Page 1,734«..1020..1,7331,7341,7351,736..1,7401,750..»

Prevalence and risk factors for mast cell tumours in dogs …

Posted: October 24, 2015 at 11:41 am

StephanieJWShoop1, StephanieMarlow2, DavidBChurch3, KateEnglish4, PaulDMcGreevy5, AnnelieseJStell3, PeterCThomson5, DanGONeill2 and DavidCBrodbelt2

Canine Genetics and Epidemiology20152:1

DOI: 10.1186/2052-6687-2-1

Shoop et al.; licensee BioMed Central.2015

Received: 25June2014

Accepted: 18November2014

Published: 26January2015

Mast cell tumour (MCT) appears to be a frequent tumour type in dogs, though there is little published in relation to its frequency in dogs in the UK. The current study aimed to investigate prevalence and risk factors for MCTs in dogs attending English primary-care veterinary practices.

Electronic patient records from practices participating in the VetCompass animal surveillance project between July 2007 and June 2013 were searched for MCT diagnosis. Various search terms and standard diagnostic terms (VeNom codes) identified records containing MCT diagnoses, which were evaluated against clinical criteria for inclusion to the study. MCT prevalence for the entire dataset and specific breed types were calculated. Descriptive statistics characterised MCT cases and multivariable logistic regression methods evaluated risk factors for association with MCT (P<0.05).

Within a population of 168,636 dogs, 453 had MCT, yielding a prevalence of 0.27% (95% confidence interval (CI) 0.24% - 0.29%). The highest breed type specific prevalences were for the Boxer at 1.95% (95% CI 1.40% - 2.51%), Golden Retriever at 1.39% (0.98% - 1.81%) and Weimaraner at 0.85% (95% CI 0.17% to 1.53%). Age, insurance status, neuter status, weight and breed type were associated with MCT diagnosis. Of dogs of specific breed type, the Boxer, Pug and Staffordshire Bull Terrier showed greater odds of MCT diagnosis compared with crossbred dogs. Conversely, the German Shepherd Dog, Border Collie, West Highland White Terrier, Springer Spaniel and Cocker Spaniel had reduced odds of MCT diagnosis compared with crossbred dogs. No association was found between MCT diagnosis and sex.

This study highlights a clinically significant prevalence of MCT and identifies specific breed types with predisposition to MCT, potentially aiding veterinarian awareness and facilitating diagnosis.

Confidence interval

Electronic patient record

Mast cell tumour

Veterinary nomenclature.

Mast cell tumour (MCT) is the most common skin tumour type in dogs, but little is known about its frequency in the general dog population nor its frequency in particular dog breeds in the UK. This study has investigated the frequency of the disease, and possible risk factors associated with the development of MCT.

This has been conducted by analysing the large number of electronic patient health records contained within the VetCompass animal surveillance project collected between July 2007 and June 2013.

Data were available on a population of 168,636 dogs and within this 453 (0.27%) had MCT. The breeds with the highest breed specific prevalences were Boxer, Golden Retriever and Weimaraner. Conversely, some breeds appeared to be protected.

Age, insurance status, neuter status, weight and breed type were associated with MCT diagnosis. No association was found between MCT diagnosis and gender.

Such information helps to increase awareness of this condition, particularly in certain breeds, to owners and veterinarians.

Mast cell tumours (MCTs) are a frequent tumour type in dogs [1], accounting for 7-21% of cutaneous tumours diagnosed [14]. Dobson and others (2002) reported the incidence of MCT in English dogs as 129 in 100,000 dogs per year [5]; however, this study was limited to insured animals and thus may generalise poorly to the wider population of dogs in England. MCTs occur primarily in the dermis and subcutaneous tissues and can be confirmed in 92-96% of cases through fine needle aspirate (FNA) cytology [6]. Histopathology allows description of the degree of MCT malignancy and clinical grading [6] using two grading systems. Using the Patnaik system, MCTs are categorised into three grades (I, II & III), the third being more clinically important because tumours of this grade are often more aggressive and may metastasise [7]. The more recently proposed Kiupel two tier system categorises MCTs into high or low-grade in order to increase concordance among veterinary pathologists [8].

There are likely to be many factors contributing to the development of MCT which may be genetically influenced [6]. Up to 40% of dogs with subcutaneous and cutaneous MCTs have been found to have mutations in a proto-oncogene, c-kit[6]. Other potential factors include neuter status, sex, age, weight, insurance status and specific breed types. Females [9], and particularly neutered females [10] have been associated with increased risk of MCT in some studies, although other studies failed to identify an association between sex and MCT [11, 12]. While the mean age at presentation of cutaneous MCTs has been reported at between 7.5 and 9years old [9], one study found poorly differentiated (grade III) tumours more common in younger dogs, although the study population consisted of only one breed, the Shar-Pei [13]. Likewise, while one study found no difference in pre-disposition to MCTs between dogs of specific breed types and mixed breed (crossbred) dogs overall [14], certain breed types have previously been associated with this condition. Most commonly, Boxers and Golden Retrievers [10, 15, 16] and other larger breed types have been associated with pre-disposition to MCT whereas smaller breed types are reported to be at lower risk of the condition [10]. Less commonly, breed types including Pugs [10, 17], Weimaraners [15, 16] and the mastiff and terrier phylogenetic clusters [10] have also been associated with having MCTs.

This study aimed to estimate the prevalence and explore risk-factors for the development of MCTs in dogs, using a large sample of animals attending primary-care veterinary practices in England. By identifying factors associated with a higher risk of developing MCTs, it was hoped to improve the index of suspicion for this disease and hence early recognition of this important condition.

The VetCompass system documented 168,636 dogs from a total of 94 veterinary practices within England between 28

June 2007 and 30

June 2013. Of these, 453 dogs met the clinical criteria for inclusion to the study and were classified as dogs presenting with MCT at a participating veterinary practice during the study period. Thus, the MCT prevalence was estimated at 0.27% (95% CI 0.24% to 0.29%) over the study period. Individual breed type MCT prevalences that exceeded this overall estimate included that of the Boxer at 1.95% (95% CI 1.40% to 2.41%), the Golden Retriever at 1.39% (95% CI 0.98% to 1.81%), the Weimaraner at 0.85% (95% CI 0.17% to 1.53%), the Labrador Retriever at 0.72% (95% CI 0.58% to 0.85%), the Staffordshire Bull Terrier at 0.51% (95% CI 0.39% to 0.62%) and the Pug at 0.50% (95% CI 0.13% to 0.88%). Individual breed-type MCT prevalences that fell below the overall estimate included the Springer Spaniel at 0.20% (95% CI 0.06% to 0.35%), the Jack Russell Terrier at 0.16% (95% CI 0.09% to 0.23%), the West Highland White Terrier at 0.07% (95% CI 0.00% to 0.15%), the Border Collie at 0.07% (95% CI 0.00% to 0.14%), the Cocker Spaniel at 0.06% (95% CI 0.00% to 0.12%), the Yorkshire Terrier at 0.04% (95% CI 0.00% to 0.09%) and the German Shepherd Dog at 0.02% (95% CI 0.00% to 0.05) (Table

A). Overall MCT prevalence for dogs of specific breed types was 0.29% (95% CI 0.26 0.32%) and overall crossbred prevalence was 0.18% (95% CI 0.14 0.22) (Table

B).

