Page 1,725«..1020..1,7241,7251,7261,727..1,7301,740..»

Fort Lauderdale Stem Cell Surgery | Molecular Orthopaedics …

Posted: July 17, 2016 at 6:40 am

Individuals who live in or around the Fort Lauderdale area may be pleased to know that stem cell surgery is now available to them. This is in thanks to The Institute of Regenerative and Molecular Orthopedics located in Boca Raton, Florida. Stem cell surgery is a treatment procedure that involves the use of the patients own stem cells, which are taken from their pelvic bone, processed and injected into damaged tissue. This treatment, headed by Dr. Purita, a renowned orthopedic surgeon, helps stimulate the healing process that often is arrested due to poor blood flow and reduced oxygenation of the damaged tissue.

Stem cells are the repair cells of the body. When tissue becomes damaged due to trauma, diseases or disorders, blood supply can become blocked, preventing these needed stem cells from reaching the damaged tissue, thus preventing proper healing. Oftentimes when this happens, the body does not recognize the injury. Damaged tissue can be partially cut off from needed oxygen and from sending signals to the body for increased blood supply that carries the stem cells to the injury site. With the use of stem cell surgery, these important repair cells are placed directly into the damaged tissue. This causes tissue to begin healing, reducing pain and returning function to the impaired body part.

Fort Lauderdale stem cell surgery is available for treating a wide variety of orthopedic conditions. These include rotator cuff injuries, joint damage caused by arthritis, tennis elbow, ligament sprains, hamstring strains, calf pain, Achilles tendonitis, plantar fascitis, numerous knee problems and more. Electing to have this form of orthopedic treatment can be a good alternative for those who are perhaps considering surgery due to continued pain after traditional methods have been exhausted as well as for conditions that are healing much slower than normal. Although stem cell surgery does take time for full healing, most individuals experience significant improvements within 2 to 3 months after starting the treatment. This form of surgery also prevents the need for invasive surgery that usually requires incisions that leave behind serious scarring. With stem cell orthopedic surgery, scarring is minimal. It also is less expensive than traditional surgery and with stem cells being injected directly into damaged tissue, additional degeneration of the treated tissue is prevented.

Continued here:
Fort Lauderdale Stem Cell Surgery | Molecular Orthopaedics ...

Posted in Stem Cell Treatments | Comments Off on Fort Lauderdale Stem Cell Surgery | Molecular Orthopaedics …

Stem Cell Therapy, Stem Cell Research, Stem Cell Treatments

Posted: July 17, 2016 at 6:40 am

Welcome to the Silicon Valley Stem Cell Treatment Center, and affiliate of the California Stem Cell Treatment Center. At our state of the art clinic we are using cutting edge advanced techniques and the latest innovative technology to improve the health and well being of our patients. At Silicon Valley Stem Cell Treatment Center, we provide care for people suffering from diseases that may have limited treatment options and may respond to stem cell based regenerative treatment. The Silicon Valley Stem Cell Treatment Center emphasizes quality and our well trained physician is highly committed to clinical research and the advancement of regenerative medicine.

The California Stem Cell Treatment specialists who trained our physician, have been nationally recognized for working with autologous (your own) adipose derived stem cells providing investigational therapy to patients with various inflammatory and/or degenerative conditions. Our Centers utilize a fat transfer technology to isolate and implant the patient's own stem cells from a small quantity of fat harvested by liposuction on the same day. Using technology developed in South Korea, our group has developed an in office procedure to isolate this cellular medium called the Stromal Vascular Fraction or SVF which is very rich in stem cells. Our founders have also worked in conjunction with a number of international organizations and physicians of great expertise to help develop our protocols for procedures. In 2012, the Cell Surgical Network (CSN) was formed, of which we are an affiliate, to provide the same high level quality controlled investigational therapy nationwide and beyond. Under our IRB (Institutional Review Board) approved protocol, we in Silicon Valley are now also able to provide fat derived stem cell procedures on an investigational basis. Modeled after the California Stem Cell Treatment Center, we've formed a multidisciplinary team to evaluate patients with a variety of conditions often responsive to Stem Cell therapy. All affiliate members in the CSN, including our clinic will contribute to the California Centers IRB approved investigation. Patients who seek care at the Silicon Valley Stem Cell Treatment Center will be evaluated by one of our physicians and given our honest opinion as to the potential benefits and risks of stem cell therapy for their presenting condition.

California Stem Cell Treatment Center was founded in 2010 for the investigational use of stem cells procedures for degenerative conditions. California Stem Cell Treatment Center employs a clinical research coordinator to protect our valuable data, as our vision is to perfect our treatments and ultimately teach them to others.

Follow this link:
Stem Cell Therapy, Stem Cell Research, Stem Cell Treatments

Posted in Stem Cell Treatments | Comments Off on Stem Cell Therapy, Stem Cell Research, Stem Cell Treatments

Cell and Stem Cell Conferences | Exhibitions | Worldwide …

Posted: July 17, 2016 at 6:40 am

OMICS International Conferences invites all the participants from all over the world to attend '6th World Congress on Cell & Stem Cell Research during February 29-March 02, 2016 in Philadelphia, USA which includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions

Track01:Stem Cell

The most well-established and widely used stem cell treatment is thetransplantationof blood stem cells to treat diseases and conditions of the blood and immune system, or to restore the blood system after treatments for specific cancers. Since the 1970s,skin stem cellshave been used to grow skin grafts for patients with severe burns on very large areas of the body. Only a few clinical centers are able to carry out this treatment and it is usually reserved for patients with life-threatening burns. It is also not a perfect solution: the new skin has no hair follicles or sweat glands. Research aimed at improving the technique is ongoing.

Related Conferences:

International Conference on Pancreatic andColorectal Cancer, March 29-30, 2016, Atlanta, USA; International Conference onProstate Cancerand Treatment, May 5-7, 2016, Chicago, USA;Cancer DiagnosticsConference & Expo, June 13-15, 2016, Rome, Italy; International Conference onTissue Scienceand Regenerative Medicine, Sept 12-14, 2016, Berlin Germany;Gene Regulatory Networks and the Encoded Causality of Development, May 16-18, 2016, California, USA; Stem Cell Models of Neural Degeneration and Disease, February 1-3, 2016 Dresden, Germany;Stem Cellsand Cancer, March 6-10, 2016, Colorado, USA; Transdifferentiation and Tissue Plasticity inCardiovascular Rejuvenation; February 7-10, 2016, West Sussex, UKTrack 01:Cell Differentiation:

Cellular differentiation is the progression, whereas a cell changes from one cell type to another. Variation occurs numerous times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Thus, different cells can have very different physical characteristics despite having the same genome.

Related Conferences:

5th International Conference and Exhibition on Cell & Gene Therapy, May 19-21, 2016,San Antonio, USAInternational Conference on Melanoma and Carcinoma, July 14-15, 2016,Brisbane, Australia,Annual Conference Stem Cell and Regenerative on Medicine, Aug 4-6, 2016, Frankfurt, Germany; 9th International Conference on Molecular & Cellular Cardiology, Aug 22-24, 2016, Sao Paulo, Brazil;4th International Conference on Blood Malignancies and Treatment,April 18-20, 2016,Dubai, UAE; 2ndInternational Congress onNeuroimmunology& Therapeutics, March 31-Apr 2, 2016, Atlanta, USA; Molecular and Cellular Basis of Growth and Regeneration, January 10-14, 2016 , Colorado, USA; Phacilitate Cell & Gene Therapy World, January 25-27, Washington D.C., USA; ISSCR Stem Cell Models of Neural Degeneration and Disease, 1-3 February 2016, Dresden, Germany; Craniofacial Morphogenesis & Tissue Regeneration, March 13-18, 2016, California, USA; Keystone Stem Cells and Cancer, March 6-10, 2016 Colorado, USA

Track02:Cell Metabolism:

Metabolism is the set of life-nourishing chemical transformations within the cells of living organisms. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. Metabolism is divided into two categories: catabolism, the breaking down of organic matter by way of cellular respiration, and anabolism, the building up of components of cells such as proteins and nucleic acids.

Related Conferences:

International Conference on Tissue Science and Regenerative Medicine, Sept 12-14, 2016, Berlin Germany; International Conference on Pancreatic and Colorectal Cancer, March 29-30, 2016, Atlanta, USA; International Conference on Prostate Cancer and Treatment, May 5-7, 2016, Chicago, USA; Cancer Diagnostics Conference & Expo, June 13-15, 2016, Rome, Italy; International Conference Bimolecular Engineering, January 5-7, 2016, Singapore; Molecular and Cellular Basis of Growth and Regeneration, January 10-14, 2016, Colorado, USA; Metabolism, Transcription and Disease, January 10-14, 2016, Iquitos, Peru; Gordon Research Conference & Seminar "Origins of Life", January 17-22, 2016, Galveston, USA; Small RNA Silencing Little Guides, Big Biology, January 24-28, 2016, Colorado, USA

Track03:Tissue Engineering:

Tissue Engineering is the study of the growth of new connective tissues, or organs, from cells and a collagenous scaffold to produce a fully functional organ for implantation back into the donor host. Powerful developments in the multidisciplinary field of tissue engineering have produced a novel set of tissue replacement parts and implementation approaches. Scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory from combinations of engineered extracellular matrices cells, and biologically active molecules.

Related Conferences:

Experts Meeting on Gynecologic Oncology, May 19-21, 2016 San Antonio, USA; Annual Plant Genomics Conference, July 14-15, 2016, Brisbane, Australia; International Conference on Integrative Biology, July 18-20, 2016, Berlin, Germany; Industrial Biotechnology Congress, July 28-29, 2016, Berlin, Germany; Asia Pacific Biotech Congress, July 25-27, 2016, Bangkok, Thailand; International Conference on Tissue Engineering and Regenerative Medicine, June 9-10, 2016, San Francisco, USA; Keystone Stem Cells and Regeneration in the Digestive Organs, March 13-17, 2016 Colorado, USA; ISSCR Pluripotency: From basic science to therapeutic applications, 22-24, March 2016 Kyoto, Japan; Keystone Cardiac Development, Regeneration and Repair, April 3-7, 2016 Utah, USA; The Stem Cell NicheDevelopment & Disease, 22-26, May 2016, Hillerd, Denmark

Track04:Epigenetics:

Epigenetics is the study of genetics, cellular and physiological phenotypic trait variations that are caused by external or environmental factors that switch genes on and off and affect how cells read genes instead of being caused by changes in the DNA sequence. Epigenetic change in eukaryotic biology is the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo, which in turn become fully differentiated cells.

