Early results demonstrate that greater degrees of histoincompatibility between donor and recipient might be tolerated without graft rejection or GVHD when UCB hematopoietic cells are used (22--24). However, immune system function after UCB transplants has not been well-studied.

HSCT is also evolving rapidly in other areas. For example, hematopoietic stem cells harvested from the patient's peripheral blood after treatment with hematopoietic colony-stimulating factors (e.g., granulocyte colony-stimulating factor [G-CSF or filgastrim] or granulocyte-macrophage colony-stimulating factor [GM-CSF or sargramostim]) are being used increasingly among autologous recipients (25) and are under investigation for use among allogeneic HSCT. Peripheral blood has largely replaced bone marrow as a source of stem cells for autologous recipients. A benefit of harvesting such cells from the donor's peripheral blood instead of bone marrow is that it eliminates the need for general anesthesia associated with bone marrow aspiration.

GVHD is a condition in which the donated cells recognize the recipient's cells as nonself and attack them. Although the use of intravenous immunoglobulin (IVIG) in the routine management of allogeneic patients was common in the past as a means of producing immune modulation among patients with GVHD, this practice has declined because of cost factors (26) and because of the development of other strategies for GVHD prophylaxis (27). For example, use of cyclosporine GVHD prophylaxis has become commonplace since its introduction during the early 1980s. Most frequently, cyclosporine or tacrolimus (FK506) is administered in combination with other immunosuppressive agents (e.g., methotrexate or corticosteroids) (27). Although cyclosporine is effective in preventing GVHD, its use entails greater hazards for infectious complications and relapse of the underlying neoplastic disease for which the transplant was performed.

Although survival rates for certain autologous recipients have improved (28,29), infection remains a leading cause of death among allogeneic transplants and is a major cause of morbidity among autologous HSCTs (29). Researchers from the National Marrow Donor Program reported that, of 462 persons receiving unrelated allogeneic HSCTs during December 1987--November 1990, a total of 66% had died by 1991 (15). Among primary and secondary causes of death, the most common cause was infection, which occurred among 37% of 307 patients (15).**

Despite high morbidity and mortality after HSCT, recipients who survive long-term are likely to enjoy good health. A survey of 798 persons who had received an HSCT before 1985 and who had survived for >5 years after HSCT, determined that 93% were in good health and that 89% had returned to work or school full time (30). In another survey of 125 adults who had survived a mean of 10 years after HSCT, 88% responded that the benefits of transplantation outweighed the side effects (31).

During the first year after an HSCT, recipients typically follow a predictable pattern of immune system deficiency and recovery, which begins with the chemotherapy or radiation therapy (i.e., the conditioning regimen) administered just before the HSCT to treat the underlying disease. Unfortunately, this conditioning regimen also destroys normal hematopoiesis for neutrophils, monocytes, and macrophages and damages mucosal progenitor cells, causing a temporary loss of mucosal barrier integrity. The gastrointestinal tract, which normally contains bacteria, commensal fungi, and other bacteria-carrying sources (e.g., skin or mucosa) becomes a reservoir of potential pathogens. Virtually all HSCT recipients rapidly lose all T- and B-lymphocytes after conditioning, losing immune memory accumulated through a lifetime of exposure to infectious agents, environmental antigens, and vaccines. Because transfer of donor immunity to HSCT recipients is variable and influenced by the timing of antigen exposure among donor and recipient, passively acquired donor immunity cannot be relied upon to provide long-term immunity against infectious diseases among HSCT recipients.

During the first month after HSCT, the major host-defense deficits include impaired phagocytosis and damaged mucocutaneous barriers. Additionally, indwelling intravenous catheters are frequently placed and left in situ for weeks to administer parenteral medications, blood products, and nutritional supplements. These catheters serve as another portal of entry for opportunistic pathogens from organisms colonizing the skin (e.g., . coagulase-negative Staphylococci, Staphylococcus aureus, Candida species, and Enterococci) (32,33).