Breed-type specific prevalence of mast cell tumour (MCT) diagnosis with 95% confidence intervals (CI)

A) Specific breed types

Breed-type

Cases (n)

Total (n)

MCT prevalence (%)

95% CI (%)

Boxer

47

2406

1.95

1.40 - 2.51

Golden Retriever

43

3086

1.39

0.98 - 1.81

Weimaraner

6

705

0.85

0.17 - 1.53

Labrador Retriever

106

14781

0.72

0.58 - 0.85

Staffordshire Bull Terrier

72

14219

0.51

0.39 - 0.62

Pug

7

1391

0.50

0.13 - 0.88

Springer Spaniel

8

3906

0.20

0.06 - 0.35

Jack Russell Terrier

18

11333

0.16

0.09 - 0.23

West Highland White Terrier

3

4254

0.07

0.00 - 0.15

Border Collie

3

4501

0.07

0.00 - 0.14

Cocker Spaniel

4

6353

0.06

0.00 - 0.12

Yorkshire Terrier

2

5512

0.04

0.00 - 0.09

German Shepherd Dog

1

5993

0.02

0.00 - 0.05

See more here:
Prevalence and risk factors for mast cell tumours in dogs ...

Posted in Stell Cell Genetics | Comments Off on Prevalence and risk factors for mast cell tumours in dogs …

Gene therapy | Cancer Research UK

Posted: October 23, 2015 at 5:41 pm

Researchers are looking at different ways of using gene therapy, including

Some types of gene therapy aim to boost the body's natural ability to attack cancer cells. Our immune system has cells that recognise and kill harmful things that can cause disease, such as cancer cells.

There are many different types of immune cell. Some of them produce proteins that encourage other immune cells to destroy cancer cells. Some types of therapy add genes to a patient's immune cells to make them better at finding or destroying particular types of cancer. There are a few trials using this type of gene therapy in the UK.

Some gene therapies put genes into cancer cells to make the cells more sensitive to particular treatments such as chemotherapy or radiotherapy. This type of gene therapy aims to make the other cancer treatments work better.

Some types of gene therapy deliver genes into the cancer cells that allow the cells to change drugs from an inactive form to an active form. The inactive form of the drug is called a pro drug.

After giving the carrier containing the gene, the doctor gives the patient the pro drug. The pro drug may be a tablet or capsule that you swallow, or you may have it into the bloodstream.

The pro drug circulates in the body and doesn't harm normal cells. But when it reaches the cancer cells, the gene activates it and the drug kills the cancer cells.

Some gene therapies block processes that cancer cells use to survive. For example, most cells in the body are programmed to die if their DNA is damaged beyond repair. This is called programmed cell death or apoptosis. But cancer cells block this process so they don't die even when they are supposed to. Some gene therapy strategies aim to reverse this blockage. Doctors hope that these new types of treatment will make the cancer cells die.

Some viruses infect and kill cells. Researchers are working on ways to change these viruses so that they only target and kill cancer cells, leaving healthy cells alone. This sort of treatment uses the viruses to kill cancer cells directly rather than to deliver genes. So it is not cancer gene therapy in the true sense of the word. But doctors sometimes refer to it as gene therapy.

One example of this type of research uses the cold sore virus (herpes simplex virus). The changed virus is called Oncovex. It has been tested in early clinical trials for advanced melanoma, pancreatic cancer and head and neck cancers.

See the rest here:
Gene therapy | Cancer Research UK

Posted in Gene therapy | Comments Off on Gene therapy | Cancer Research UK

Induced pluripotent stem cell – Wikipedia, the free …

Posted: October 23, 2015 at 5:43 am

Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. The iPSC technology was pioneered by Shinya Yamanakas lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes encoding transcription factors could convert adult cells into pluripotent stem cells.[1] He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent." [2]

Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic, and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

The most well-known type of pluripotent stem cell is the embryonic stem cell. However, since the generation of embryonic stem cells involves destruction (or at least manipulation) [3] of the pre-implantation stage embryo, there has been much controversy surrounding their use. Further, because embryonic stem cells can only be derived from embryos, it has so far not been feasible to create patient-matched embryonic stem cell lines.

Since iPSCs can be derived directly from adult tissues, they not only bypass the need for embryos, but can be made in a patient-matched manner, which means that each individual could have their own pluripotent stem cell line. These unlimited supplies of autologous cells could be used to generate transplants without the risk of immune rejection. While the iPSC technology has not yet advanced to a stage where therapeutic transplants have been deemed safe, iPSCs are readily being used in personalized drug discovery efforts and understanding the patient-specific basis of disease.[citation needed]

Depending on the methods used, reprogramming of adult cells to obtain iPSCs may pose significant risks that could limit their use in humans. For example, if viruses are used to genomically alter the cells, the expression of oncogenes (cancer-causing genes) may potentially be triggered. In February 2008, scientists announced the discovery of a technique that could remove oncogenes after the induction of pluripotency, thereby increasing the potential use of iPS cells in human diseases.[4] In April 2009, it was demonstrated that generation of iPS cells is possible without any genetic alteration of the adult cell: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency.[5] The acronym given for those iPSCs is piPSCs (protein-induced pluripotent stem cells).

iPSCs are typically derived by introducing a specific set of pluripotency-associated genes, or reprogramming factors, into a given cell type. The original set of reprogramming factors (also dubbed Yamanaka factors) are the genes Oct4 (Pou5f1), Sox2, cMyc, and Klf4. While this combination is most conventional in producing iPSCs, each of the factors can be functionally replaced by related transcription factors, miRNAs, small molecules, or even non-related genes such as lineage specifiers.

iPSC derivation is typically a slow and inefficient process, taking 12 weeks for mouse cells and 34 weeks for human cells, with efficiencies around 0.01%0.1%. However, considerable advances have been made in improving the efficiency and the time it takes to obtain iPSCs. Upon introduction of reprogramming factors, cells begin to form colonies that resemble pluripotent stem cells, which can be isolated based on their morphology, conditions that select for their growth, or through expression of surface markers or reporter genes.