Related Conferences:

International Conference on Cancer Genomics, Aug 8-9, 2016, Las Vegas, USA; International Conference on Genetics Counseling and Genomics Medicine, Aug 11-12, 2016, Birmingham, UK; Biotechnology World Convention, Aug 15-17, 2016, Sao Paulo, Brazil; International Conference on Synthetic Biology, Aug 18-19, 2016, London, UK, Annual Conference on Bio Science, Sept 12-13, 2016, Berlin, Germany; Noncoding RNAs in Health and Disease, February 21-24, 2016, Santa Fe, USA; Maintenance of Genome Stability March 7- 10, 2016, Panama, South America; Chromatin and Epigenetics, March 20-24, 2016 Whistler, Canada; Chromatin, Non-Coding RNAs and RNAP II Regulation in Development and Disease, March 29, 2016, Austin, USA; Chromatin Structure & Function, May 22-27, 2016, Les Diablerets, Switzerland

Track05:Gene Therapy:

Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease. Gene therapy could be a way to fix a genetic problem at its source. The polymers are either expressed as proteins, interfere with protein expression, or possibly correct genetic mutations. In the future, this technique may allow doctors to treat a disorder by inserting a gene into a patient's cells instead of using drugs or surgery.

Related Conferences:

5thWorld Congress on Hemophilia, June 6-8, 2016, London, UK; 2nd World Bio Summit & Expo, Oct 13-15, 2016, Dubai, UAE; 4th International Conference on Genomics & Pharmacogenomics, Sept 12-14, 2016, Berlin Germany; International Conference on Molecular Biology, Oct 13-15, 2016, Dubai, UAE; World Congress on Human Genetics, Oct 31 - Nov 2, 2016, Valencia, Spain; International Conference on Cell and Gene Therapy, March 3-4, 2016, Singapore; Molecular and Cellular Basis of Growth and Regeneration, January 10-14, 2016, Colorado, USA; Axons: from cell biology to pathology, January 24-27, 2016, New Mexico; Craniofacial Morphogenesis & Tissue Regeneration, March 13-18, 2016, California, USA

Track07:Cell Biology of Aging:

Aging process is the result of the inability of various types of stem cells to continue to replenish the tissues of an organism with functional differentiated cells capable of maintaining that tissues (or organ's) original function.

Related Conferences:

International Conference on Cancer Genomics, Aug 8-9, 2016, Las Vegas, USA; International Conference on Genetics Counseling and Genomics Medicine, Aug 11-12, 2016, Birmingham, UK; Biotechnology World Convention, Aug 15-17, 2016, Sao Paulo, Brazil;International Conference on Medical Ethics and Health Policies, June 9-11, 2016, London, UK, Annual Conference on Bio Science, Sept 12-13, 2016, Berlin, Germany; International Aging and Disease Conference, October 01-02, 2016, Stanford, USA; 4th World Parkinson Congress, September 5-6, 2016 Portland, USA; Disasters in an Ageing World-Readiness, Resilience and Recovery, June 21-23, 2016, Brisbane, Australia; American Geriatrics Society Annual Scientific Meeting, May 19-21, 2016, Long Beach, USA; American Society on Aging (ASA) 2016 Aging in America Conference, March 20-24, 2016, Washington, USA

Track08:Computational Biology:

Computational Biology, sometimes referred to as bioinformatics, is the science of using biological data to develop algorithms and relations among various biological systems. Bioinformatics groups use computational methods to explore the molecular mechanisms underpinning stem cells. To accomplish this bioinformatics develop and apply advanced analysis techniques that make it possible to dissect complex collections of data from a wide range of technologies and sources.

The fields of stem cell biology and regenerative medicine research are fundamentally about understanding dynamic cellular processes such as development, reprogramming, repair, differentiation and the loss, acquisition or maintenance of pluripotency. In order to precisely decipher these processes at a molecular level, it is critical to identify and study key regulatory genes and transcriptional circuits. Modern high-throughput molecular profiling technologies provide a powerful approach to addressing these questions as they allow the profiling of tens of thousands of gene products in a single experiment. Whereas bioinformatics is used to interpret the information produced by such technologies.

Related Conferences:

6thInternational Conference on Bioinformatics, March 29-30, 2016 Valencia, Spain;6th International Conference and Expo on Proteomics, March 29-31, 2016, Atlanta, USA; 4th International Conference on Integrative Biology, July 18-20, 2016, Berlin, Germany; Industrial Biotechnology Congress, July 28-29, 2016, Berlin, Germany; Asia Pacific Biotech Congress, July 25-27, 2016, Bangkok, Thailand; International Conference on Computational Biology, Paris, France; February 22-23, 2016 Systems Immunology: From Molecular Networks to Human Biology, January 10-14, 2016 Montana, United States; Whole-Cell Modeling Summer School, April 3-8, 2016 Barcelona, Spain; From Functional Genomics to Systems Biology, November 12-15, 2016, Heidelberg, Germany

Track09:Genetic Engineering:

Genetic engineering is the direct manipulation of an organism's genome using biotechnology. Whereas set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA may be inserted in the host genome by first isolating and copying the genetic material of interest using molecular cloning methods to generate a DNA sequence, or by synthesizing the DNA, and then inserting this construct into the host organism.

Embryonic stem cells have a major potential for studying early steps of development and for use in cell therapy. In many situations, however, it will be necessary to genetically engineer these cells. A novel generation of lentivectors which permit easy genetic engineering of mouse and human embryonic stem cells.

Related Conferences:

Annual Plant Genomics Conference, July 14-15, 2016, Brisbane, Australia; 4th International Conference on Integrative Biology, July 18-20, 2016, Berlin, Germany; Industrial Biotechnology Congress, July 28-29, 2016, Berlin, Germany; Asia Pacific Biotech Congress, July 25-27, 2016, Bangkok, Thailand; 5thInternational Conference and Exhibition on Cell andGene Therapy, May 19-21, 2016 San Antonio, USA; International Conference Biomolecular Engineering, Singapore; Cell Culture 2016, London, UK; 4thBiotechnology World Congress, Dubai, UAE; Genome Editing and Gene Modulation Congress 2016, Oxford, UK; European Symposium on Biochemical Engineering Sciences 2016, Dublin, Ireland

Track10:Apoptosis:

Apoptosis is the process of programmed cell death (PCD) that may occur in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global mRNA decay. Most cytotoxic anticancer agents induce apoptosis, raising the intriguing possibility that defects in apoptotic programs contribute to treatment failure. Because the same mutations that suppress apoptosis during tumor development also reduce treatment sensitivity, apoptosis provides a conceptual framework to link cancer genetics with cancer therapy.

Related Conferences:

14th World Congress on Cancer Therapy, Dec 8-10, 2016, Dallas, USA; 13th Global Oncologists Summit and Cancer Therapy, Oct 17-19, 2016, Dubai, UAE; 12th Euro Global Summit on Cancer Therapy, Sept 26-28, 2016, London, UK; International Conference on Cervical Cancer, Sept 22-23, 2016, Vienna, Austria; 2nd World Congress on Breast Cancer, Sept 19-21, 2016, Pheonix, USA; Cell Death, July 3-8, 2016 Girona, Spain; A Matter of Life or Death: Cell Death in Cancer, January 28 -30, 2016 Amsterdam, Netherlands; Cancer Vaccines: Targeting Cancer Genes for Immunotherapy, March 6-10, 2016 Whistler, Canada; Symposium on Signalling Pathways in Cancer 2016: Focusing on the HER/EGFR family signalling, March 04-05, 2016, Barcelona, Spain

Track11:Somatic Cell Therapy:

Somatic cell therapy is the administration to humans of autologous, allogeneic, or xenogeneic living cells which have been manipulated or processed ex vivo. Manufacture of products for somatic cell therapy involves the ex vivo propagation, expansion, selection. Somatic cell therapy is viewed as a more conservative, safer approach because it affects only the targeted cells in the patient, and is not passed on to future generations. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy.

Related Conferences:

2nd International Conference on Antimicrobial Agents and Chemotherapy, June 6-7, 2016 Dallas, USA;9th Global Diabetelogists Annual Meeting and Medicare Expo, June 6-8, 2016, Dallas, USA; 4th International Conference on Integrative Biology, July 18-20, 2016, Berlin, Germany; Industrial Biotechnology Congress, July 28-29, 2016, Berlin, Germany; Asia Pacific Biotech Congress, July 25-27, 2016, Bangkok, Thailand; International Conference Biomolecular Engineering, Singapore; Cell Culture 2016, London, UK; Reprogramming Cell Fate, March 04-05, 2016, Texas, USA; International Conference on Cell and Gene Therapy, July 25-26, 2016 Paris, France; Derivation and Culture of Human Induced Pluripotent Stem Cells, Hinxton, UK; Axons: from cell biology to pathology, New Mexico; Annual Meeting of the Japan Society of Gene Therapy (JSGT), October 18 -21, 2016, Japan

Track12:Histology of Cell biology:

Histology is the scientific study of biological tissues. It is the microscopic study of the structure of biological tissues using special staining techniques combined with light and electron microscopy. Histology is the study of the microscopic structures of cells and tissues of plants and animals. Histological studies may be conducted using tissue culture, where live human or animal cells are isolated and maintained in an artificial environment for various research projects. The ability to visualize microscopic structures is frequently enhanced through the use of histological stains. Histology is an essential tool of biology and medicine.

Related Conferences:

Annual Plant Genomics Conference, July 14-15, 2016, Brisbane, Australia; 4th International Conference on Integrative Biology, July 18-20, 2016, Berlin, Germany; Industrial Biotechnology Congress, July 28-29, 2016, Berlin, Germany; Asia Pacific Biotech Congress, July 25-27, 2016, Bangkok, Thailand; 5thInternational Conference and Exhibition on Cell andGene Therapy, May 19-21, 2016 San Antonio, USA; International Conference Biomolecular Engineering, Singapore; Cell Culture 2016, London, UK; United States & Canadian Academy of Pathology Annual Meeting, March 12-18, 2016, Seattle, USA; ISSCR Stem Cell Models of Neural Degeneration and Disease, February 1-3, 2016, Dresden, Germany; Craniofacial Morphogenesis & Tissue Regeneration, March 13-18, 2016, California, USA; Keystone Stem Cells and Cancer, March 6-10, 2016, Colorado, USA

Track13:Human Embryology:

Human embryogenesis is the process of cell division and cellular differentiation of the embryo that occurs during the early stages of development. Whereas human development entails growth from a stage celled zygote to an adult human being stage. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form a single cell called a zygote and the germinal stage of prenatal development commences.