Engraftment for adults and children is defined as the point at which a patient can maintain a sustained absolute neutrophil count (ANC) of >500/mm3 and sustained platelet count of >20,000, lasting >3 consecutive days without transfusions. Among unrelated allogeneic recipients, engraftment occurs at a median of 22 days after HSCT (range: 6--84 days) (15). In the absence of corticosteroid use, engraftment is associated with the restoration of effective phagocytic function, which results in a decreased risk for bacterial and fungal infections. However, all HSCT recipients and particularly allogeneic recipients, experience an immune system dysfunction for months after engraftment. For example, although allogeneic recipients might have normal total lymphocyte counts within >2 months after HSCT, they have abnormal CD4/CD8 T-cell ratios, reflecting their decreased CD4 and increased CD8 T-cell counts (27). They might also have immunoglobulin G (IgG)2, IgG4, and immunoglobulin A (IgA) deficiencies for months after HSCT and have difficulty switching from immunoglobulin M (IgM) to IgG production after antigen exposure (32). Immune system recovery might be delayed further by CMV infection (34).

During the first >2 months after HSCT, recipients might experience acute GVHD that manifests as skin, gastrointestinal, and liver injury, and is graded on a scale of I--IV (32,35,36). Although autologous or syngeneic recipients might occasionally experience a mild, self-limited illness that is acute GVHD-like (19,37), GVHD occurs primarily among allogeneic recipients, particularly those receiving matched, unrelated donor transplants. GVHD is a substantial risk factor for infection among HSCT recipients because it is associated with a delayed immunologic recovery and prolonged immunodeficiency (19). Additionally, the immunosuppressive agents used for GVHD prophylaxis and treatment might make the HSCT recipient more vulnerable to opportunistic viral and fungal pathogens (38).

Certain patients, particularly adult allogeneic recipients, might also experience chronic GVHD, which is graded as either limited or extensive chronic GVHD (19,39). Chronic GVHD appears similar to autoimmune, connective-tissue disorders (e.g., scleroderma or systemic lupus erythematosus) (40) and is associated with cellular and humoral immunodeficiencies, including macrophage deficiency, impaired neutrophil chemotaxis (41), poor response to vaccination (42--44), and severe mucositis (19). Risk factors for chronic GVHD include increasing age, allogeneic HSCT (particularly those among whom the donor is unrelated or a non-HLA identical family member) (40), and a history of acute GVHD (24,45). Chronic GVHD was first described as occurring >100 days after HSCT but can occur 40 days after HSCT (19). Although allogeneic recipients with chronic GVHD have normal or high total serum immunoglobulin levels (41), they experience long-lasting IgA, IgG, and IgG subclass deficiencies (41,46,47) and poor opsonization and impaired reticuloendothelial function. Consequently, they are at even greater risk for infections (32,39), particularly life-threatening bacterial infections from encapsulated organisms (e.g., Stre. pneumoniae, Ha. influenzae, or Ne. meningitidis). After chronic GVHD resolves, which might take years, cell-mediated and humoral immunity function are gradually restored.

HSCT recipients experience certain infections at different times posttransplant, reflecting the predominant host-defense defect(s) (Figure). Immune system recovery for HSCT recipients takes place in three phases beginning at day 0, the day of transplant. Phase I is the preengraftment phase (<30 days after HSCT); phase II, the postengraftment phase (30--100 days after HSCT); and phase III, the late phase (>100 days after HSCT). Prevention strategies should be based on these three phases and the following information:

Preventing infections among HSCT recipients is preferable to treating infections. How ever, despite recent technologic advances, more research is needed to optimize health outcomes for HSCT recipients. Efforts to improve immune system reconstitution, particularly among allogeneic transplant recipients, and to prevent or resolve the immune dysregulation resulting from donor-recipient histoincompatibility and GVHD remain substantial challenges for preventing recurrent, persistent, or progressive infections among HSCT patients.

Preventing Exposure

Because bacteria are carried on the hands, health-care workers (HCWs) and others in contact with HSCT recipients should routinely follow appropriate hand-washing practices to avoid exposing recipients to bacterial pathogens (AIII).