Induced pluripotent stem cells were first generated by Shinya Yamanaka's team at Kyoto University, Japan, in 2006.[1] Their hypothesis was that genes important to embryonic stem cell function might be able to induce an embryonic state in adult cells. They began by choosing twenty-four genes that were previously identified as important in embryonic stem cells, and used retroviruses to deliver these genes to fibroblasts from mice. The mouse fibroblasts were engineered so that any cells that reactivated the ESC-specific gene, Fbx15, could be isolated using antibiotic selection.

Upon delivery of all twenty-four factors, colonies emerged that had reactivated the Fbx15 reporter, resembled ESCs, and could propagate indefinitely. They then narrowed their candidates by removing one factor at a time from the pool of twenty-four. By this process, they identified four factors, Oct4, Sox2, cMyc, and Klf4, which as a group were both necessary and sufficient to obtain ESC-like colonies under selection for reactivation of Fbx15.

Similar to ESCs, these first-generation iPSCs showed unlimited self-renewal and demonstrated pluripotency by contributing to lineages from all three germ layers in the context of embryoid bodies, teratomas, fetal chimeras. However, the molecular makeup of these cells, including gene expression and epigenetic marks, was somewhere between that of a fibroblast and an ESC, and the cells also failed to produce viable chimeras when injected into developing embryos.

In June 2007, the same group published a breakthrough study along with two other independent research groups from Harvard, MIT, and the University of California, Los Angeles, showing successful reprogramming of mouse fibroblasts into iPS cells. Unlike the first generation of iPS cells, these cells could produce viable chimeric mice and could contribute to the germline, the 'gold standard' for pluripotent stem cells. These cells were derived from mouse fibroblasts by retroviral-mediated expression of the same four transcription factors (Oct4, Sox2, cMyc, Klf4), but the researchers used a different marker to select for pluripotent cells. Instead of Fbx15, they used Nanog, a gene that is functionally important in ESCs. By using this different strategy, the researchers were able to create iPS cells that were more similar to ESCs than the first generation of iPS cells, and independently proved that it was possible to create iPS cells that are functionally identical to ESCs.[6][7][8][9]

Unfortunately, two of the four genes used (namely, c-Myc and KLF4) are oncogenic, and 20% of the chimeric mice developed cancer. In a later study, Yamanaka reported that one can create iPSCs even without c-Myc. The process takes longer and is not as efficient, but the resulting chimeras didn't develop cancer.[10]

Induced pluripotent cells have been made from adult stomach, liver, skin cells, blood cells, prostate cells and urinary tract cells.[11]

In November 2007, a milestone was achieved[12][13] by creating iPSCs from adult human cells; two independent research teams' studies were released one in Science by James Thomson at University of WisconsinMadison[14] and another in Cell by Shinya Yamanaka and colleagues at Kyoto University, Japan.[15] With the same principle used earlier in mouse models, Yamanaka had successfully transformed human fibroblasts into pluripotent stem cells using the same four pivotal genes: Oct3/4, Sox2, Klf4, and c-Myc with a retroviral system. Thomson and colleagues used OCT4, SOX2, NANOG, and a different gene LIN28 using a lentiviral system.

On 8 November 2012, researchers from Austria, Hong Kong and China presented a protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine on Nature Protocols.[16] This method of acquiring donor cells is comparatively less invasive and simple. The team reported the induction procedure to take less time, around 2 weeks for the urinary cell culture and 3 to 4 weeks for the reprogramming; and higher yield, up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) were found to show good differentiation potential, and thus represent an alternative choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.[16]

Although the methods pioneered by Yamanaka and others have demonstrated that adult cells can be reprogrammed to iPS cells, there are still challenges associated with this technology:

The table at right summarizes the key strategies and techniques used to develop iPS cells over the past half-decade. Rows of similar colors represents studies that used similar strategies for reprogramming.

One of the main strategies for avoiding problems (1) and (2) has been to use small compounds that can mimic the effects of transcription factors. These molecule compounds can compensate for a reprogramming factor that does not effectively target the genome or fails at reprogramming for another reason; thus they raise reprogramming efficiency. They also avoid the problem of genomic integration, which in some cases contributes to tumor genesis. Key studies using such strategy were conducted in 2008. Melton et al. studied the effects of histone deacetylase (HDAC) inhibitor valproic acid. They found that it increased reprogramming efficiency 100-fold (compared to Yamanakas traditional transcription factor method).[25] The researchers proposed that this compound was mimicking the signaling that is usually caused by the transcription factor c-Myc. A similar type of compensation mechanism was proposed to mimic the effects of Sox2. In 2008, Ding et al. used the inhibition of histone methyl transferase (HMT) with BIX-01294 in combination with the activation of calcium channels in the plasma membrane in order to increase reprogramming efficiency.[26] Deng et al. of Beijing University reported on July 2013 that induced pluripotent stem cells can be created without any genetic modification. They used a cocktail of seven small-molecule compounds including DZNep to induce the mouse somatic cells into stem cells which they called CiPS cells with the efficiency at 0.2% comparable to those using standard iPSC production techniques. The CiPS cells were introduced into developing mouse embryos and were found to contribute to all major cells types, proving its pluripotency.[27][28]

Ding et al. demonstrated an alternative to transcription factor reprogramming through the use of drug-like chemicals. By studying the MET (mesenchymal-epithelial transition) process in which fibroblasts are pushed to a stem-cell like state, Dings group identified two chemicals ALK5 inhibitor SB431412 and MEK (mitogen-activated protein kinase) inhibitor PD0325901 which was found to increase the efficiency of the classical genetic method by 100 fold. Adding a third compound known to be involved in the cell survival pathway, Thiazovivin further increases the efficiency by 200 fold. Using the combination of these three compounds also decreased the reprogramming process of the human fibroblasts from four weeks to two weeks. [29][30]

Another key strategy for avoiding problems such as tumor genesis and low throughput has been to use alternate forms of vectors: adenovirus, plasmids, and naked DNA and/or protein compounds.

In 2008, Hochedlinger et al. used an adenovirus to transport the requisite four transcription factors into the DNA of skin and liver cells of mice, resulting in cells identical to ESCs. The adenovirus is unique from other vectors like viruses and retroviruses because it does not incorporate any of its own genes into the targeted host and avoids the potential for insertional mutagenesis.[31] In 2009, Freed et al. demonstrated successful reprogramming of human fibroblasts to iPS cells.[32] Another advantage of using adenoviruses is that they only need to present for a brief amount of time in order for effective reprogramming to take place.