Related Conferences:

Annual Conference Stem Cell and Regenerative on Medicine, Aug 4-6, 2016, Frankfurt, Germany; 9th International Conference on Molecular & Cellular Cardiology, Aug 22-24, 2016, Sao Paulo, Brazil; 2nd International Conference and Exhibition on Tissue preservation and Bio-banking, Aug 18-19, 2016, Portland, Oregon; International Conference on Human Reproduction and Embryology, May 23-24, 2016, London, UK; Conference on Embryology and Developmental Biology, June 1-3, 2016, Nanjing, China; European Society of Human Reproduction and Embryology, July 3-6, 2016, Helsinki, Finland

Track14:Tumour Cell Science:

An abnormal mass of tissue. Tumors are a classic sign of inflammation, and can be benign or malignant. Tomour usually reflect the kind of tissue they arise in. Treatment is also specific to the location and type of the tumor. Benign tumors can sometimes simply be ignored, cancerous tumors; options include chemotherapy, radiation, and surgery.

Related Conferences:

International Conference onCancer Genomics, Aug 8-9, 2016, Las Vegas, USA; International Conference on Genetics Counseling andGenomics Medicine, Aug 11-12, 2016, Birmingham, UK; Biotechnology World Convention, Aug 15-17, 2016, Sao Paulo, Brazil; International Conference onSynthetic Biology, Aug 18-19, 2016, London, UK, Annual Conference onBio Science, Sept 12-13, 2016, Berlin, Germany; Pediatric Oncology Conference, January 20-21, 2016, Brussels, Belgium; Progress and Controversies in Gynecologic Oncology Conference, January 22-23, 2016, Barcelona, Spain; Cancer Immunotherapy Immunity and Immunosuppression Meet Targeted Therapies, January 24-28, 2016, British Columbia, Canada; The Cancer Genome, February 7-11, 2016 Banff, Canada

Track15:Stem Cell Biomarkers:

Molecular biomarkers serve as valuable tools to classify and isolate embryonic stem cells (ESCs) and to monitor their differentiation state by antibody-based techniques. ESCs can give rise to any adult cell type and thus offer enormous potential for regenerative medicine and drug discovery. A number of biomarkers, such as certain cell surface antigens, are used to assign pluripotent ESCs; however, accumulating evidence suggests that ESCs are heterogeneous in morphology, phenotype and function, thereby classified into subpopulations characterized by multiple sets of molecular biomarkers.

Related Conferences:

International Conference and Exhibition on Cell & Gene Therapy, May 19-21, 2016, San Antonio, USA; Annual Conference Stem Cell and Regenerative on Medicine, Aug 4-6, 2016, Frankfurt, Germany; 9th International Conference on Molecular & Cellular Cardiology, Aug 22-24, 2016, Sao Paulo, Brazil; 2nd International Conference and Exhibition on Tissue preservation and Bio-banking, Aug 18-19, 2016, Portland, Oregon; Stem Cell Research & Regenerative Medicine Conference, April 25-26, 2016, Boston, USA; International Conference on Cell and Stem Cell Engineering, September 15 - 16, 2016, Rome, Italy; International Conference on Stem Cells & Regenerative Medicine, December 17-18, 2016, Bangkok, Thailand; Molecular and Cellular Basis of Growth and Regeneration Breckenridge, January 10-14, 2016, Colorado, USA; Tissue Niches & Resident Stem Cells in Adult Epithelia, August 7-12, Hong Kong, China

Track16:Stem Cell Therapy:

Autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Human embryonic stem cells may be grown in vivo and stimulated to produce pancreatic -cells and later transplanted to the patient. Its success depends on response of the patients immune system and ability of the transplanted cells to proliferate, differentiate and integrate with the target tissue.

Related Conferences:

9thInternational Conference on Molecular & CellularCardiology, Aug 22-24, 2016, Sao Paulo, Brazil;International Conference and Exhibition on Cell & Gene Therapy, May 19-21, 2016, San Antonio, USA; Annual Conference Stem Cell and Regenerative on Medicine, Aug 4-6, 2016, Frankfurt, Germany;2nd International Conference and Exhibition on Tissue preservation and Bio-banking, Aug 18-19, 2016, Portland, Oregon; Phacilitate Cell & Gene Therapy World, January 25-27, 2016, Washington D.C, USA; International Conference on Nucleic Acids, January 7-8, 2016, Singapore; 5th Zing Nucleic Acids Conference, December 2-5, 2016 Tampa, Florida; Germline Stem Cells Conference, , June 19-21, 2016, San Francisco, USA; Notch Signaling in Development, Regeneration & Disease Gordon Research Conference, July 31-August 5, 2016, Lewiston, USA

Track17:Novel Stem Cell Technologies:

Stem cell technology is a rapidly developing field that combines the efforts of cell biologists, geneticists, and clinicians and offers hope of effective treatment for a variety of malignant and non-malignant diseases. Stem cells are defined as totipotent progenitor cells capable of self-renewal and multilineage differentiation. Stem cells survive well and show stable division in culture, making them ideal targets for in vitro manipulation. Although early research has focused on haematopoietic stem cells, stem cells have also been recognised in other sites. Research into solid tissue stem cells has not made the same progress as that on haematopoietic stem cells.

Related Conferences:

Cancer Diagnostics Conference & Expo, June 13-15, 2016, Rome, Italy; 9th International Conference on Molecular & Cellular Cardiology, Aug 22-24, 2016, Sao Paulo, Brazil; 2nd International Conference and Exhibition on Tissue preservation and Bio-banking, Aug 18-19, 2016, Portland, Oregon; Molecular and Cellular Basis of Growth and Regeneration Breckenridge, January 10-14, 2016, Colorado, USA; Derivation and Culture of Human Induced Pluripotent Stem Cells, Hinxton, UK; Challenges, Solutions and Progress in Stem Cell Medicine, 18-21 February, 2017 San Diego, USA; EMBL Hematopoietic Stem Cells: From the Embryo to the Aging Organism, June 3-5, 2016, Heidelberg, Germany

Track 18:Cancer Biology:

Cancer can be defined as a disease in which a group of abnormal cells grow uncontrollably by disregarding the normal rules of cell division. Normal cells are constantly subject to signals that dictate whether the cells should divide, differentiate into another cell or die. Cancer cells develop a degree of anatomy from these signals, resulting in uncontrolled growth and proliferation. If this proliferation is allowed to continue and spread, it can be fatal.

Related Conferences:

14th World Congress on Cancer Therapy, Dec 8-10, 2016, Dallas, USA; 13th Global Oncologists Summit and Cancer Therapy, Oct 17-19, 2016, Dubai, UAE; 12th Euro Global Summit on Cancer Therapy, Sept 26-28, 2016, London, UK; International Conference on Cervical Cancer, Sept 22-23, 2016, Vienna, Austria; 2nd World Congress on Breast Cancer, Sept 19-21, 2016, Pheonix, USA; ESMO Sarcoma & GIST Conference 2016, 16-17 February, 2016 Milan, Italy; ESMO Symposium on Signalling Pathways in Cancer 2016: Focusing on the HER/EGFR family signalling, March 4-5, 2016, Barcelona, Spain; European Lung Cancer Conference, April 13-16, 2016, Geneva, IMPAKT 2016 Breast Cancer Conference, May 12-14, 2016, Brussels, Belgium; World Congress on Gastrointestinal Cancer 2016, 29-02 July, 2016, Barcelona, Spain

Stem Cell Research is an international forum to present and discuss current perspectives in cell and stem cell research. Stem Cell Research is the unified study of the properties of cells and living organisms and all aspects of their interactions. Stem Cell Research has the goal to fulfill the prevailing gaps in the transformation of this science of hope, to serve promptly with solutions to all in the need.

Related Conferences:

5th International Conference and Exhibition on Cell & Gene Therapy, May 19-21, 2016, San Antonio, USA; Annual Conference Stem Cell and Regenerative on Medicine, Aug 4-6, 2016, Frankfurt, Germany; 9th International Conference on Molecular & Cellular Cardiology, Aug 22-24, 2016, Sao Paulo, Brazil; 2nd International Conference and Exhibition on Tissue preservation and Bio-banking, Aug 18-19, 2016, Portland, Oregon; Molecular and Cellular Basis of Growth and Regeneration, January 10-14, 2016 , Colorado, USA; Phacilitate Cell & Gene Therapy World, January 25-27, Washington D.C., USA; ISSCR Stem Cell Models of Neural Degeneration and Disease, 1-3 February 2016, Dresden, Germany; Craniofacial Morphogenesis & Tissue Regeneration, March 13-18, 2016, California, USA; Keystone Stem Cells and Cancer, March 6-10, 2016 Colorado, USA

6th World Congress on Cell & Stem Cell Research

The success of the 5thCell Science conference series has given us the prospect to bring the gathering one more time for our 6thWorld Congress 2016 meet in Philadelphia, USA. Since its commencement in 2011 cell science series has perceived around 500 researchers of great potentials and outstanding research presentations around the globe. The awareness of stem cells and its application is increasing among the general population that also in parallel offers hope and add woes to the researchers of cell science due to the potential limitations experienced in the real-time.

Stem Cell Research-2016has the goal to fill the prevailing gaps in the transformation of this science of hope to promptly serve solutions to all in the need.World Congress 2016 will have an anticipated participation of 150-200 delegates from around the world to discuss the conference goal.

History of Stem cells Research

Stem cells have an interesting history, in the mid-1800s it was revealed that cells were basically the building blocks of life and that some cells had the ability to produce other cells. Efforts were made to fertilize mammalian eggs outside of the human body and in the early 1900s, it was discovered that some cells had the capacity to generate blood cells. In 1968, the first bone marrow transplant was achieved successfully to treat two siblings with severe combined immunodeficiency. Other significant events in stem cell research include:

1978: Stem cells were discovered in human cord blood 1981: First in vitro stem cell line developed from mice 1988: Embryonic stem cell lines created from a hamster 1995: First embryonic stem cell line derived from a primate 1997: Cloned lamb from stem cells 1997: Leukaemia origin found as haematopoietic stem cell, indicating possible proof of cancer stem cells

Funding in USA:

No federal law forever did embargo stem cell research in the United States, but only placed restrictions on funding and use, under Congress's power to spend. By executive order on March 9, 2009, President Barack Obama removed certain restrictions on federal funding for research involving new lines of humanembryonic stem cells. Prior to President Obama's executive order, federal funding was limited to non-embryonic stem cell research and embryonic stem cell research based uponembryonic stem celllines in existence prior to August 9, 2001. In 2011, a United States District Court "threw out a lawsuit that challenged the use of federal funds for embryonic stem cell research.

Members Associated with Stem Cell Research:

Discussion on Development, Regeneration, and Stem Cell Biology takes an interdisciplinary approach to understanding the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex fully patterned adult organism, as well as the intimately related question of how adult structures regenerate. Stem cells play critical roles both during embryonic development and in later renewal and repair. More than 65 faculties in Philadelphia from both basic science and clinical departments in the Division of Biological Sciences belong to Development, Regeneration, and Stem Cell Biology. Their research uses traditional model species including nematode worms, fruit-flies, Arabidopsis, zebrafish, amphibians, chick and mouse as well as non-traditional model systems such as lampreys and cephalopods. Areas of research focus include stem cell biology, regeneration, developmental genetics, and cellular basis of development, developmental neurobiology, and evo-devo (Evolutionary developmental biology).