Preventing Disease

Preventing Early Disease (0--100 Days After HSCT). Routine gut decontamination is not recommended for HSCT candidates (51--53) (DIII). Because of limited data, no recommendations can be made regarding the routine use of antibiotics for bacterial prophylaxis among afebrile, asymptomatic neutropenic recipients. Although studies have reported that using prophylactic antibiotics might reduce bacteremia rates after HSCT (51), infection-related fatality rates are not reduced (52). If physicians choose to use prophylactic antibiotics among asymptomatic, afebrile, neutropenic recipients, they should routinely review hospital and HSCT center antibiotic-susceptibility profiles, particularly when using a single antibiotic for antibacterial prophylaxis (BIII). The emergence of fluoquinolone-resistant coagulase-negative Staphylococci and Es. coli (51,52), vancomycin-intermediate Sta. aureus and vancomycin-resistant Enterococcus (VRE) are increasing concerns (54). Vancomycin should not be used as an agent for routine bacterial prophylaxis (DIII). Growth factors (e.g., GM-CSF and G-CSF) shorten the duration of neutropenia after HSCT (55); however, no data were found that indicate whether growth factors effectively reduce the attack rate of invasive bacterial disease.

Physicians should not routinely administer IVIG products to HSCT recipients for bacterial infection prophylaxis (DII), although IVIG has been recommended for use in producing immune system modulation for GVHD prevention. Researchers have recommended routine IVIG*** use to prevent bacterial infections among the approximately 20%--25% of HSCT recipients with unrelated marrow grafts who experience severe hypogamma-globulinemia (e.g., IgG < 400 mg/dl) within the first 100 days after transplant (CIII). For example, recipients who are hypogammaglobulinemic might receive prophylactic IVIG to prevent bacterial sinopulmonary infections (e.g., from Stre. pneumoniae) (8) (CIII). For hypogammaglobulinemic allogeneic recipients, physicians can use a higher and more frequent dose of IVIG than is standard for non-HSCT recipients because the IVIG half-life among HSCT recipients (generally 1--10 days) is much shorter than the half-life among healthy adults (generally 18--23 days) (56--58). Additionally, infections might accelerate IgG catabolism; therefore, the IVIG dose for a hypogammaglobulinemic recipient should be individualized to maintain trough serum IgG concentrations >400--500 mg/dl (58) (BII). Consequently, physicians should monitor trough serum IgG concentrations among these patients approximately every 2 weeks and adjust IVIG doses as needed (BIII) (Appendix).

Preventing Late Disease (>100 Days After HSCT). Antibiotic prophylaxis is recommended for preventing infection with encapsulated organisms (e.g., Stre. pneumoniae, Ha. influenzae, or Ne. meningitidis) among allogeneic recipients with chronic GVHD for as long as active chronic GVHD treatment is administered (59) (BIII). Antibiotic selection should be guided by local antibiotic resistance patterns. In the absence of severe demonstrable hypogammaglobulinemia (e.g., IgG levels < 400 mg/dl, which might be associated with recurrent sinopulmonary infections), routine monthly IVIG administration to HSCT recipients >90 days after HSCT is not recommended (60) (DI) as a means of preventing bacterial infections.

Other Disease Prevention Recommendations. Routine use of IVIG among autologous recipients is not recommended (61) (DII). Recommendations for preventing bacterial infections are the same among pediatric or adult HSCT recipients.

Preventing Exposure

Appropriate care precautions should be taken with hospitalized patients infected with Stre. pneumoniae (62,63) (BIII) to prevent exposure among HSCT recipients.

Preventing Disease

Information regarding the currently available 23-valent pneumococcal polysaccharide vaccine indicates limited immunogenicity among HSCT recipients. However, because of its potential benefit to certain patients, it should be administered to HSCT recipients at 12 and 24 months after HSCT (64--66) (BIII). No data were found regarding safety and immunogenicity of the 7-valent conjugate pneumococcal vaccine among HSCT recipients; therefore, no recommendation regarding use of this vaccine can be made.