Also in 2008, Yamanaka et al. found that they could transfer the four necessary genes with a plasmid.[33] The Yamanaka group successfully reprogrammed mouse cells by transfection with two plasmid constructs carrying the reprogramming factors; the first plasmid expressed c-Myc, while the second expressed the other three factors (Oct4, Klf4, and Sox2). Although the plasmid methods avoid viruses, they still require cancer-promoting genes to accomplish reprogramming. The other main issue with these methods is that they tend to be much less efficient compared to retroviral methods. Furthermore, transfected plasmids have been shown to integrate into the host genome and therefore they still pose the risk of insertional mutagenesis. Because non-retroviral approaches have demonstrated such low efficiency levels, researchers have attempted to effectively rescue the technique with what is known as the piggyBac transposon system. The lifecycle of this system is shown below. Several studies have demonstrated that this system can effectively deliver the key reprogramming factors without leaving any footprint mutations in the host cell genome. As demonstrated in the figure, the piggyBac transposon system involves the re-excision of exogenous genes, which eliminates issues like insertional mutagenesis

In January 2014, two articles were published claiming that a type of pluripotent stem cell can be generated by subjecting the cells to certain types of stress (bacterial toxin, a low pH of 5.7, or physical squeezing); the resulting cells were called STAP cells, for stimulus-triggered acquisition of pluripotency.[34]

In light of difficulties that other labs had replicating the results of the surprising study, in March 2014, one of the co-authors has called for the articles to be retracted.[35] On 4 June 2014, the lead author, Obokata agreed to retract both the papers [36] after she was found to have committed research misconduct as concluded in an investigation by RIKEN on 1 April 2014.[37]

Studies by Blelloch et al. in 2009 demonstrated that expression of ES cell-specific microRNA molecules (such as miR-291, miR-294 and miR-295) enhances the efficiency of induced pluripotency by acting downstream of c-Myc .[38] More recently (in April 2011), Morrisey et al. demonstrated another method using microRNA that improved the efficiency of reprogramming to a rate similar to that demonstrated by Ding. MicroRNAs are short RNA molecules that bind to complementary sequences on messenger RNA and block expression of a gene. Morriseys team worked on microRNAs in lung development, and hypothesized that their microRNAs perhaps blocked expression of repressors of Yamanakas four transcription factors. Possible mechanisms by which microRNAs can induce reprogramming even in the absence of added exogenous transcription factors, and how variations in microRNA expression of iPS cells can predict their differentiation potential discussed by Xichen Bao et al.[39]

[citation needed]

The generation of iPS cells is crucially dependent on the genes used for the induction.

Oct-3/4 and certain members of the Sox gene family (Sox1, Sox2, Sox3, and Sox15) have been identified as crucial transcriptional regulators involved in the induction process whose absence makes induction impossible. Additional genes, however, including certain members of the Klf family (Klf1, Klf2, Klf4, and Klf5), the Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28, have been identified to increase the induction efficiency.

Induced pluripotent stem cells are similar to natural pluripotent stem cells, such as embryonic stem (ES) cells, in many aspects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability, but the full extent of their relation to natural pluripotent stem cells is still being assessed.[42]

Gene expression and genome-wide H3K4me3 and H3K27me3 were found to be extremely similar between ES and iPS cells.[43][citation needed] The generated iPSCs were remarkably similar to naturally isolated pluripotent stem cells (such as mouse and human embryonic stem cells, mESCs and hESCs, respectively) in the following respects, thus confirming the identity, authenticity, and pluripotency of iPSCs to naturally isolated pluripotent stem cells:

Recent achievements and future tasks for safe iPSC-based cell therapy are collected in the review of Okano et al.[55]

The task of producing iPS cells continues to be challenging due to the six problems mentioned above. A key tradeoff to overcome is that between efficiency and genomic integration. Most methods that do not rely on the integration of transgenes are inefficient, while those that do rely on the integration of transgenes face the problems of incomplete reprogramming and tumor genesis, although a vast number of techniques and methods have been attempted. Another large set of strategies is to perform a proteomic characterization of iPS cells. The Wu group at Stanford University has made significant progress with this strategy.[56] Further studies and new strategies should generate optimal solutions to the five main challenges. One approach might attempt to combine the positive attributes of these strategies into an ultimately effective technique for reprogramming cells to iPS cells.

Another approach is the use of iPS cells derived from patients to identify therapeutic drugs able to rescue a phenotype. For instance, iPS cell lines derived from patients affected by ectodermal dysplasia syndrome (EEC), in which the p63 gene is mutated, display abnormal epithelial commitment that could be partially rescued by a small compound[57]

An attractive feature of human iPS cells is the ability to derive them from adult patients to study the cellular basis of human disease. Since iPS cells are self-renewing and pluripotent, they represent a theoretically unlimited source of patient-derived cells which can be turned into any type of cell in the body. This is particularly important because many other types of human cells derived from patients tend to stop growing after a few passages in laboratory culture. iPS cells have been generated for a wide variety of human genetic diseases, including common disorders such as Down syndrome and polycystic kidney disease.[58][59] In many instances, the patient-derived iPS cells exhibit cellular defects not observed in iPS cells from healthy patients, providing insight into the pathophysiology of the disease.[60] An international collaborated project, StemBANCC, was formed in 2012 to build a collection of iPS cell lines for drug screening for a variety of disease. Managed by the University of Oxford, the effort pooled funds and resources from 10 pharmaceutical companies and 23 universities. The goal is to generate a library of 1,500 iPS cell lines which will be used in early drug testing by providing a simulated human disease environment.[61]

A proof-of-concept of using induced pluripotent stem cells (iPSCs) to generate human organ for transplantation was reported by researchers from Japan. Human liver buds (iPSC-LBs) were grown from a mixture of three different kinds of stem cells: hepatocytes (for liver function) coaxed from iPSCs; endothelial stem cells (to form lining of blood vessels) from umbilical cord blood; and mesenchymal stem cells (to form connective tissue). This new approach allows different cell types to self-organize into a complex organ, mimicking the process in fetal development. After growing in vitro for a few days, the liver buds were transplanted into mice where the liver quickly connected with the host blood vessels and continued to grow. Most importantly, it performed regular liver functions including metabolizing drugs and producing liver-specific proteins. Further studies will monitor the longevity of the transplanted organ in the host body (ability to integrate or avoid rejection) and whether it will transform into tumors.[62][63] Using this method, cells from one mouse could be used to test 1,000 drug compounds to treat liver disease, and reduce animal use by up to 50,000.[64]