Stem Cell Market Value:

Worldwide many companies are developing and marketing specialized cell culture media, cell separation products, instruments and other reagents for life sciences research. We are providing a unique platform for the discussions between academia and business.

Global Tissue Engineering & Cell Therapy Market, By Region, 2009 2018

$Million

Figure 1:Market by Geography

Why to attend???

Stem Cell Research-2016 could be an outstanding event that brings along a novel and International mixture of researchers, doctors, leading universities and stem cell analysis establishments creating the conference an ideal platform to share knowledge, adoptive collaborations across trade and world, and assess rising technologies across the world. World-renowned speakers, the most recent techniques, tactics, and the newest updates in cell science fields are assurances of this conference.

A Unique Opportunity for Advertisers and Sponsors at this International event:

http://stemcell.omicsgroup.com/sponsors.php

UAS Major Universities which deals with Stem Cell Research

University of Washington/Hutchinson Cancer Center

Original post:
Cell and Stem Cell Conferences | Exhibitions | Worldwide ...

Posted in Stem Cell Research | Comments Off on Cell and Stem Cell Conferences | Exhibitions | Worldwide …

Myths and Misconceptions About Stem Cell Research …

Posted: July 17, 2016 at 6:40 am

En Espaol

There is no shortage of myths and misconceptions when it comes to stem cell research and regenerative medicine. Here we address the most common concerns.

If you have more questions that aren't addressed here, please visit our other Stem Cell FAQ pages.

Is CIRM-funded stem cell research carried out ethically? Where do the embryos come from to create stem cell lines? I'm opposed to abortion. Can embryonic stem cell lines come from aborted fetuses? Does creating stem cell lines destroy the embryo? Are adult stem cells as goodor betterthan embryonic stem cells? Don't iPS cells eliminate the need to use embryos in stem cell research? Can't stem cell research lead to human cloning?

Stem cell research, like field within biomedicne, poses social and ethical concerns. CIRM, as well as the broader research community, takes these seriously.

As a state funding body, CIRM has comprehensive policies to govern research, similar to our national counterpart, the National Institutes of Health. CIRM-funded researchers must comply with a comprehensive set of regulations that have been carefully developed and are in accordance with national and international standards.

These regulations were among the first formal policies governing the conduct of stem cell research and are in accordance with recommendations from the National Academies and from the International Society for Stem Cell Research. CIRMs Standards Working Group meets regularly to consider new ethical challenges as the science progresses and to revise standards to reflect the current state of the research.

Find out More:

CIRM regulations National Academies of Science guidelines International Society for Stem Cell Research guidelines National Academies of Science podcast about guidelines for embryonic stem cell research More about CIRM-grantee ethics training (4:03)

All the human embryonic stem cell lines currently in use come from four to five day-old embryos left over from in vitro fertilization (IVF) procedures. In IVF, researchers mix a man's sperm and a woman's eggs together in a lab dish. Some of those eggs will become fertilized. At about five days the egg has divided to become a hollow ball of roughly 100 cells called a blastocyst which is smaller than the size of the dot over an i. It is these very early embryos that are implanted into the woman in the hopes that she becomes pregnant.

Each cycle of IVF can produce many blastocysts, some of which are implanted into the woman. The rest are stored in the IVF clinic freezer. After a successful implantation, they must decide what to do with any remaining embryos. There are a few options:

Some embryonic stem cell lines also come from embryos that a couple has chosen not to implant because they carry harmful genetic mutations like the ones that cause cystic fibrosis or Tay Sachs disease. These are discovered through routine genetic testing prior to implantation. Still other embryos might be malformed in some way that causes them to be rejected for implantation into the mother. Embryos with genetic defects of malformations would have been discarded if the couple had not chosen to donate them to stem cell research.

People who donate leftover embryos for research go through an extensive consent process to ensure that they understand embryonic stem cell research. Under state, national and international regulations, no human embryonic stem cell lines can be created without explicit consent from the donor.

Policies vary as to whether women may be paid or otherwise compensated to donate eggs. Most jurisdictions allow donors to be reimbursed for direct costs such as travel to the clinic or lodging. Some also allow payments or IVF services to be provided to egg donors.

Find out More:

How do scientists create stem cell lines from left over IVF embryos? (4:11)

No. Emybronic stem cells only come from four to five day old blastocysts or younger embryos.

In most cases, yes. The hollow blastocystwhich is where embryonic stem cells come fromcontains a cluster of 20-30 cells called the inner cell mass. These are the cells that become embryonic stem cells in a lab dish. The process of extracting these cells destroys the embryo.

Dont forget that the embryos were donated from IVF clinics. They had either been rejected for implantation and were going to be destroyed, or the couple had decided to stop storing the embryos for future use. The embryos used to create embryonic stem cell lines were already destined to be destroyed.

There is, however, a second method that creates embryonic stem cell lines without destroying the embryo. Instead, scientists take a single cell from a very early stage IVF embryo and can use that one cell to develop a new line. The process of removing one cell from an early stage embryo has been done for many years as a way of testing the embryo for genetic predisposition to diseases such as Tay Sachs. This process is called preimplantation genetic testing.

Adult stem cells are extremely valuable and have great potential for future therapies. However, these cells are very restricted in what they can do. Unlike embryonic stem cells, which can grow into virtually any cell type in the body, adult stem cells can only follow certain paths.

For example, Blood-forming stem cells can grow into mature blood cells, and brain stem cells may be able to grow into mature neurons, but a blood-forming stem cell cant grow into a neuron, and vice versa. Whats more, adult stem cells dont grow indefinitely in the lab, unlike embryonic stem cells, and they arent as flexible in the types of diseases they can treat.

And, while the news is full of stories about people who had great results from adult stem cell therapies, few of these therapies are part of big trials that can test whether a potential therapy is safe and effective. Until some of these large trials take place with both adult and embryonic stem cells we won't know which type of stem cell is superior. Even researchers who study adult stem cells advocate working with embryonic cells as well.

CIRM is excited about their potential for treating some diseases. However, our goal is to accelerate new treatments for diseases in need. At this time the most effective way of doing that is by exploring all types of stem cells. That's why CIRM has funded researchers pursuing a wide range of approaches to finding cures for diseases.

See how much of CIRM's funding has gone to different types of stem cells here: Overview of CIRM Stem Cell Research Funding.

Filter our list of all funded CIRM grants to see awards using different cell types.

How are adult stem cell different from embryonic stem cells? (3:29)

Induced pluripotent stem cells, or iPS cells, represent another type of cell that could be used for stem cell research. . iPS cells are adult cellsusually skin cellsthat scientists genetically reprogram to appear like embryonic stem cells. The technology used to generate human iPS cells, pioneered by Shinya Yamanaka in 2007, is very promising, which is why CIRM has funded many grants that create and use these cells to study or treat disease. However, iPS cell technology is very new and it is still not known whether those cells have the same potential as human embryonic stem cells or whether the cells are safe for transplantation.

Many CIRM-funded researchers are working to find better ways of creating iPS cells that are both safe and effective. In the mean time, waiting for iPS cells to become therapeutically safewhich will likely take yearswould slow the search for disease treatments. Cures cant wait, which is why CIRM funds all types of stem cell research.

Experts agree that research on all types of stem cells is critical. In September 2008, a panel of experts convened by the U.S. National Academy of Sciences stated that the use of human embryonic stem cells is still necessary. As panel chair Richard Hynes of the Massachusetts Institute of Technology stated:

It is far from clear at this point which types of cell types will prove to be the most useful for regenerative medicine, and it is likely that each will have some utility.

See a video about creating iPS cells (3:40)

No. Every significant regulatory and advisory body has restrictions on reproductive cloning. The National Academy of Sciences has issued guidelines banning the technique as has the International Society for Stem Cell Research. The California constitution and CIRM regulations specifically prohibit reproductive cloning with its funding.

Updated 1/15

More here:
Myths and Misconceptions About Stem Cell Research ...

Posted in Stem Cell Research | Comments Off on Myths and Misconceptions About Stem Cell Research …

Dr Emille Reid | Physician | Kuils River | Cape Town

Posted: July 17, 2016 at 6:40 am

Practice Details Practice Number: 0175986 Qualifications: MBChB (Stell), MMed(Int)(Stell), DipHIVMan(CMSA), BScHons(MedSc)(Epidemiology&Statistics)(Stell) Office Contact Person: Hanli, Amelia or Fatima (Practice manager) Telephone No: 021948 4776 Fax No: 021948 3350 Cell No: 083292 4212 After Hours Telephone No: 083292 4212 Email Address: emille@egreid.com Website Address: Physical Address: Suite 4H, Fourth Floor, Riverside View, Netcare Kuils River, Van Riebeeck Road, Kuils River, 7580 Social Networks Postal Address: PO Box 150, Soneike, 7583 Detailed information and specialities Emille Reid is a specialist with an interest in Infectious Diseases. He runs a busy HIV clinic (as part of his general practice) and provide evidence-based in-hospital care as part of a supportive medical team of specialists at the Netcare Kuils River Hospital. He has a particular interest in caring for the critically ill whilst in icu as well as those suffering from HIV, TB and general- and tropical infections infections. He is a keen teacher who very often give lectures at medical school and provide training to nurses, general practitioners and specialists. Contact Form Please feel free to contact the doctor or if you have any questions for the doctor please fill in the form below: Map GPS Co-Ordinates: View Larger Map

Read the original here:
Dr Emille Reid | Physician | Kuils River | Cape Town

Posted in Stell Cell Genetics | Comments Off on Dr Emille Reid | Physician | Kuils River | Cape Town

BRAIN PLASTICITY AND BEHAVIOR – Annual Review of …

Posted: July 17, 2016 at 6:40 am

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

See the article here:
BRAIN PLASTICITY AND BEHAVIOR - Annual Review of ...