Antibiotic prophylaxis is recommended for preventing infection with encapsulated organisms (e.g., Stre. pneumoniae, Ha. influenzae, and Ne. meningitidis) among allogeneic recipients with chronic GVHD for as long as active chronic GVHD treatment is administered (59) (BIII). Trimethoprim-sulfamethasaxole (TMP-SMZ) administered for Pneumocystis carinii pneumonia (PCP) prophylaxis will also provide protection against pneumococcal infections. However, no data were found to support using TMP-SMZ prophylaxis among HSCT recipients solely for the purpose of preventing Stre. pneumoniae disease. Certain strains of Stre. pneumoniae are resistant to TMP-SMZ and penicillin. Recommendations for preventing pneumococcal infections are the same for allogeneic or autologous recipients.

As with adults, pediatric HSCT recipients aged >2 years should be administered the current 23-valent pneumococcal polysaccharide vaccine because the vaccine can be effective (BIII). However, this vaccine should not be administered to children aged <2 years because it is not effective among that age population (DI). No data were found regarding safety and immunogenicity of the 7-valent conjugate pneumococcal vaccine among pediatric HSCT recipients; therefore, no recommendation regarding use of this vaccine can be made.

Preventing Exposure

Because Streptococci viridans colonize the oropharynx and gut, no effective method of preventing exposure is known.

Preventing Disease

Chemotherapy-induced oral mucositis is a potential source of Streptococci viridans bacteremia. Consequently, before conditioning starts, dental consults should be obtained for all HSCT candidates to assess their state of oral health and to perform any needed dental procedures to decrease the risk for oral infections after transplant (67) (AIII).

Generally, HSCT physicians should not use prophylactic antibiotics to prevent Streptococci viridans infections (DIII). No data were found that demonstrate efficacy of prophylactic antibiotics for this infection. Furthermore, such use might select antibiotic-resistant bacteria, and in fact, penicillin- and vancomycin-resistant strains of Streptococci viridans have been reported (68). However, when Streptococci viridans infections among HSCT recipients are virulent and associated with overwhelming sepsis and shock in an institution, prophylaxis might be evaluated (CIII). Decisions regarding the use of Streptococci viridans prophylaxis should be made only after consultation with the hospital epidemiologists or infection-control practitioners who monitor rates of nosocomial bacteremia and bacterial susceptibility (BIII).

HSCT physicians should be familiar with current antibiotic susceptibilities for patient isolates from their HSCT centers, including Streptococci viridans (BIII). Physicians should maintain a high index of suspicion for this infection among HSCT recipients with symptomatic mucositis because early diagnosis and aggressive therapy are currently the only potential means of preventing shock when severely neutropenic HSCT recipients experience Streptococci viridans bacteremia (69).

Preventing Exposure

Adults with Ha. influenzae type b (Hib) pneumonia require standard precautions (62) to prevent exposing the HSCT recipient to Hib. Adults and children who are in contact with the HSCT recipient and who have known or suspected invasive Hib disease, including meningitis, bacteremia, or epiglottitis, should be placed in droplet precautions until 24 hours after they begin appropriate antibiotic therapy, after which they can be switched to standard precautions. Household contacts exposed to persons with Hib disease and who also have contact with HSCT recipients should be administered rifampin prophylaxis according to published recommendations (70,71); prophylaxis for household contacts of a patient with Hib disease are necessary if all contacts aged <4 years are not fully vaccinated (BIII) (Appendix). This recommendation is critical because the risk for invasive Hib disease among unvaccinated household contacts aged <4 years is increased, and rifampin can be effective in eliminating Hib carriage and preventing invasive Hib disease (72--74). Pediatric household contacts should be up-to-date with Hib vaccinations to prevent possible Hib exposure to the HSCT recipient (AII).

Preventing Disease

Although no data regarding vaccine efficacy among HSCT recipients were found, Hib conjugate vaccine should be administered to HSCT recipients at 12, 14, and 24 months after HSCT (BII). This vaccine is recommended because the majority of HSCT recipients have low levels of Hib capsular polysaccharide antibodies >4 months after HSCT (75), and allogeneic recipients with chronic GVHD are at increased risk for infection from encapsulated organisms (e.g., Hib) (76,77). HSCT recipients who are exposed to persons with Hib disease should be offered rifampin prophylaxis according to published recommendations (70) (BIII) (Appendix).