Embryonic cord-blood cells were induced into pluripotent stem cells using plasmid DNA. Using cell surface endothelial/pericytic markers CD31 and CD146, researchers identified 'vascular progenitor', the high-quality, multipotent vascular stem cells. After the iPS cells were injected directly into the vitreous of the damaged retina of mice, the stem cells engrafted into the retina, grew and repaired the vascular vessels.[65][66]

In a study conducted in China in 2013, Superparamagnetic iron oxide (SPIO) particles were used to label iPSCs-derived NSCs in vitro. Labeled NSCs were implanted into TBI rats and SCI monkeys 1 week after injury, and then imaged using gradient reflection echo (GRE) sequence by 3.0T magnetic resonance imaging (MRI) scanner. MRI analysis was performed at 1, 7, 14, 21, and 30 days, respectively, following cell transplantation. Pronounced hypointense signals were initially detected at the cell injection sites in rats and monkeys and were later found to extend progressively to the lesion regions, demonstrating that iPSCs-derived NSCs could migrate to the lesion area from the primary sites. The therapeutic efficacy of iPSCs-derived NSCs was examined concomitantly through functional recovery tests of the animals. In this study, we tracked iPSCs-derived NSCs migration in the CNS of TBI rats and SCI monkeys in vivo for the first time. Functional recovery tests showed obvious motor function improvement in transplanted animals. These data provide the necessary foundation for future clinical application of iPSCs for CNS injury.[67]

In 2014, type O red blood cells were synthesized at the Scottish National Blood Transfusion Service from iPSC. The cells were induced to become a mesoderm and then blood cells and then red blood cells. The final step was to make them eject their nuclei and mature properly. Type O can be transfused into all patients. Each pint of blood contains about two trillion red blood cells, while some 107 million blood donations are collected globally every year. Human transfusions were not expected to begin until 2016.[68]

The first human clinical trial using autologous iPSCs is approved by the Japan Ministry Health and will be conducted in 2014 in Kobe. iPSCs derived from skin cells from six patients suffering from wet age-related macular degeneration will be reprogrammed to differentiate into retinal pigment epithelial (RPE) cells. The cell sheet will be transplanted into the affected retina where the degenerated RPE tissue has been excised. Safety and vision restoration monitoring is expected to last one to three years.[69][70] The benefits of using autologous iPSCs are that there is theoretically no risk of rejection and it eliminates the need to use embryonic stem cells.[70]

Visit link:
Induced pluripotent stem cell - Wikipedia, the free ...

Posted in Stem Cell Videos | Comments Off on Induced pluripotent stem cell – Wikipedia, the free …

Stem Cells in MS – National Multiple Sclerosis Society

Posted: October 23, 2015 at 5:43 am

There are many types of stem cells that are undergoing research and which are producing knowledge about their potential use in treating MS. Many of these studies involve adult mesenchymal (pronounced messENkimmul) stem cells, which are present in many tissues of the body, including bone marrow and fat (adipose tissue). These cells are being tested for their ability both to treat immune disorders and promote tissue repair. Further study is necessary to determine what kind of cells might prove optimal for treating some or all people with MS.

Stem cell therapy, even in the controlled setting of a clinical trial, carries the possibility for substantial risks. Anyone who is considering enrolling in a clinical trial should evaluate carefully the potential adverse events that will be outlined in the informed consent form that trial participants must sign.

HSCT to Reboot the Immune System: One type of procedure that has been explored for several years in MS is called autologous hematopoietic (blood cell-producing) stem cell transplantation -- or HSCT. This procedure has been used in attempts to reboot the immune system, which is believed to launch attacks on the brain and spinal cord in people with MS.

In HSCT, these stem cells (derived from a persons own bone marrow or blood) are stored, and the rest of the individuals immune cells are depleted by chemotherapy or radiation or both. Then the stored stem cells are reintroduced usually by infusion into the vein. The new stem cells migrate to the bone marrow and over time produce new cells. Eventually they repopulate the body with immune cells. The goal of this currently experimental procedure is that the new immune cells will no longer attack myelin or other brain tissue, providing the person, what is hoped to be, a completely new immune system.

This approach is being investigated in Canada, the United States, Europe and elsewhere. For example:

An international clinical trial of this procedure, being led by Dr. Richard Burt of Northwestern University in Chicago, is now recruiting individuals who have not responded to other disease-modifying therapies. THIS TRIAL IS CURRENTLY RECRUITING PARTICIPANTS at its sites at Northwestern University, Rush University Medical Center, University of Sao Paulo, Uppsala University and Sheffield Teaching Hospitals NHS Foundation Trust. Read more about who may be eligible to participate.Dr. Burt and colleagues recently published a case series exploring outcomes for individuals who underwent the procedure.

A multi-center, 5-year trial called the HALT MS (High-Dose Immunosuppression and Autologous Transplantation for Multiple Sclerosis) Study is expected to be completed in 2015. It is testing HSCT in people with MS who have active disease that was not controlled by disease-modifying medications. The trial is funded by the National Institutes of Health and the Immune Tolerance Network. Interim results were recently reported suggesting that after three years, 78.4% of participants experienced no new disease activity. When this trial has completed its five-year duration, it will be an important addition to research needed to determine whether this approach to stem cell transplantation is safe and effective in people with MS.THIS TRIAL IS ONGOING AND NOT SEEKING ADDITIONAL PARTICIPANTS.

Adult Mesenchymal Stem Cells to Reduce Disease and Augment Repair: Another experimental approach being tested in clinical trials is similar to HSCT, except that the individuals immune cells are not destroyed or replaced. An individuals own mesenchymal stem cells are isolated from the bone marrow or blood stream and multiplied in the lab, and then re-introduced in greater numbers into their body. This approach is being tested in several clinical trials including:

A small, open-label, phase I clinical trial at Cleveland Clinic tested the ability of an individuals own mesenchymal stem cells to both inhibit immune mechanisms and to augment intrinsic tissue repair processes in people with relapsing forms of MS. They were given intravenously (infused into the vein). This study was led by Dr. Jeffrey A. Cohen and supported by the Congressionally Directed Medical Research Programs. The National MS Society provided support for a pilot study related to this trial to compare stem cells from people with MS and controls without MS, looking at how the cells survive and function, to enhance understanding from this stem cell trial. This trial, which was designed to evaluate safety and not designed to determine benefits, was completed and preliminary results were presented in September 2014, suggesting that this approach was safe and warrants a phase 2 trial, which is now in planning stages. THIS PLANNED TRIAL IS NOT YET RECRUITING ADDITIONAL PARTICIPANTS.

A small, open label, phase I stem cell trial has begun at the Tisch MS Research Center of New York using individualsown mesenchymal stem cells to derive more specific stem cells called neural progenitor cells. The cells are expanded in the laboratory and then injected into the space around the spinal cord (intrathecal). The goal is to inhibit immune mechanisms and to augment tissue repair. THIS TRIAL IS ONGOING AND NOT SEEKING ADDITIONAL PARTICIPANTS.