Posted in Stell Cell Genetics | Comments Off on BRAIN PLASTICITY AND BEHAVIOR – Annual Review of …

Salivary Gland Cancer Treatment – National Cancer Institute

Posted: July 17, 2016 at 6:40 am

General Information About Salivary Gland Cancer Incidence and Mortality

Salivary gland tumors are a morphologically and clinically diverse group of neoplasms, which may present significant diagnostic and management challenges. These tumors are rare, with an overall incidence in the Western world of approximately 2.5 cases to 3.0 cases per 100,000 per year.[1] Malignant salivary gland neoplasms account for more than 0.5% of all malignancies and approximately 3% to 5% of all head and neck cancers.[1,2] Most patients with malignant salivary gland tumors are in the sixth or seventh decade of life.[3,4]

Although exposure to ionizing radiation has been implicated as a cause of salivary gland cancer, the etiology of most salivary gland cancers cannot be determined.[2,3,5,6] Occupations associated with an increased risk for salivary gland cancers include rubber products manufacturing, asbestos mining, plumbing, and some types of woodworking.[3]

Tumors of the salivary glands comprise those in the major glands (e.g., parotid, submandibular, and sublingual) and the minor glands (e.g., oral mucosa, palate, uvula, floor of mouth, posterior tongue, retromolar area and peritonsillar area, pharynx, larynx, and paranasal sinuses).[2,7] Minor salivary gland lesions are most frequently seen in the oral cavity.[2]

Of salivary gland neoplasms, more than 50% are benign, and approximately 70% to 80% of all salivary gland neoplasms originate in the parotid gland.[1,2,8] The palate is the most common site of minor salivary gland tumors. The frequency of malignant lesions varies by site. Approximately 20% to 25% of parotid tumors, 35% to 40% of submandibular tumors, 50% of palate tumors, and more than 90% of sublingual gland tumors are malignant.[1,9]

Histologically, salivary gland tumors represent the most heterogenous group of tumors of any tissue in the body.[10] Although almost 40 histologic types of epithelial tumors of the salivary glands exist, some are exceedingly rare and may be the subject of only a few case reports.[1,11] The most common benign major and minor salivary gland tumor is the pleomorphic adenoma, which comprises about 50% of all salivary gland tumors and 65% of parotid gland tumors.[1] The most common malignant major and minor salivary gland tumor is the mucoepidermoid carcinoma, which comprises about 10% of all salivary gland neoplasms and approximately 35% of malignant salivary gland neoplasms.[1,12] This neoplasm occurs most often in the parotid gland.[2,12,13] This type and other histologic types of salivary gland neoplasms are reviewed in detail in the Cellular Classification of Salivary Gland Treatment section of this summary.

Most patients with benign tumors of the major or minor salivary glands present with painless swelling of the parotid, submandibular, or the sublingual glands. Neurological signs, such as numbness or weakness caused by nerve involvement, typically indicate a malignancy.[2] Facial nerve weakness that is associated with a parotid or submandibular tumor is an ominous sign. Persistent facial pain is highly suggestive of malignancy; approximately 10% to 15% of malignant parotid neoplasms present with pain.[8,14] (Refer to the PDQ summary on Pain for more information.) The majority of parotid tumors, both benign and malignant, however, present as an asymptomatic mass in the gland.[2,8]

Early-stage low-grade malignant salivary gland tumors are usually curable by adequate surgical resection alone. The prognosis is more favorable when the tumor is in a major salivary gland; the parotid gland is most favorable, then the submandibular gland; the least favorable primary sites are the sublingual and minor salivary glands. Large bulky tumors or high-grade tumors carry a poorer prognosis and may best be treated by surgical resection combined with postoperative radiation therapy.[15] The prognosis also depends on the following:[16,17]

Overall, clinical stage, particularly tumor size, may be the crucial factor to determine the outcome of salivary gland cancer and may be more important than histologic grade.[18]

Perineural invasion can also occur, particularly in high-grade adenoid cystic carcinoma, and should be specifically identified and treated.[19] Radiation therapy may increase the chance of local control and increase the survival of patients when adequate margins cannot be achieved.[20][Level of evidence: 3iiiDii] Unresectable or recurrent tumors may respond to chemotherapy.[21-23] Fast neutron-beam radiation therapy or accelerated hyperfractionated photon-beam schedules have been shown to be effective in the treatment of inoperable, unresectable, and recurrent tumors.[24-26]

Complications of surgical treatment for parotid neoplasms include facial nerve dysfunction and Frey syndrome also known as gustatory flushing and sweating and the auriculotemporal syndrome.[8] Frey syndrome has been successfully treated with injections of botulinum toxin A.[27-29]

Note: Other PDQ summaries containing information related to salivary gland cancer include the following:

Salivary gland neoplasms are remarkable for their histologic diversity. These neoplasms include benign and malignant tumors of epithelial, mesenchymal, and lymphoid origin. Salivary gland tumors pose a particular challenge to the surgical pathologist. Differentiating benign from malignant tumors may be difficult, primarily because of the complexity of the classification and the rarity of several entities, which may exhibit a broad spectrum of morphologic diversity in individual lesions.[1] In some cases, hybrid lesions may be seen.[2] The key guiding principle to establish the malignant nature of a salivary gland tumor is the demonstration of an infiltrative margin.[1]

The following cellular classification scheme draws heavily from a scheme published by the Armed Forces Institute of Pathology (AFIP).[3] Malignant nonepithelial neoplasms are included in the scheme because these neoplasms comprise a significant proportion of salivary gland neoplasms seen in the clinical setting. For completeness, malignant secondary tumors are also included in the scheme.

Where AFIP statistics regarding the incidence, or relative frequency, of particular histopathologies are cited, some bias may exist because of the AFIP methods of case accrual as a pathology reference service. When possible, other sources are cited for incidence data. Notwithstanding the AFIP data, the incidence of a particular histopathology has been found to vary considerably depending upon the study cited. This variability in reporting may be partially caused by the rare incidence of many salivary gland neoplasms.

The clinician should be aware that several benign epithelial salivary gland neoplasms have malignant counterparts, which are shown below:[3]

Histologic grading of salivary gland carcinomas is important to determine the proper treatment approach, though it is not an independent indicator of the clinical course and must be considered in the context of the clinical stage. Clinical stage, particularly tumor size, may be the critical factor to determine the outcome of salivary gland cancer and may be more important than histologic grade.[1] For example, stage I intermediate-grade or high-grade mucoepidermoid carcinomas can be successfully treated, whereas low-grade mucoepidermoid carcinomas that present as stage III disease may have a very aggressive clinical course.[4]

Grading is used primarily for mucoepidermoid carcinomas, adenocarcinomas, not otherwise specified (NOS), adenoid cystic carcinomas, and squamous cell carcinomas.[1,3] Various other salivary gland carcinomas can also be categorized according to histologic grade as follows:[3,5-8]

Low grade

Low grade, intermediate grade, and high grade

Intermediate grade and high grade

High grade

*[Note: Some investigators consider mucoepidermoid carcinoma to be of only two grades: low grade and high grade.[5]]

Mucoepidermoid carcinoma is a malignant epithelial tumor that is composed of various proportions of mucous, epidermoid (e.g., squamous), intermediate, columnar, and clear cells and often demonstrates prominent cystic growth. It is the most common malignant neoplasm observed in the major and minor salivary glands.[1,9] Mucoepidermoid carcinoma represents 29% to 34% of malignant tumors originating in both major and minor salivary glands.[3,5,10,11] In two large retrospective series, 84% to 93% of cases originated in the parotid gland.[12,13] With regard to malignant tumors of the minor salivary glands, mucoepidermoid carcinoma shows a strong predilection for the lower lip.[3,14] In an AFIP review of civilian cases, the mean age of patients was 47 years, with an age range of 8 years to 92 years.[3] Prior exposure to ionizing radiation appears to substantially increase the risk of developing malignant neoplasms of the major salivary glands, particularly mucoepidermoid carcinoma.[3,13]

Most patients are asymptomatic and present with solitary, painless masses. Symptoms include pain, drainage from the ipsilateral ear, dysphagia, trismus, and facial paralysis.[3] (Refer to the PDQ summary on Pain for more information.)

Microscopic grading of mucoepidermoid carcinoma is important to determine the prognosis.[1,12,15] Mucoepidermoid carcinomas are graded as low grade, intermediate grade, and high grade. Grading parameters with point values include the following:

Total point scores are 0 to 4 for low grade, 5 to 6 for intermediate grade, and 7 to 14 for high grade.

In a retrospective review of 243 cases of mucoepidermoid carcinoma of the major salivary glands, a statistically significant correlation was shown between this point-based grading system and outcome for parotid tumors but not for submandibular tumors.[12] Another retrospective study that used this histologic grading system indicated that tumor grade correlated well with prognosis for mucoepidermoid carcinoma of the major salivary glands, excluding submandibular tumors, and minor salivary glands.[13] A modification of this grading system placed more emphasis on features of tumor invasion.[16] Nonetheless, though tumor grade may be useful, stage appears to be a better indicator of prognosis.[3,16]

Cytogenetically, mucoepidermoid carcinoma is characterized by a t(11;19)(q1421;p1213) translocation, which is occasionally the sole cytogenetic alteration.[17-19] This translocation creates a novel fusion product, MECT1-MAML2, which disrupts a Notch signaling pathway.[20] Notch signaling plays a key role in the normal development of many tissues and cell types, through diverse effects on cellular differentiation, survival, and/or proliferation, and may be involved in a wide variety of human neoplasms.[21]

Rarely, mucoepidermoid carcinoma may originate within the jaws. This tumor type is known as central mucoepidermoid carcinoma.[3] The mandibular to maxillary predilection is approximately 3:1.[22]

Adenoid cystic carcinoma, formerly known as cylindroma, is a slow growing but aggressive neoplasm with a remarkable capacity for recurrence.[23] Morphologically, three growth patterns have been described: cribriform, or classic pattern; tubular; and solid, or basaloid pattern. The tumors are categorized according to the predominant pattern.[3,23-25] The cribriform pattern shows epithelial cell nests that form cylindrical patterns. The lumina of these spaces contain periodic acid-Schiff (PAS)-positive mucopolysaccharide secretions. The tubular pattern reveals tubular structures that are lined by stratified cuboidal epithelium. The solid pattern shows solid groups of cuboidal cells. The cribriform pattern is the most common, and the solid pattern is the least common.[26] Solid adenoid cystic carcinoma is a high-grade lesion with reported recurrence rates of as much as 100% compared with 50% to 80% for the tubular and cribriform variants.[25]

In a review of its case files, the AFIP found adenoid cystic carcinoma to be the fifth most common malignant epithelial tumor of the salivary glands after mucoepidermoid carcinomas; adenocarcinomas, NOS; acinic cell carcinomas; and PLGA.[3] Other series, however, report adenoid cystic carcinoma to be the second most common malignant tumor with an incidence or relative frequency of approximately 20%.[1] In the AFIP data, this neoplasm constitutes approximately 7.5% of all epithelial malignancies and 4% of all benign and malignant epithelial salivary gland tumors. The peak incidence for this tumor is reported to be in the fourth through sixth decades of life.[3]