Antibiotic prophylaxis is recommended for preventing infection with encapsulated organisms (e.g., Stre. pneumoniae, Ha. influenzae, or Ne. meningitidis) among allogeneic recipients with chronic GVHD for as long as active chronic GVHD treatment is administered (59) (BIII). Antibiotic selection should be guided by local antibiotic-resistance patterns. Recommendations for preventing Hib infections are the same for allogeneic or autologous recipients. Recommendations for preventing Hib disease are the same for pediatric or adult HSCT recipients, except that any child infected with Hib pneumonia requires standard precautions with droplet precautions added for the first 24 hours after beginning appropriate antibiotic therapy (62,70) (BIII). Appropriate pediatric doses should be administered for Hib conjugate vaccine and for rifampin prophylaxis (71) (Appendix).

Preventing Exposure

HSCT candidates should be tested for the presence of serum anti-CMV IgG antibodies before transplantation to determine their risk for primary CMV infection and reactivation after HSCT (AIII). Only Food and Drug Administration (FDA) licensed or approved tests should be used. HSCT recipients and candidates should avoid sharing cups, glasses, and eating utensils with others, including family members, to decrease the risk for CMV exposure (BIII).

Sexually active patients who are not in long-term monogamous relationships should always use latex condoms during sexual contact to reduce their risk for exposure to CMV and other sexually transmitted pathogens (AII). However, even long-time monogamous pairs can be discordant for CMV infections. Therefore, during periods of immuno-compromise, sexually active HSCT recipients in monogamous relationships should ask partners to be tested for serum CMV IgG antibody, and discordant couples should use latex condoms during sexual contact to reduce the risk for exposure to this sexually transmitted OI (CIII).

After handling or changing diapers or after wiping oral and nasal secretions, HSCT candidates and recipients should practice regular hand washing to reduce the risk for CMV exposure (AII). CMV-seronegative recipients of allogeneic stem cell transplants from CMV-seronegative donors (i.e., R-negative or D-negative) should receive only leukocyte-reduced or CMV-seronegative red cells or leukocyte-reduced platelets (<1 x 106 leukocytes/unit) to prevent transfusion-associated CMV infection (78) (AI). However, insufficient data were found to recommend use of leukocyte-reduced or CMV-seronega tive red cells and platelets among CMV-seronegative recipients who have CMV-seropositive donors (i.e., R-negative or D-positive).

All HCWs should wear gloves when handling blood products or other potentially contaminated biologic materials (AII) to prevent transmission of CMV to HSCT recipients. HSCT patients who are known to excrete CMV should be placed under standard precautions (62) for the duration of CMV excretion to avoid possible transmission to CMV-seronegative HSCT recipients and candidates (AIII). Physicians are cautioned that CMV excretion can be episodic or prolonged.

Preventing Disease and Disease Recurrence

HSCT recipients at risk for CMV disease after HSCT (i.e., all CMV-seropositive HSCT recipients, and all CMV-seronegative recipients with a CMV-seropositive donor) should be placed on a CMV disease prevention program from the time of engraftment until 100 days after HSCT (i.e., phase II) (AI). Physicians should use either prophylaxis or preemptive treatment with ganciclovir for allogeneic recipients (AI). In selecting a CMV disease prevention strategy, physicians should assess the risks and benefits of each strategy, the needs and condition of the patient, and the hospital's virology laboratory support capability.

Prophylaxis strategy against early CMV (i.e., <100 days after HSCT) for allogeneic recipients involves administering ganciclovir prophylaxis to all allogeneic recipients at risk throughout phase II (i.e., from engraftment to 100 days after HSCT). The induction course is usually started at engraftment (AI), although physicians can add a brief prophylactic course during HSCT preconditioning (CIII) (Appendix).