A placebo-controlled, phase II stem cell trial involving people with primary progressive MS, secondary-progressive MS and relapsing-remitting MS is getting underway at Ottawa Hospital and Health Sciences Centre in Winnipeg, Canada. The trial will test benefits and safety of using individuals own bone marrow cells, which are extracted and then given by intravenous infusion immediately or six months after extraction. The goal is to inhibit immune mechanisms and to augment tissue repair. THIS TRIAL IS NOT YET RECRUITING PARTICIPANTS.

A small, open label, phase I trial of stem cells derived from placenta (known as PDA-001 manufactured by Celgene Cellular Therapeutics) was completed in 2014, and results suggested this approach was safe. The study involved 16 people with relapsing-remitting or secondary-progressive MS at sites in the U.S. and Canada. This study was designed to evaluate safety and not designed to show effectiveness. In the published paper, the researchers comment that the next step, a proof-of-concept clinical trial, is planned. THIS PLANNED NEXT TRIAL IS NOT YET RECRUITING PARTICIPANTS.

A placebo-controlled, phase II stem cell trial involving people with secondary-progressive MS and primary progressive MS has begun at Frenchay Hospital in Bristol, United Kingdom, testing the benefits and safety of using individuals own bone marrow cells. The cells are extracted and then given by intravenous infusion immediately or one year after the extraction. The goal is to inhibit immune mechanisms and to augment tissue repair. THIS TRIAL IS RECRUITING PARTICIPANTS AT ONE SITE IN THE UNITED KINGDOM.

Larger, longer-term, controlled studies are needed to determine the safety and effectiveness of using stem cells to treat MS. When the results of these and subsequent clinical trials are available, it should be possible to determine what the optimal cells, delivery methods, safety and actual effectiveness of these current experimental therapies might be for different people with MS.

Read more aboutstem cell clinics.

Other Stem Cell Research: Another line of stem cell research in MS relates to efforts to repair nervous system damage directly with stem cells that may replace the cells that make myelin, the protective cover on nerve wires which is damaged during MS, and nerve cells that have been destroyed. One exciting avenue being explored in early stages is the concept of taking samples of a persons skin cells and turning them into stem cells. These cells are called induced pluripotent stem cells or iPSC. The potential advantage of this approach is that its possible such cells would not be rejected by the persons immune system, and this approach bypasses possible ethical concerns connected with human embryonic stem cells.

This research is still in its infancy as studies proceed to determine whether any types of stem cells can reverse MS damage and restore function. Read more about efforts to repair the nervous system.

Read the original:
Stem Cells in MS - National Multiple Sclerosis Society

Posted in Stem Cell Videos | Comments Off on Stem Cells in MS – National Multiple Sclerosis Society

Future of Stem Cell Research – Creating New organs and …

Posted: October 23, 2015 at 5:43 am

Written by Patrick Dixon

Futurist Keynote Speaker: Posts, Slides, Videos - Biotechnology, Genetics, Gene Therapy, Stem Cells

Stem cell research. Embryonic stem cells and adult stem cells - biotech company progress, stem cell investment, stem cell research results, should you invest in stem cell technology, stem cell organ repair and organ regeneration? Treatment using adult stem cells for people like the late Christopher Reeves, with recent spinal cord injuries - or stroke, or heart damage.

Comment by Dr Patrick Dixon on stem cell research and science of ageing, health care, life expectancy, medical advances, pensions, retirement, lifestyles. (ReadFREE SAMPLE of The Truth about Almost Everything- his latest book.)

Every week there are new claims being made about embryonic stem cells and adult stem cells, what is the truth? Scientific facts have often been lost in the media debate. The death of Superman hero Christopher Reeves has also focussed attention on stem cell research, and the urgent needs of those with spinal cord injury.

Here is a brief summary of important stem cell trends. You will also find on this site keynote presentations on stem cell research, speeches and powerpoint slides on the future of health care, the future of medicine, the future of the pharmaceutical industry, and the future of ageing - all of which are profoundly impacted by stem cell research.

There is no doubt that we are on the edge of a major stem cell breakthrough. Stem cells will one day provide effective low-cost treatment for diabetes, some forms of blindness, heart attack, stroke, spinal cord damage and many other health problems. Animal stem cell studies are already very promising and some clinical trials using stem cells have started (article written in September 2004).

As a physician and a futurist I have been monitoring the future of stem cells for over two decades and advise corporations on these issues. Stem cell investment, research effort, and treatment focus is moving rapidly away from embryonic stem cells (ethical and technical challenges) to adult stem cells which are turning out to be far easier to convert into different tissues than we thought.

I have met a number of leading researchers, and their progress in stem cell research is now astonishing, while over 2,000 new research papers on embryonic or adult stem cells are published in reputable scientific journals every year.

Stem cell technology is developing so fast that many stem cell scientists are unaware of important progress by others in their own or closely related fields. They are unable to keep up. The most interesting work is often unpublished, or waiting to be published. There is also of course commercial and reputational rivalry, which can on occasions tempt scientists to downplay the significance of other people's results (or their claims).What exactly are stem cells? Will stem cells deliver? Should you invest in biotech companies that are developing stem cell technology? What should physicians, health care professionals, planners and health departments expect? What will be the impact of stem cell treatments on the pharmaceutical industry? How expensive will stem cell treatments be? What about the ban on embryonic stem cell research in many nations? Do embryonic stem cell treatments have a future or will they be overtaken by adult stem cell technology?

Embryonic stem cells are also hard to control, and hard to grow in a reliable way. They have "minds" of their own, and embryonic stem cells are often unstable, producing unexpected results as they divide, or even cancerous growths. Human embryonic stem cells usually cause an immune reaction when transplanted into people, which means cells used in treatment may be rapidly destroyed unless they are protected, perhaps by giving medication to suppress the immune system (which carries risks).

One reason for intense interest in human cloning technology is so-called therapeutic cloning. This involves combining an adult human cell with a human egg from which the nucleus has been removed. The result is a human embryo which is dividing rapidly to try and become an identical twin of the cloned adult. If implanted in the womb, such cloned embryos have the potential to be born normally as cloned babies, although there are many problems to overcome, including catastrophic malformations and premature ageing as seen in animals such as Dolly the sheep.

In theory, therapeutic cloning could allow scientists to take embryonic stem cells from the cloned embryo, throw the rest of the embryo away and use the stem cells to generate new tissue which is genetically identical to the person cloned. In practice, this is a very expensive approach fraught with technical challenges as well as ethical questions and legal challenges.