This neoplasm typically develops as a slow growing swelling in the preauricular or submandibular region. Pain and facial paralysis develop frequently during the course of the disease and are likely related to the associated high incidence of nerve invasion.[3] (Refer to the PDQ summary on Pain for more information.) Regardless of histologic grade, adenoid cystic carcinomas, with their unusually slow biologic growth, tend to have a protracted course and ultimately a poor outcome, with a 10-year survival reported to be less than 50% for all grades.[1,27] These carcinomas typically show frequent recurrences and late distant metastases.[1,28] Clinical stage may be a better prognostic indicator than histologic grade.[28,29] In a retrospective review of 92 cases, a tumor size larger than 4 cm was associated with an unfavorable clinical course in all cases.[30]

Acinic cell carcinoma, also known as acinic cell adenocarcinoma, is a malignant epithelial neoplasm in which the neoplastic cells express acinar differentiation. By conventional use, the term acinic cell carcinoma is defined by cytologic differentiation towards serous acinar cells, as opposed to mucous acinar cells, whose characteristic feature is cytoplasmic periodic acid-Schiff (PAS)-positive zymogen-type secretory granules.[3] In AFIP data of salivary gland neoplasms, acinic cell carcinoma is the third most common salivary gland epithelial neoplasm after mucoepidermoid carcinoma and adenocarcinoma, NOS.[3] In these data, acinic cell carcinoma comprised 17% of primary malignant salivary gland tumors or about 6% of all salivary gland neoplasms; more than 80% occur in the parotid gland; women were affected more than men; and the mean age was 44 years. Other studies have reported a relative frequency of acinic cell carcinoma from 0% to 19% of malignant salivary gland neoplasms.[3]

Clinically, patients typically present with a slowly enlarging mass in the parotid region. Pain is a symptom in more than 33% of patients. (Refer to the PDQ summary on Pain for more information.) For acinic cell carcinoma, staging is likely a better predictor of outcome than histologic grading.[3] In a retrospective review of 90 cases, poor prognostic features included pain or fixation; gross invasion; and microscopic features of desmoplasia, atypia, or increased mitotic activity. Neither morphologic pattern nor cell composition was a predictive feature.[31]

PLGA is a malignant epithelial tumor that is essentially limited to occurrence in minor salivary gland sites and is characterized by bland, uniform nuclear features; diverse but characteristic architecture; infiltrative growth; and perineural infiltration.[3] In a series of 426 minor salivary gland tumors, PLGA represented 11% of all tumors and 26% of those that were malignant.[32] In minor gland sites, PLGA is twice as frequent as adenoid cystic carcinoma, and among all benign and malignant salivary gland neoplasms, only pleomorphic adenoma and mucoepidermoid carcinoma are more common.[3] In the AFIP case files, more than 60% of tumors occurred in the mucosa of either the soft or hard palates, approximately 16% occurred in the buccal mucosa, and 12% occurred in the upper lip. The average age of patients is reported to be 59 years, with 70% of patients between the ages of 50 and 79 years.[3] The female to male ratio is about 2:1, a proportion greater than for malignant salivary gland tumors in general.[3,33]

PLGA typically presents as a firm, nontender swelling involving the mucosa of the hard and soft palates (i.e., it is often found at their junction), the cheek, or the upper lip. Discomfort, bleeding, telangiectasia, or ulceration of the overlying mucosa may occasionally occur.[3] This salivary gland neoplasm typically runs a moderately indolent course. In a study of 40 cases with long-term follow-up, overall survival was 80% at 25 years.[34] Because of the unpredictable behavior of the tumor, some investigators consider the qualifying term, low grade, to be misleading and instead prefer the term, polymorphous adenocarcinoma.[1]

Adenocarcinoma, NOS, is a salivary gland carcinoma that shows glandular or ductal differentiation but lacks the prominence of any of the morphologic features that characterize the other, more specific carcinoma types. The diagnosis of adenocarcinoma, NOS, is essentially one of exclusion. In an AFIP review of cases, adenocarcinoma, NOS, was second only to mucoepidermoid carcinoma in frequency among malignant salivary gland neoplasms.[3] Other series have reported an incidence of 4% to 10%.[1] In AFIP files, the mean patient age was 58 years.[3] Approximately 40% and 60% of tumors occurred in the major and minor salivary glands, respectively. Among the major salivary gland tumors, 90% occurred in the parotid gland. Adenocarcinoma, NOS is graded in a similar way to extrasalivary lesions according to the degree of differentiation.[1] Tumor grades include low grade, intermediate grade, and high-grade categories.[3]

Patients with tumors in the major salivary glands typically present with solitary, painless masses.[35] Two retrospective studies indicate that survival is better for patients with tumors of the oral cavity than for those with tumors of the parotid and submandibular glands.[35,36] These studies differ regarding the prognostic significance of tumor grade.

Basal cell adenocarcinoma, also known as basaloid salivary carcinoma, carcinoma ex monomorphic adenoma, malignant basal cell adenoma, malignant basal cell tumor, and basal cell carcinoma, is an epithelial neoplasm that is cytologically similar to basal cell adenoma but is infiltrative and has a small potential for metastasis.[3] In AFIP case files spanning almost 11 years, basal cell carcinoma comprised 1.6% of all salivary gland neoplasms and 2.9% of salivary gland malignancies.[3] Nearly 90% of tumors occurred in the parotid gland.[3,37] The average age of patients is reported to be 60 years.[3]

Similar to most salivary gland neoplasms, swelling is typically the only sign or symptom experienced.[37] A sudden increase in size may occur in a few patients.[38] Basal cell carcinomas are low-grade carcinomas that are infiltrative, locally destructive, and tend to recur. The carcinomas occasionally metastasize. In a retrospective series that included 29 patients, there were recurrences in 7 patients and metastases in 3 patients.[37] In another retrospective review that included 72 patients, 37% of the patients experienced local recurrences.[38] The overall prognosis for patients with this tumor is good.[37,38]

Clear cell carcinoma, also known as clear cell adenocarcinoma, is a very rare malignant epithelial neoplasm composed of a monomorphous population of cells that have optically clear cytoplasm with standard hematoxylin and eosin stains and lack features of other specific neoplasms. Because of inconsistencies in the methods of reporting salivary gland neoplasms, meaningful incidence rates for this tumor are difficult to derive from the literature.[3] Most cases involve the minor salivary glands.[1,3,39-41] In the AFIP case files, the mean age of patients is approximately 58 years.[3]

In most patients, swelling is the only symptom. Clear cell adenocarcinoma is a low-grade neoplasm. As of 1996, the AFIP reported that no patient is known to have died as a result of this tumor.[3]

Cystadenocarcinoma, also known as malignant papillary cystadenoma, mucus-producing adenopapillary, or nonepidermoid, carcinoma; low-grade papillary adenocarcinoma of the palate; and papillary adenocarcinoma, is a rare malignant epithelial tumor characterized histologically by prominent cystic and, frequently, papillary growth but lacking features that characterize cystic variants of several more common salivary gland neoplasms. Cystadenocarcinoma is the malignant counterpart of cystadenoma.[3]

In a review that included 57 patients, the AFIP found that men and women are affected equally; the average patient age was approximately 59 years; and approximately 65% of the tumors occurred in the major salivary glands, and primarily in the parotid.[3] Most patients present with a slowly growing asymptomatic mass. Clinically, this neoplasm is rarely associated with pain or facial paralysis. Cystadenocarcinoma is considered to be a low-grade neoplasm.[3]

Sebaceous adenocarcinoma is a rare malignant epithelial tumor composed of islands and sheets of cells that have morphologically atypical nuclei, an infiltrative growth pattern, and focal sebaceous differentiation. This is a very rare tumor, as few cases have been reported in the literature.[3] Almost all cases occur in the parotid gland.[3] The average age of patients is reported to be 69 years.[42]

An equal number of patients present with a painless, slow-growing, asymptomatic swelling or pain. A few experience facial paralysis.[3] Most sebaceous adenocarcinomas are probably intermediate-grade malignancies. Tumor recurs in about 33% of cases.[43,44]

Sebaceous lymphadenocarcinoma is an extremely rare malignant tumor that represents carcinomatous transformation of sebaceous lymphadenoma. The carcinoma element may be sebaceous adenocarcinoma or some other specific or nonspecific form of salivary gland cancer.[3] Only three cases have been reported in the literature.[43,45] The three cases occurred in or around the parotid gland. All patients were in their seventh decade of life. Two of the three patients were asymptomatic. One had tenderness on palpation. Case reports suggest that this is a low-grade malignancy with a good prognosis.[44,45]

Oncocytic carcinoma, also known as oncocytic adenocarcinoma, is a rare, predominantly oncocytic neoplasm whose malignant nature is reflected both by its abnormal morphologic features and infiltrative growth. Oncocytic carcinoma represents less than 1% of almost 3,100 salivary gland tumors accessioned to the AFIP files during a 10-year period.[3] Most cases occur in the parotid gland. The average age of patients in the AFIP series was 63 years.[3]

Approximately 33% of the patients usually develop parotid masses that cause pain or paralysis.[46] Oncocytic carcinoma is a high-grade carcinoma. Tumors smaller than 2 cm have a better prognosis than larger tumors.[6]

Salivary duct carcinoma, also known as salivary duct adenocarcinoma, is a rare, typically high-grade malignant epithelial neoplasm composed of structures that resemble expanded salivary gland ducts. A low-grade variant exists.[47] Incidence rates vary depending upon the study cited.[3] In the AFIP files, salivary duct carcinomas represent only 0.2% of all epithelial salivary gland neoplasms. More than 85% of cases involve the parotid gland and approximately 75% of patients are men. The peak incidence is reported to be in the seventh and eighth decades of life.[3]

Clinically, parotid swelling is the most common sign. Facial nerve dysfunction or paralysis occur in more than 25% of patients and may be the initial manifestation.[3] The high-grade variant of this neoplasm is one of the most aggressive types of salivary gland carcinoma and is typified by local invasion, lymphatic and hematogenous spread, and poor prognosis.[3,7] In a retrospective review of 104 cases, 33% of patients developed local recurrence, and 46% of patients developed distant metastasis.[48]

Mucinous adenocarcinoma is a rare malignant neoplasm characterized by large amounts of extracellular epithelial mucin that contains cords, nests, and solitary epithelial cells. The incidence is unknown. Limited data indicate that most, if not all, occur in the major salivary glands with the submandibular gland as the predominant site.[3,49] These tumors may be associated with dull pain and tenderness.[3,49] This neoplasm may be considered to be low grade.[3]

The classification of malignant mixed tumors, includes three distinct clinicopathologic entities: carcinoma ex pleomorphic adenoma, carcinosarcoma, and metastasizing mixed tumor. Carcinoma ex pleomorphic adenoma constitutes the vast majority of cases, whereas carcinosarcoma, a true malignant mixed tumor, and metastasizing mixed tumor are extremely rare.[3]

