Page 1,754«..1020..1,7531,7541,7551,756..1,7601,770..»

Human Genetics – Estrella Mountain Community College

Posted: October 1, 2015 at 6:46 pm

Posted in Human Genetics | Comments Off on Human Genetics – Estrella Mountain Community College

UCLA Human Genetics

Posted: October 1, 2015 at 6:46 pm

The Department of Human Genetics is the youngest basic science department in the Geffen School of Medicine at UCLA. When the Department was launched just prior to the sequencing of the human genome, it was clear that the practice of genetics research would be forever changed by the infusion of massive amounts of new data. Organizing and making sense of this genomic data is one of the greatest scientific challenges ever faced by mankind. The knowledge generated will ultimately transform medicine through patient-specific treatments and prevention strategies.

The Department is dedicated to turning the mountains of raw genetic data into a detailed understanding of the molecular pathogenesis of human disease. The key to such understanding is the realization that genes not only code for specific proteins, but they also control the temporal development and maturation of every living organism through a complex web of interactions.

Housed in the new Gonda Research Center, the Department serves as a focal point for genetics research on the UCLA campus, with state of the art facilities for gene expression, sequencing, genotyping, and bioinformatics. In addition to its research mission, the Department offers many exciting training opportunities for graduate students, postdoctoral fellows, and medical residents. Our faculty and staff welcome inquiries from prospective students. We also hope that a quick look at our web pages will give you a better idea of the Department's research and educational activities.

News Highlights

Visit link:
UCLA Human Genetics

Posted in Human Genetics | Comments Off on UCLA Human Genetics

Regenerative Medicine – Transplant Center – Mayo Clinic

Posted: October 1, 2015 at 6:45 pm

At Mayo Clinic, an integrated team, including stem cell biologists, bioengineers, doctors and scientists, work together and study regenerative medicine. The goal of the team is to treat diseases using novel therapies, such as stem cell therapy and bioengineering. Doctors in transplant medicine and transplant surgery have pioneered the study of regenerative medicine during the past five decades, and doctors continue to study new innovations in transplant medicine and surgery.

In stem cell therapy, or regenerative medicine, researchers study how stem cells may be used to replace, repair, reprogram or renew your diseased cells. Stem cells are able to grow and develop into many different types of cells in your body. Stem cell therapy may use adult cells that have been genetically reprogrammed in the laboratory (induced pluripotent stem cells), your own adult stem cells that have been reprogrammed or cells developed from an embryo (embryonic stem cells).

Researchers also study and test how reprogrammed stem cells may be turned into specialized cells that can repair or regenerate cells in your heart, blood, nerves and other parts of your body. These stem cells have the potential to treat many conditions. Stem cells also may be studied to understand how other conditions occur, to develop and test new medications, and for other research.

Researchers across Mayo Clinic, with coordination through the Center for Regenerative Medicine, are discovering, translating and applying stem cell therapy as a potential treatment for cardiovascular diseases, diabetes, degenerative joint conditions, brain and nervous system (neurological) conditions, such as Parkinson's disease, and many other conditions. For example, researchers are studying the possibility of using stem cell therapy to repair or regenerate injured heart tissue to treat many types of cardiovascular diseases, from adult acquired disorders to congenital diseases. Read about regenerative medicine research for hypoplastic left heart syndrome.

Cardiovascular diseases, neurological conditions and diabetes have been extensively studied in stem cell therapy research. They've been studied because the stem cells affected in these conditions have been the same cell types that have been generated in the laboratory from various types of stem cells. Thus, translating stem cell therapy to a potential treatment for people with these conditions may be a realistic goal for the future of transplant medicine and surgery.

Researchers conduct ongoing studies in stem cell therapy. However, research and development of stem cell therapy is unpredictable and depends on many factors, including regulatory guidelines, funding sources and recent successes in stem cell therapy. Mayo Clinic researchers aim to expand research and development of stem cell therapy in the future, while keeping the safety of patients as their primary concern.

Mayo Clinic offers stem cell transplant (bone marrow transplant) for people who've had leukemia, lymphoma or other conditions that have been treated with chemotherapy.

Mayo Clinic currently offers a specialty consult service for regenerative medicine within the Transplant Center, the first consult service established in the United States to provide guidance for patients and families regarding stem cell-based protocols. This consult service provides medical evaluations for people with many conditions who have questions about the potential use of stem cell therapy. The staff provides guidance to determine whether stem cell clinical trials are appropriate for these individuals. Regenerative medicine staff may be consulted if a doctor or patient has asked about the potential use of stem cell therapies for many conditions, including degenerative or congenital diseases of the heart, liver, pancreas or lungs.

People sometimes have misconceptions about the use and applications of stem cell therapies. This consult service provides people with educational guidance and appropriate referrals to research studies and clinical trials in stem cell therapies for the heart, liver, pancreas and other organs. Also, the consult service supports ongoing regenerative medicine research activities within Mayo Clinic, from basic science to clinical protocols.

Read more about stem cells.

.