An alternative is to try to create a vast tissue bank of tens of thousands of embryonic cells lines, by extracting stem cells from so many different human embryos that whoever needs treatment can be closely matched with the tissue type of an existing cell line. But even if this is achieved, problems of control and cancer remain. And again there are many ethical considerations with any science that uses human embryos, each of which is an early developing but complete potential human being, which is why so many countries have banned this work.

However a moment's thought tells us how illogical such a view was, and indeed we are now finding that many cells in children and adults have extraordinary capacity to generate or stimulate growth of a wide variety of tissues, if encouraged in the right way.

Take for example the work of Professor Jonathan Slack at Bath University who has shown how adult human liver cells can be transformed relatively easily into insulin producing cells such as those found in the pancreas, or the work of others using bone marrow cells to repair brain and spinal cord injuries in mice and rats, and now doing the same to repair heart muscle in humans.

Why should this surprise us? We know that almost all cells in your body contain your entire genome or book of life: enough information to make an entire copy of you, which is the basis of cloning technology. So in theory, just about every cell can make any tissue you need. However, the reality is that in most cells almost every gene you have is turned off - but as it turns out, not as permanently as we thought.

If we take one of your skin cells and fuse it with an unfertilized human egg, the chemical bath inside a human egg activates all the silenced genes, and the combined cell becomes so totipotent that it starts to make a new human being.

What then if we could find a way to reactivate just a few silenced genes, and perhaps at the same time silence some of the others? Could we find a chemical that would mimic what happens in the embryo, with the power to transform cells from one type into another? Yes we can. Jonathan Slack and others have done just that. What was considered impossible five years ago is already history.

Could we take adult cells and force them back into a more general, undetermined embryonic state? Yes we can. It is now possible to create cells with a wide range of plasticity, all from adult tissue. The secret is to get the right gene activators into the nucleus, not so hard as we thought.

Suppose you have a heart attack. A cardiothoracic surgeon talks to you about using your own stem cells in an experimental treatment. You agree. A sample of bone marrow is taken from your hips, and processed using standard equipment found in most oncology centers for treating leukemia. The result is a concentrated number of special bone marrow cells, which are then injected back into your own body - either into a vein in your arm, or perhaps direct into the heart itself.

The surgeon is returning your own unaltered stem cells back to you, to whom these cells legally belong. This is not a new molecule requiring years of animal and clinical tests. Your own adult stem cells are available right now. No factory is involved - nor any pharmaceutical company sales team.

What is more, there are no ethical questions (unlike embryonic stem cells), no risk of tissue rejection, no risk of cancer.

Now we begin to see why research funds are moving so fast from embryonic stem cells to adult alternatives.

Harvard Medical School is another center of astonishing progress in adult stem cells. Trials have shown partially restored sight in animals with retinal damage. Clinical trials are expected within five years, using adult stem cells as a treatment to cure blindness caused by macular degeneration - old-age blindness and the commonest cause of sight-loss in America. Within 10 years, it is hoped that people will be able to be treated routinely with their own stem cells in a clinic using a two-hour process.

If you want further evidence of this switch in interest from embryonic to adult stem cells, look at the makers of Dolly the sheep. The Rosslyn Institute in Scotland are pioneers in cloning technology. They, along with others, campaigned successfully in UK Parliament for the legal right to use the same technology in human embryos (therapeutic cloning, not with the aim of clones being born). But three years later, they had not even bothered to apply for a human cloning licence.

Why not? Because investors were worried about throwing money at speculative embryo research with massive ethical and reputational risks. Newcastle University made headlines in August 2004 when granted the first licence to clone human embryos - but the real story was why it had taken so long to get a single research institute in the UK to actually get on and apply. Answer: medical research moved on and left the "therapeutic" human cloners behind.

The debate centers on technical questions and semantics, rather than the reality of results. Take for example heart repair. We know that bone marrow cells can land up in damaged heart and when present, the heart is repaired. It is hard to be certain what proportion of this remarkable process is due to stimulants released locally by bone marrow cells, or by the bone marrow cells actually differentiating into heart tissue.

It remains a confusing picture, not least because in the lab, cells seem to change character profoundly, but in clinical trials it appears the effects of many stem cells are stimulatory. But who cares? As a clinician, I am delighted if injecting your bone marrow cells into your back means that you are walking around 3 months after a terrible injury to your spine instead of being in a wheelchair for the rest of your life. I am not so concerned with exactly how it all works, and nor will you be.

In summary, expect rapid progress in adult stem cells and slower, less intense work with embryonic stem cells. Embryonic stem cell technology is already looking rather last-century, along with therapeutic cloning. History will show that, by 2020, we were already able to produce a wide range of tissues using adult stem cells, with spectacular progress in tissue building and repair. In some cases, these stem cells will be actually incorporated into the new repairs as differentiated cells, in other cases, they will be temporary assistants in local repair processes.

And along the way we will see a number of biotech companies fold, as a result of over-investment into embryonic stem cells, plus angst over ethics and image, without watching the radar screen closely enough, failing to see the onward march of adult stem cell technology.

Using embryos as a source of spare-part cells will always be far more controversial than using adult tissue, or perhaps cells from umbilical cord after birth, and investors will wish to reduce uneccessary risk, both to the projects they fund, and to their own organisations by association.

Despite this, we can expect embryonic stem cell research to continue in some countries, with the hope of scientific breakthroughs of various kinds.

Article written May 2004.

Related news items:

Newer news items:

Older news items:

Thanks for promoting with Facebook LIKE or Tweet. Really interested to hear your views. Post below.

Javacript is required for help and viewing images.

1

Visit link:
Future of Stem Cell Research - Creating New organs and ...

Posted in Stem Cell Research | Comments Off on Future of Stem Cell Research – Creating New organs and …

Hormone Replacement Therapy – Dr. Sue Decotiis NYC Medical …

Posted: October 22, 2015 at 9:49 am

Sue Decotiis, MD is a widely sought after Bioidenticial Hormone Replacement Therapy Doctor / Anti-Aging NYC Doctor. For over twenty-five years she has been employing her best in class medical practices to attend to and treat both men and women with her customized Hormone Replacement Therapy (HRT) treatments. Sue Decotiis, MD only uses Bioidentical Hormone Replacementtreatments. Hormone Replacement is an evidence-based medical specialty.

Bioidentical hormone treatment therapy is no longer a secret weapons in the anti-ageing war. The use of the treatments have gained world-world popularity and scientific recognition. Depending on which hormones are used to treat which conditions (the NYC HRT doctor personally customized each and every treatment plan), they can manage symptoms ranging fromstress & anxiety, help youregain a better sex life, and restore your sense of vitality and enthusiasm for life. Side effects from Hormone replacement therapy tend to include fresher more beautiful skin, a better physique and a lot more unsolicited compliments.