Carcinoma ex pleomorphic adenoma, also known as carcinoma ex mixed tumor, is a carcinoma that shows histologic evidence of arising from or in a benign pleomorphic adenoma.[50] Diagnosis requires the identification of benign tumor in the tissue sample.[51] The incidence or relative frequency of this tumor varies considerably depending on the study cited.[1] A review of material at the AFIP showed carcinoma ex pleomorphic adenoma to comprise 8.8% of all mixed tumors and 4.6% of all malignant salivary gland tumors, ranking it as the sixth most common malignant salivary gland tumor after mucoepidermoid carcinoma; adenocarcinoma, NOS; acinic cell carcinoma; polymorphous low-grade adenocarcinoma; and adenoid cystic carcinoma.[3] The neoplasm occurs primarily in the major salivary glands.[52]

The most common clinical presentation is a painless mass.[3] Approximately 33% of patients may experience facial paralysis.[53] Depending on the series cited, survival times vary significantly: 25% to 65% at 5 years, 24% to 50% at 10 years, 10% to 35% at 15 years, and 0% to 38% at 20 years.[3] In addition to tumor stage, histologic grade and degree of invasion are important parameters to determine prognosis.[54]

Carcinosarcoma, also known as true malignant mixed tumor, is a rare malignant salivary gland neoplasm that contains both carcinoma and sarcoma components. Either or both components are expressed in metastatic foci. Some carcinosarcomas develop de novo while others develop in association with benign mixed tumor. This neoplasm is rare; only eight cases exist in the AFIP case files.[3] At one facility, only 11 cases were recorded over a 32-year period.[8] The majority of tumors occur in the major salivary glands.

Swelling, pain, nerve palsy, and ulceration have been frequent clinical findings. Carcinosarcoma is an aggressive, high-grade malignancy. In the largest series reported, which consisted of 12 cases, the average survival period was 3.6 years.[8]

Metastasizing mixed tumor is a very rare histologically benign salivary gland neoplasm that inexplicably metastasizes. Often a long interval occurs between the diagnosis of the primary tumor and the metastases. The histologic features are within the spectrum of features that typify pleomorphic adenoma.[3] The majority occur in the major salivary glands. The primary neoplasm is typically a single, well-defined mass. Recurrences, which may be multiple, have been reported to occur for as many as 26 years after excision of the primary neoplasm.[55]

Primary squamous cell carcinoma, also known as primary epidermoid carcinoma, is a malignant epithelial neoplasm of the major salivary glands that is composed of squamous (i.e., epidermoid) cells. Diagnosis requires the exclusion of primary disease located in some other head and neck site; indeed, most squamous cell carcinomas of the major salivary glands represent metastatic disease.[3] This diagnosis is not made in minor salivary glands because distinction from the more common mucosal squamous cell carcinoma is not possible.[3] Previous exposure to ionizing radiation appears to increase the risk for developing this neoplasm.[11,56,57] The median time between radiation therapy and diagnosis of the neoplasm is approximately 15.5 years.[11] The reported frequency of this tumor among all major salivary gland tumors has varied from 0.9% to 4.7%.[3,10] In AFIP major salivary gland accessions from 1985 to 1996, primary squamous cell carcinoma comprised 2.7% of all tumors; 5.4% of malignant tumors; and 2.5% and 2.8%, respectively, of all parotid and submandibular tumors.[3] The average age in the AFIP registry was 64 years.[3] This neoplasm occurs in the parotid gland almost nine times more often than in the submandibular gland.[3,57] There is a strong male predilection.[3,11,57-59] This tumor is graded in a similar way to extrasalivary lesions according to the degree of differentiation, namely, low grade, intermediate grade, and high grade.[1]

Most patients present with an asymptomatic mass in the parotid region. Other symptoms may include a painful mass and facial nerve palsy.[57] The prognosis for this neoplasm is poor. In a 30-year retrospective analysis of 50 cases of squamous cell carcinoma of the salivary glands, survival rates at 5 years and 10 years were 24% and 18%, respectively.[57]

Epithelial-myoepithelial carcinoma, also known as adenomyoepithelioma, clear cell adenoma, tubular solid adenoma, monomorphic clear cell tumor, glycogen-rich adenoma, glycogen-rich adenocarcinoma, clear cell carcinoma, and salivary duct carcinoma, is an uncommon, low-grade epithelial neoplasm composed of variable proportions of ductal and large, clear-staining, differentiated myoepithelial cells. The tumor comprises approximately 1% of all epithelial salivary gland neoplasms.[3,60] It is predominantly a tumor of the parotid gland. In the AFIP case files, the mean age of patients is about 60 years and about 60% of the patients are female.[3]

Localized swelling is commonly the only symptom, but occasionally patients experience facial weakness or pain.[61,62] Overall, epithelial-myoepithelial carcinoma is a low-grade carcinoma that recurs frequently, has a tendency to metastasize to periparotid and cervical lymph nodes, and occasionally results in distant metastasis and death.[60,62-64]

Anaplastic small cell carcinoma of the salivary glands was first described in 1972.[65] Subsequent histochemical and electron microscopic studies have supported the neuroendocrine nature of this tumor.[66,67] Microscopically, the tumor cells have oval, hyperchromatic nuclei and scant amount of cytoplasm and are organized in sheets, strands, and nests. The mitotic rate is high. Neuroendocrine carcinomas are more frequently found in the minor salivary glands and have a better survival rate compared with small cell carcinomas of the lung.[68] The undifferentiated counterpart of this neoplasm is the small cell undifferentiated carcinoma.

Undifferentiated carcinomas of salivary glands are a group of uncommon malignant epithelial neoplasms that lack the specific light-microscopic morphologic features of other types of salivary gland carcinomas. These carcinomas are histologically similar to undifferentiated carcinomas that arise in other organs and tissues. Accordingly, metastatic carcinoma is a primary concern in the differential diagnosis of these neoplasms.[3]

Small cell undifferentiated carcinoma, also known as extrapulmonary oat cell carcinoma, is a rare, primary malignant tumor that, with conventional light microscopy, is composed of undifferentiated cells and, with ultrastructural or immunohistochemical studies, does not demonstrate neuroendocrine differentiation. This is the undifferentiated counterpart of anaplastic small cell carcinoma (Refer to the anaplastic small cell carcinoma section in the Cellular Classification of Salivary Gland Cancer section of this summary for more information.)

In an AFIP review of case files, small cell carcinoma represented 1.8% of all major salivary gland malignancies; the mean age of patients was 56 years.[3] In 50% of the cases, patients present with an asymptomatic parotid mass of 3 months' or less duration.[68-70] This is a high-grade neoplasm. In a retrospective review of 12 cases, a tumor size of more than 4 cm was found to be the most important predictor of behavior. In another small retrospective series, estimated survival rates at 2 and 5 years were 70% and 46%, respectively.[68]

Large cell undifferentiated carcinoma is a tumor in which features of acinar, ductal, epidermoid, or myoepithelial differentiation are absent under light microscopy, though occasionally, poorly formed ductlike structures are found. This neoplasm accounts for approximately 1% of all epithelial salivary gland neoplasms.[3,53,71,72] Most of these tumors occur in the parotid gland.[70,72] In AFIP data, the peak incidence is in the seventh to eighth decades of life.[3]

Rapid growth of a parotid swelling is a common clinical presentation.[59] This is a high-grade neoplasm that frequently metastasizes and has a poor prognosis. Neoplasms 4 cm or larger may have a particularly poor outcome.[70,72]

Lymphoepithelial carcinoma, also known as undifferentiated carcinoma with lymphoid stroma and carcinoma ex lymphoepithelial lesion, is an undifferentiated tumor that is associated with a dense lymphoid stroma. An exceptionally high incidence of this tumor is found in the Eskimo and Inuit populations.[3,73] This neoplasm has been associated with Epstein-Barr virus infection.[74,75] Of the occurrences, 80% are in the parotid gland.[3]

In addition to the presence of a parotid or submandibular mass, pain is a frequent symptom, and facial nerve palsy occurs in as many as 20% of patients.[76] (Refer to the PDQ summary on Pain for more information.) Of the patients, more than 40% have metastases to cervical lymph nodes at initial presentation, 20% develop local recurrences or lymph node metastases, and 20% develop distant metastases within 3 years following therapy.[73,76-78]

Myoepithelioma carcinoma is a rare, malignant salivary gland neoplasm in which the tumor cells almost exclusively manifest myoepithelial differentiation. This neoplasm represents the malignant counterpart of benign myoepithelioma.[3] To date, the largest series reported involves 25 cases.[79] Approximately 66% of the tumors occur in the parotid gland.[3,74] The mean age of patients is reported to be 55 years.[79]

The majority of patients present with the primary complaint of a painless mass.[79] This is an intermediate grade to high-grade carcinoma.[3,79] Histologic grade does not appear to correlate well with clinical behavior; tumors with a low-grade histologic appearance may behave aggressively.[79]

Adenosquamous carcinoma is an extremely rare malignant neoplasm that simultaneously arises from surface mucosal epithelium and salivary gland ductal epithelium. The carcinoma shows histopathologic features of both squamous cell carcinoma and adenocarcinoma. Only a handful of reports have discussed this tumor.[3]

In addition to swelling, adenosquamous carcinoma produces visible changes in the mucosa including erythema, ulceration, and induration. Pain frequently accompanies ulceration. Limited data indicate that this is a highly aggressive neoplasm with a poor prognosis.[3]

Lymphomas and benign lymphoepithelial lesion

Lymphomas of the major salivary glands are characteristically of the non-Hodgkin type. In an AFIP review of case files, non-Hodgkin lymphoma accounted for 16.3% of all malignant tumors that occurred in the major salivary glands; disease in the parotid gland accounted for about 80% of all cases.[3]

Patients with benign lymphoepithelial lesion (e.g., Mikulicz disease), which is a manifestation of the autoimmune disease, Sjgren syndrome, are at an increased risk for development of non-Hodgkin lymphoma.[80-84] Benign lymphoepithelial lesion is clinically characterized by diffuse and bilateral enlargement of the salivary and lacrimal glands.[23] Morphologically, a salivary gland lesion is composed of prominent myoepithelial islands surrounded by a lymphocytic infiltrate. Germinal centers are often present in the lymphocytic infiltrate.[23] Immunophenotypically and genotypically, the lymphocytic infiltrate is composed of B-lymphocytes and T-lymphocytes, which are polyclonal. In some instances, the B-cell lymphocytic infiltrate can undergo clonal expansion and evolve into frank non-Hodgkin lymphoma. The vast majority of the non-Hodgkin lymphomas arising in a background of benign lymphoepithelial lesions are marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT).[81-84] MALT lymphomas of the salivary glands, like their counterparts in other anatomic sites, typically display relatively indolent clinical behavior.[3,85]

Primary non-MALT lymphomas of the salivary glands may also occur and appear to have a prognosis similar to those in patients who have histologically identical nodal lymphomas.[86,87] Unlike non-Hodgkin lymphoma, involvement of the major salivary glands by Hodgkin lymphoma is rare. Most tumors occur in the parotid gland.[3] The most common histologic types encountered are the nodular sclerosing and lymphocyte-predominant variants.[88,89]

Mesenchymal neoplasms

Mesenchymal neoplasms account for 1.9% to 5% of all neoplasms that occur within the major salivary glands.[90,91] These cellular classifications pertain to major salivary gland tumors. Because the minor salivary glands are small and embedded within fibrous connective tissue, fat, and skeletal muscle, the origin of a mesenchymal neoplasm from stroma cannot be determined.[3] The types of benign mesenchymal salivary gland neoplasms include hemangiomas, lipomas, and lymphangiomas.