Preemptive strategy against early CMV (i.e., <100 days after HSCT) for allogeneic recipients is preferred over prophylaxis for CMV-seronegative HSCT recipients of seropositive donor cells (i.e., D-positive or R-negative) because of the low attack rate of active CMV infection if screened or filtered blood product support is used (BII). Preemptive strategy restricts ganciclovir use for those patients who have evidence of CMV infection after HSCT. It requires the use of sensitive and specific laboratory tests to rapidly diagnose CMV infection after HSCT and to enable immediate administration of ganciclovir after CMV infection has been detected. Allogeneic recipients at risk should be screened >1 times/week from 10 days to 100 days after HSCT (i.e., phase II) for the presence of CMV viremia or antigenemia (AIII).

HSCT physicians should select one of two diagnostic tests to determine the need for preemptive treatment. Currently, the detection of CMV pp65 antigen in leukocytes (antigenemia) (79,80) is preferred for screening for preemptive treatment because it is more rapid and sensitive than culture and has good positive predictive value (79--81). Direct detection of CMV-DNA (deoxyribonucleic acid) by polymerase chain reaction (PCR) (82) is very sensitive but has a low positive predictive value (79). Although CMV-DNA PCR is less sensitive than whole blood or leukocyte PCR, plasma CMV-DNA PCR is useful during neutropenia, when the number of leukocytes/slide is too low to allow CMV pp65 antigenemia testing.

Virus culture of urine, saliva, blood, or bronchoalveolar washings by rapid shell-vial culture (83) or routine culture (84,85) can be used; however, viral culture techniques are less sensitive than CMV-DNA PCR or CMV pp65 antigenemia tests. Also, rapid shell-viral cultures require >48 hours and routine viral cultures can require weeks to obtain final results. Thus, viral culture techniques are less satisfactory than PCR or antigenemia tests. HSCT centers without access to PCR or antigenemia tests should use prophylaxis rather than preemptive therapy for CMV disease prevention (86) (BII). Physicians do use other diagnostic tests (e.g., hybrid capture CMV-DNA assay, Version 2.0 [87] or CMV pp67 viral RNA [ribonucleic acid] detection) (88); however, limited data were found regarding use among HSCT recipients, and therefore, no recommendation for use can be made.

Allogeneic recipients <100 days after HSCT (i.e., during phase II) should begin preemptive treatment with ganciclovir if CMV viremia or any antigenemia is detected or if the recipient has >2 consecutively positive CMV-DNA PCR tests (BIII). After preemptive treatment has been started, maintenance ganciclovir is usually continued until 100 days after HSCT or for a minimum of 3 weeks, whichever is longer (AI) (Appendix). Antigen or PCR tests should be negative when ganciclovir is stopped. Studies report that a shorter course of ganciclovir (e.g., for 3 weeks or until negative PCR or antigenemia occurs) (89--91) might provide adequate CMV prevention with less toxicity, but routine weekly screening by pp65 antigen or PCR test is necessary after stopping ganciclovir because CMV reactivation can occur (BIII).

Presently, only the intravenous formulation of ganciclovir has been approved for use in CMV prophylactic or preemptive strategies (BIII). No recommendation for oral ganciclovir use among HSCT recipients can be made because clinical trials evaluating its efficacy are still in progress. One group has used ganciclovir and foscarnet on alternate days for CMV prevention (92), but no recommendation can be made regarding this strategy because of limited data. Patients who are ganciclovir-intolerant should be administered foscarnet instead (93) (BII) (Appendix). HSCT recipients receiving ganciclovir should have ANCs checked >2 times/week (BIII). Researchers report managing ganciclovir-associated neutropenia by adding G-CSF (94) or temporarily stopping ganciclovir for >2 days if the patient's ANC is <1,000 (CIII). Ganciclovir can be restarted when the patient's ANC is >1,000 for 2 consecutive days. Alternatively, researchers report substituting foscarnet for ganciclovir if a) the HSCT recipient is still CMV viremic or antigenemic or b) the ANC remains <1,000 for >5 days after ganciclovir has been stopped (CIII) (Appendix). Because neutropenia accompanying ganciclovir administration is usually brief, such patients do not require antifungal or antibacterial prophylaxis (DIII).