Sue Decotiis, MD offers only Bio-identical Hormone Replacement Therapy Services:

Common symptoms of Hormone Deficiency incude:

What is remarkable about Bioidentical HormoneReplacement Therapyis that they increase the sensitivity of insulin thus decreasing diabetes, increase bone mass, increase cardiovascular health and enhance lipid profiles. Bioidentical hormones do all these incredibly important things in addition to making you feel and look better, improving your whole life.

Bioidentical Hormones (BIH) Replacement Therapy as offered by Sue Decotiis, MD at her NYC medical practice are:

If you have any questions for NYC Hormone Replacement Therapy (HRT) Doctor,please contact Sue Decotiis, MD at her NYCHormone Replacement Therapyoffice for a consultation.

Read the original:
Hormone Replacement Therapy - Dr. Sue Decotiis NYC Medical ...

Posted in Hormone Replacement Therapy | Comments Off on Hormone Replacement Therapy – Dr. Sue Decotiis NYC Medical …

New York Hormone Replacement Therapy, HRT | Testosterone, HGH

Posted: October 22, 2015 at 9:49 am

EHormonesMD New York helps both men and women find relief from symptoms of hormonal imbalance such as low libido, depression, hot flashes, weight gain, irritability, fatigue, and loss of muscle.

We offer patients Testosterone and Human Growth Hormone (HGH as it is more commonly known) and wellness programs. Through state-of-the-art diagnostic hormone testing, we can determine your hormone levels and your unique Bio-identical Hormone.

The positive effects of Testosterone and HGH can be seen in increased lean mass (your muscle tissue), improved bone density, decreased central body fat, regulated blood sugar levels and improved immune function.

EHormonesMD has an integrated natural solution for testosterone replacement. The skilled physicians at EHormonesMD New York offer a full-circle preventive approach to optimal health through personalized fitness programs, tailor-made nutrition plans, and Sermorelin.

It is a scientific fact that as we age our hormone production declines. Ask yourself, are you suffering from any of the following low testosterone symptoms?

At EHormonesMD New YorkHormone Replacement Therapy Doctors, we provide:

After the age of 30, the natural production of your major hormones including Growth Hormone, Testosterone, Progesterone (and Estrogen in females) begins to decline. Both males and females experience a decline in their quality of life which is directly related to natural hormonal decline. Let us help restore your naturalbalance!

Call today to schedule an appointment with our HRT Doctors: (609) 235-0925

Find our nearest office at: EHormones New Jersey, 100 Federal City Rd, Lawrenceville, NJ 08648

View post:
New York Hormone Replacement Therapy, HRT | Testosterone, HGH

Posted in Hormone Replacement Therapy | Comments Off on New York Hormone Replacement Therapy, HRT | Testosterone, HGH

Bioidentical Hormone Replacement Therapy in New York

Posted: October 22, 2015 at 9:49 am

Posted in Hormone Replacement Therapy | Comments Off on Bioidentical Hormone Replacement Therapy in New York

Hormone Therapy Clinic New York | HGH Therapy

Posted: October 22, 2015 at 9:49 am

The Big Apple can eat you alive if youre not at the top of your game. New York residents need not worry: HealthGains and its premium hormone therapy plans can help you get ahead personally and professionally.

Over the past decade, HealthGains has treated countless patients for low testosterone and other hormone imbalances. Now its your turn to experience the benefits of hormone replacement therapy. Our prime location in NYC makes it easy to stop by and learn more about our services firsthand. Take a look at our sexual wellness performance packages for men and women.

Only an exhaustive workup will reveal if youre a good candidate for hormone replacement therapy. Our blood work is comprised of 15 different tests designed to provide an overview of your health and pinpoint any imbalances in your hormone levels. Once we see that hormones might be causing your symptoms, well schedule you some time with an HealthGains doctor to review your symptoms and get you started on HRT. Its that simple.

Please keep in mind that not everyone is a good candidate for hormone replacement. If our lab tests reveal that your hormones fall within an ideal range, we may not prescribe HRT. Contact us at 1-800-325-1325 to speak with one of our hormone specialists.

The signs of low hormone levels can often be confused with symptoms from other conditions. If youve been feeling less energetic, less focused or less interested in sex, your hormones could be to blame. The only way to find out is through comprehensive. Together, we can get your health back to where it once was. Let us help you.

HealthGains NYC Phone: (212) 257-8939 65 Broadway, Suite 1101 New York, NY 10006

See original here:
Hormone Therapy Clinic New York | HGH Therapy

Posted in Hormone Replacement Therapy | Comments Off on Hormone Therapy Clinic New York | HGH Therapy

Hormone Replacement Therapy – Healthgrades > Find a Doctor

Posted: October 22, 2015 at 9:49 am

What is hormone replacement therapy?

Hormone replacement therapy (HRT) usually refers to the replacement of sex hormones in menopausal women. Women use HRT to help control the symptoms of menopause. Menopause is the stage in a womans life when sex hormone levels fall and her menstrual period stops.

Symptoms of menopause include hot flashes, night sweats, sleep problems, vaginal dryness, mood swings, anxiety, decreased sexual desire, fatigue, and headaches. Menopause can also cause thinning bones (osteoporosis).

The two main sex hormones that a womans body makes are estrogen and progesterone. Progesterone is primarily produced by the ovaries and, in pregnant women, the placenta. The ovaries also produce estrogen. Estrogen is responsible for the female sexual characteristics. It is also important for many body processes, such as maintaining a healthy heart and bones.

A woman who has had her uterus removed by hysterectomy may receive estrogen alone for HRT. A woman who still has her uterus must receive progesterone in addition to estrogen for HRT. Progesterone signals the uterus to shed its lining similar to a menstrual period. This decreases the risk of uterine cancer.

HRT is only one method of controlling the symptoms of menopause. HRT involves some health risks. You may have other treatment options that involve less risk. Discuss all the treatment options with your doctor or healthcare provider to understand which options are right for you.

2015 Healthgrades Operating Company, Inc. All rights reserved. May not be reproduced or reprinted without permission from Healthgrades Operating Company, Inc. Use of this information is governed by the Healthgrades User Agreement.

See the rest here:
Hormone Replacement Therapy - Healthgrades > Find a Doctor

Posted in Hormone Replacement Therapy | Comments Off on Hormone Replacement Therapy – Healthgrades > Find a Doctor

Page 1,734«..1020..1,7331,7341,7351,736..1,7401,750..»