Malignant mesenchymal salivary gland neoplasms include malignant schwannomas, hemangiopericytomas, malignant fibrous histiocytomas, rhabdomyosarcomas, and fibrosarcomas, among others; in the major salivary glands, these neoplasms represent approximately 0.5% of all benign and malignant salivary gland tumors and approximately 1.5% of all malignant tumors.[90,92,93] Of importance is to establish a primary salivary gland origin for these tumors by excluding the possibilities of metastasis and direct extension from other sites. In addition, the diagnosis of salivary gland carcinosarcoma should be excluded.[3] Primary salivary gland sarcomas behave like their soft tissue counterparts in which prognosis is related to sarcoma type, histologic grade, tumor size, and stage.[93,94] (Refer to the PDQ summary on Adult Soft Tissue Sarcoma Treatment for more information.) A comprehensive review of salivary gland mesenchymal neoplasms can be found elsewhere.[95]

Malignant neoplasms whose origins lie outside the salivary glands may involve the major salivary glands by:[3]

Direct invasion of nonsalivary gland tumors into the major salivary glands is principally from squamous cell and basal cell carcinomas of the overlying skin.

Approximately 80% of metastases to the major salivary glands may be from primary tumors elsewhere in the head and neck; the remaining 20% may be from infraclavicular sites.[96,97] The parotid gland is the site of 80% to 90% of the metastases, and the remainder involve the submandibular gland.[97,98] In a decade-long AFIP experience, metastatic tumors constituted approximately 10% of malignant neoplasms in the major salivary glands, exclusive of malignant lymphomas.[3] The majority of metastatic primary tumors to the major salivary glands are squamous cell carcinomas and melanomas from the head and neck that presumably reach the parotid gland via the lymphatic system; infraclavicular primary tumors, such as the lung, kidney, and breast, reach the salivary glands by a hematogenous route.[97-99] The peak incidence for metastatic tumors in the salivary glands is reported to be in the seventh decade of life.[3]

In general, tumors of the major salivary glands are staged according to size, extraparenchymal extension, lymph node involvement (in parotid tumors, whether or not the facial nerve is involved), and presence of metastases.[1-4] Tumors arising in the minor salivary glands are staged according to the anatomic site of origin (e.g., oral cavity and sinuses).

Clinical stage, particularly tumor size, may be the critical factor to determine the outcome of salivary gland cancer and may be more important than histologic grade.[5,6] Diagnostic imaging studies may be used in staging. With excellent spatial resolution and superior soft tissue contrast, magnetic resonance imaging (MRI) offers advantages over computed tomographic scanning in the detection and localization of head and neck tumors. Overall, MRI is the preferred modality for evaluation of suspected neoplasms of the salivary glands.[7]

The American Joint Committee on Cancer (AJCC) has designated staging by TNM classification to define salivary gland cancer.[5]

The minimum therapy for low-grade malignancies of the superficial portion of the parotid gland is a superficial parotidectomy. For all other lesions, a total parotidectomy is often indicated. The facial nerve or its branches should be resected if involved by tumor; repair can be done simultaneously. Growing evidence suggests that postoperative radiation therapy augments surgical resection, particularly for the high-grade neoplasms, when margins are close or involved, when tumors are large, or when histologic evidence of lymph node metastases is present.[1-8] Clinical trials, which have been completed in the United States and England, indicate that fast neutron-beam radiation therapy improves disease-free survival and overall survival in patients with unresectable tumors or for patients with recurrent neoplasms.[9-12] Facilities with fast neutron-beam radiation therapy are of limited availability in the United States. Accelerated hyperfractionated photon-beam radiation therapy has also resulted in high rates of long-term local regional controls.[13,14] The use of chemotherapy for malignant salivary gland tumors remains under evaluation.[15-19]

Low-grade stage I tumors of the salivary gland are curable with surgery alone.[1-3] Radiation therapy may be used for tumors for which resection involves a significant cosmetic or functional deficit or as an adjuvant to surgery when positive margins are present.[4] Neutron-beam therapy is effective in the treatment of poor-prognosis patients with malignant salivary gland tumors.[5-7]

High-grade stage I salivary gland tumors that are confined to the gland in which they arise may be cured by surgery alone, though adjuvant radiation therapy may be used, especially with the presence of positive margins.

Standard treatment options:

Standard treatment options:

Treatment options under clinical evaluation:

Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I salivary gland cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI website.

Low-grade stage II tumors of the salivary gland may be cured with surgery alone.[1-3] Radiation therapy as primary treatment may be used for tumors for which resection involves a significant cosmetic or functional deficit or as an adjuvant to surgery when positive margins are present.[4]

High-grade stage II salivary gland tumors that are confined to the gland in which they arise may be cured by surgery alone, though adjuvant radiation therapy may be used, especially if positive margins are present. Primary radiation therapy may be given for tumors that are inoperable, unresectable, or recurrent. Fast neutron-beam radiation therapy has been shown to improve disease-free survival and overall survival in this clinical situation.[5-7]

Standard treatment options:

Standard treatment options:

Read more:
Salivary Gland Cancer Treatment - National Cancer Institute

Posted in Stell Cell Genetics | Comments Off on Salivary Gland Cancer Treatment – National Cancer Institute

Texans for Stem Cell Research

Posted: July 17, 2016 at 6:40 am

This is the amount we raised due all of you!

Thank you to all of our sponsors, musicians golfers, cooks, volunteers, and everyone else that helped make our "Swingin' n' Singin' for Cures" an incredible event.

We have a goal of raising another $78,000 by October 31st, 2014.

So please help spread the word and tell your friends to please hit the Donate button here on our home page and let's get to this goal!

These funds will go directly to the groundbreaking research of Dr. Will Decker and Ratan Bhardwaj, two members of our Medical Advisory Committee. Please read their executive summary link on this page to learn how their t-cell immunology to treat tumors may make chemo and radiation treatments a thing of the past!

Also TSCR will be represented at this year's World Stem Cell Summit in San Antonio, December 3-5th. TSCR's Chairman, David L. Bales has been asked to speak on grass roots stem cell advocacy.

We are honored to be able to speak on behalf of all Texans that support stem cell research and regenerative medicine.

The rest is here:
Texans for Stem Cell Research

Posted in Stem Cell Research | Comments Off on Texans for Stem Cell Research

Does Texas Have Research Now? | Texans for Stem Cell Research

Posted: July 17, 2016 at 6:40 am

The following locations are currently performing research or trials in Texas.

Texas A&M University Mesenchymal Stem Cell Distribution Prepares and distributes well-characterized marrow stromal cells (MSCs) derived from adult human and rodent bone marrow using standardized protocols.

Texas Heart Institute Stem Cell Center Dedicated to the study of adult stem cells and their role in treating cardiovascular disease, including clinical trials (in human patients), as well as many preclinical studies (in the laboratory) using stem cells.

ClinicalTrial.gov A registry of federally and privately supported clinical trials conducted in the United States and around the world. ClinicalTrials.gov gives you information about a trial's purpose, who may participate, locations, and phone numbers for more details. This information should be used in conjunction with advice from health care professionals.

ClinicalTrials at MDAndersonCancer Center The Houston, Texas based Cancer Center is involved in many exiciting trials.

Institute for RegenerativeMedicine The goal of the IRM is to bridge the gap between basic science and clinical translation in the field of regenerative medicine and experimental cell therapeutics. Through active collaboration between basic scientists and clinicians in Central Texas, the IRM hopes to tackle the ambitious task of discovering novel therapies for intractable diseases to relieve human suffering.

Read more:
Does Texas Have Research Now? | Texans for Stem Cell Research

Posted in Stem Cell Research | Comments Off on Does Texas Have Research Now? | Texans for Stem Cell Research

What is a cell? – Genetics Home Reference

Posted: July 17, 2016 at 6:40 am

Cells are the basic building blocks of all living things. The human body is composed of trillions of cells. They provide structure for the body, take in nutrients from food, convert those nutrients into energy, and carry out specialized functions. Cells also contain the bodys hereditary material and can make copies of themselves.

Cells have many parts, each with a different function. Some of these parts, called organelles, are specialized structures that perform certain tasks within the cell. Human cells contain the following major parts, listed in alphabetical order:

Within cells, the cytoplasm is made up of a jelly-like fluid (called the cytosol) and other structures that surround the nucleus.

The cytoskeleton is a network of long fibers that make up the cells structural framework. The cytoskeleton has several critical functions, including determining cell shape, participating in cell division, and allowing cells to move. It also provides a track-like system that directs the movement of organelles and other substances within cells.

This organelle helps process molecules created by the cell. The endoplasmic reticulum also transports these molecules to their specific destinations either inside or outside the cell.

The Golgi apparatus packages molecules processed by the endoplasmic reticulum to be transported out of the cell.

These organelles are the recycling center of the cell. They digest foreign bacteria that invade the cell, rid the cell of toxic substances, and recycle worn-out cell components.

Mitochondria are complex organelles that convert energy from food into a form that the cell can use. They have their own genetic material, separate from the DNA in the nucleus, and can make copies of themselves.

The nucleus serves as the cells command center, sending directions to the cell to grow, mature, divide, or die. It also houses DNA (deoxyribonucleic acid), the cells hereditary material. The nucleus is surrounded by a membrane called the nuclear envelope, which protects the DNA and separates the nucleus from the rest of the cell.

The plasma membrane is the outer lining of the cell. It separates the cell from its environment and allows materials to enter and leave the cell.

Ribosomes are organelles that process the cells genetic instructions to create proteins. These organelles can float freely in the cytoplasm or be connected to the endoplasmic reticulum (see above).

Read the original:
What is a cell? - Genetics Home Reference

Posted in Stell Cell Genetics | Comments Off on What is a cell? – Genetics Home Reference

Page 1,725«..1020..1,7241,7251,7261,727..1,7301,740..»