Currently, no benefit has been reported from routinely administering ganciclovir prophylaxis to all HSCT recipients at >100 days after HSCT (i.e., during phase III). However, persons with high risk for late CMV disease should be routinely screened biweekly for evidence of CMV reactivation as long as substantial immunocompromise persists (BIII). Risk factors for late CMV disease include allogeneic HSCT accompanied by chronic GVHD, steroid use, low CD4 counts, delay in high avidity anti-CMV antibody, and recipients of matched unrelated or T-cell--depleted HSCTs who are at high risk (95--99). If CMV is still detectable by routine screening >100 days after HSCT, ganciclovir should be continued until CMV is no longer detectable (AI). If low-grade CMV antigenemia (<5 positive cells/slide) is detected on routine screening, the antigenemia test should be repeated in 3 days (BIII). If CMV antigenemia indicates >5 cells/slide, PCR is positive, or the shell-vial culture detects CMV viremia, a 3-week course of preemptive ganciclovir treatment should be administered (BIII) (Appendix). Ganciclovir should also be started if the patient has had >2 consecutively positive viremia or PCR tests (e.g., in a person receiving steroids for GVHD or who received ganciclovir or foscarnet at <100 days after HSCT). Current investigational strategies for preventing late CMV disease include the use of targeted prophylaxis with antiviral drugs and cellular immunotherapy for those with deficient or absent CMV-specific immune system function.

If viremia persists after 4 weeks of ganciclovir preemptive therapy or if the level of antigenemia continues to rise after 3 weeks of therapy, ganciclovir-resistant CMV should be suspected. If CMV viremia recurs during continuous treatment with ganciclovir, researchers report restarting ganciclovir induction (100) or stopping ganciclovir and starting foscarnet (CIII). Limited data were found regarding the use of foscarnet among HSCT recipients for either CMV prophylaxis or preemptive therapy (92,93).

Infusion of donor-derived CMV-specific clones of CD8+ T-cells into the transplant recipient is being evaluated under FDA Investigational New Drug authorization; therefore, no recommendation can be made. Although, in a substantial cooperative study, high-dose acyclovir has had certain efficacy for preventing CMV disease (101), its utility is limited in a setting where more potent anti-CMV agents (e.g., ganciclovir) are used (102). Acyclovir is not effective in preventing CMV disease after autologous HSCT (103) and is, therefore, not recommended for CMV preemptive therapy (DII). Consequently, valacyclovir, although under study for use among HSCT recipients, is presumed to be less effective than ganciclovir against CMV and is currently not recommended for CMV disease prevention (DII).

Although HSCT physicians continue to use IVIG for immune system modulation, IVIG is not recommended for CMV disease prophylaxis among HSCT recipients (DI). Cidofovir, a nucleoside analog, is approved by FDA for the treatment of AIDS-associated CMV retinitis. The drug's major disadvantage is nephrotoxicity. Cidofovir is currently in FDA phase 1 trial for use among HSCT recipients; therefore, recommendations for its use cannot be made.

Use of CMV-negative or leukocyte-reduced blood products is not routinely required for all autologous recipients because most have a substantially lower risk for CMV disease. However, CMV-negative or leukocyte-reduced blood products can be used for CMV-seronegative autologous recipients (CIII). Researchers report that CMV-seropositive autologous recipients be evaluated for preemptive therapy if they have underlying hematologic malignancies (e.g., lymphoma or leukemia), are receiving intense conditioning regimens or graft manipulation, or have recently received fludarabine or 2-chlorodeoxyadenosine (CDA) (CIII). This subpopulation of autologous recipients should be monitored weekly from time of engraftment until 60 days after HSCT for CMV reactivation, preferably with quantitative CMV pp65 antigen (80) or quantitative PCR (BII).

Autologous recipients at high risk who experience CMV antigenemia (i.e., blood levels of >5 positive cells/slide) should receive 3 weeks of preemptive treatment with ganciclovir or foscarnet (80), but CD34+-selected patients should be treated at any level of antigenemia (BII) (Appendix). Prophylactic approach to CMV disease prevention is not appropriate for CMV-seropositive autologous recipients. Indications for the use of CMV prophylaxis or preemptive treatment are the same for children or adults.

Preventing Exposure

All transplant candidates, particularly those who are EBV-seronegative, should be advised of behaviors that could decrease the likelihood of EBV exposure (AII). For example, HSCT recipients and candidates should follow safe hygiene practices (e.g., frequent hand washing [AIII] and avoiding the sharing of cups, glasses, and eating utensils with others) (104) (BIII), and they should avoid contact with potentially infected respiratory secretions and saliva (104) (AII).

Preventing Disease

Infusion of donor-derived, EBV-specific cytotoxic T-lymphocytes has demonstrated promise in the prophylaxis of EBV-lymphoma among recipients of T-cell--depleted unrelated or mismatched allogeneic recipients (105,106). However, insufficient data were found to recommend its use. Prophylaxis or preemptive therapy with acyclovir is not recommended because of lack of efficacy (107,108) (DII).

Preventing Exposure

HSCT candidates should be tested for serum anti-HSV IgG before transplant (AIII); however, type-specific anti-HSV IgG serology testing is not necessary. Only FDA-licensed or -approved tests should be used. All HSCT candidates, particularly those who are HSV-seronegative, should be informed of the importance of avoiding HSV infection while immunocompromised and should be advised of behaviors that will decrease the likelihood of HSV exposure (AII). HSCT recipients and candidates should avoid sharing cups, glasses, and eating utensils with others (BIII). Sexually active patients who are not in a long-term monogamous relationship should always use latex condoms during sexual contact to reduce the risk for exposure to HSV as well as other sexually transmitted pathogens (AII). However, even long-time monogamous pairs can be discordant for HSV infections. Therefore, during periods of immunocompromise, sexually active HSCT recipients in such relationships should ask partners to be tested for serum HSV IgG antibody. If the partners are discordant, they should consider using latex condoms during sexual contact to reduce the risk for exposure to this sexually transmitted OI (CIII). Any person with disseminated, primary, or severe mucocutaneous HSV disease should be placed under contact precautions for the duration of the illness (62) (AI) to prevent transmission of HSV to HSCT recipients.

Preventing Disease and Disease Recurrence

Acyclovir. Acyclovir prophylaxis should be offered to all HSV-seropositive allogeneic recipients to prevent HSV reactivation during the early posttransplant period (109--113) (AI). Standard approach is to begin acyclovir prophylaxis at the start of the conditioning therapy and continue until engraftment occurs or until mucositis resolves, whichever is longer, or approximately 30 days after HSCT (BIII) (Appendix). Without supportive data from controlled studies, routine use of antiviral prophylaxis for >30 days after HSCT to prevent HSV is not recommended (DIII). Routine acyclovir prophylaxis is not indicated for HSV-seronegative HSCT recipients, even if the donors are HSV-seropositive (DIII). Researchers have proposed administration of ganciclovir prophylaxis alone (86) to HSCT recipients who required simultaneous prophylaxis for CMV and HSV after HSCT (CIII) because ganciclovir has in vitro activity against CMV and HSV 1 and 2 (114), although ganciclovir has not been approved for use against HSV.

Valacyclovir. Researchers have reported valacyclovir use for preventing HSV among HSCT recipients (CIII); however, preliminary data demonstrate that very high doses of valacyclovir (8 g/day) were associated with thrombotic thrombocytopenic purpura/hemolytic uremic syndrome among HSCT recipients (115). Controlled trial data among HSCT recipients are limited (115), and the FDA has not approved valacyclovir for use among recipients. Physicians wishing to use valacyclovir among recipients with renal impairment should exercise caution and decrease doses as needed (BIII) (Appendix).

Foscarnet. Because of its substantial renal and infusion-related toxicity, foscarnet is not recommended for routine HSV prophylaxis among HSCT recipients (DIII).

Famciclovir. Presently, data regarding safety and efficacy of famciclovir among HSCT recipients are limited; therefore, no recommendations for HSV prophylaxis with famciclovir can be made.

See the original post here:
Guidelines for Preventing Opportunistic Infections Among ...

Posted in Indiana Stem Cells | Comments Off on Guidelines for Preventing Opportunistic Infections Among …

Page 1,711«..1020..1,7101,7111,7121,713..1,7201,730..»