Read the rest here:
Regenerative Medicine - Transplant Center - Mayo Clinic

Posted in Regenerative Medicine | Comments Off on Regenerative Medicine – Transplant Center – Mayo Clinic

Nanobiotechnology – Wikipedia, the free encyclopedia

Posted: October 1, 2015 at 6:45 pm

Posted in Nano medicine | Comments Off on Nanobiotechnology – Wikipedia, the free encyclopedia

Genetics Home Reference: How Does Gene Therapy Work?

Posted: October 1, 2015 at 6:45 pm

Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. If a mutated gene causes a necessary protein to be faulty or missing, gene therapy may be able to introduce a normal copy of the gene to restore the function of the protein.

A gene that is inserted directly into a cell usually does not function. Instead, a carrier called a vector is genetically engineered to deliver the gene. Certain viruses are often used as vectors because they can deliver the new gene by infecting the cell. The viruses are modified so they cant cause disease when used in people. Some types of virus, such as retroviruses, integrate their genetic material (including the new gene) into a chromosome in the human cell. Other viruses, such as adenoviruses, introduce their DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.

The vector can be injected or given intravenously (by IV) directly into a specific tissue in the body, where it is taken up by individual cells. Alternately, a sample of the patients cells can be removed and exposed to the vector in a laboratory setting. The cells containing the vector are then returned to the patient. If the treatment is successful, the new gene delivered by the vector will make a functioning protein.

Researchers must overcome many technical challenges before gene therapy will be a practical approach to treating disease. For example, scientists must find better ways to deliver genes and target them to particular cells. They must also ensure that new genes are precisely controlled by the body.

A new gene is injected into an adenovirus vector, which is used to introduce the modified DNA into a human cell. If the treatment is successful, the new gene will make a functional protein.

The Genetic Science Learning Center at the University of Utah provides information about various technical aspects of gene therapy in Gene Delivery: Tools of the Trade. They also discuss other approaches to gene therapy and offer a related learning activity called Space Doctor.

The Better Health Channel from the State Government of Victoria (Australia) provides a brief introduction to gene therapy, including the gene therapy process and delivery techniques.

Penn Medicines Oncolink describes how gene therapy works and how it is administered to patients.

Next: Is gene therapy safe?

Read the original here:
Genetics Home Reference: How Does Gene Therapy Work?

Posted in Gene therapy | Comments Off on Genetics Home Reference: How Does Gene Therapy Work?

Stem Cell Therapy for Arthritis and Injuries | Regenexx

Posted: October 1, 2015 at 6:45 pm

Welcome to Regenexx Stem Cell Therapy for Arthritis & InjuriesChris Centeno2015-09-20T08:24:44+00:00

The Regenexx Procedures are the nations most advanced non-surgical stem cell and blood platelet treatments for common injuries and degenerative joint conditions, such as osteoarthritis and avascular necrosis. These stem cell procedures utilize a patients own stem cells or blood platelets to help heal damaged tissues, tendons, ligaments, cartilage, spinal disc, or bone.

The list below represents the most commonly treated conditions using Regenexx stem cell or platelet procedures. It is not a complete list, so please contact us or complete the Regenexx Candidate Form if you have questions about whether you or your condition can be treated with these non-surgical procedures. The type of procedure used (stem cell or blood platelet) to treat these conditions is largely dependent upon the severity of the injury or condition.

021,900

21,900 Regenexx procedures have been performed since Regenexx pioneered orthopedic stem cell treatments in 2005

0%

THE PUBLISHED RESEARCH ON REGENEXX PROCEDURES ACCOUNTS FOR APPROX. 33% OF THE WORLDS ORTHOPEDIC STEM CELL LITERATURE (cumulative n of patients published and treated with bone marrow stem cells)

033

The published research on Regenexx procedures accounts for approx. 33% of the worlds orthopedic stem cell literature (cumulative n of patients published and treated with bone marrow stem cells)

As our Regenexx Physician Network grows, so does the nationwide awareness of our next-generation regenerative procedures. This video selection is comprised of recent local news stories, media coverage and hit television show appearances, featuring Regenexx doctors and patients from around the network, sharing their stories. For more Regenexx videos, please visit our videos page or YouTube Channel.

Read this article:
Stem Cell Therapy for Arthritis and Injuries | Regenexx

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy for Arthritis and Injuries | Regenexx

Stem Cells: Get Facts on Definition, Types, and Research

Posted: October 1, 2015 at 6:45 pm

Stem cell facts

Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.

The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.

The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.

Medically Reviewed by a Doctor on 6/3/2015

Stem Cells - Experience Question: Please describe your experience with stem cells.

Stem Cells - Umbilical Cord Question: Have you had your child's umbilical cord blood banked? Please share your experience.

Stem Cells - Available Therapies Question: Did you or someone you know have stem cell therapy? Please discuss your experience.

Medical Author:

Melissa Conrad Stppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.

Medical Editor:

Dr. Shiel received a Bachelor of Science degree with honors from the University of Notre Dame. There he was involved in research in radiation biology and received the Huisking Scholarship. After graduating from St. Louis University School of Medicine, he completed his Internal Medicine residency and Rheumatology fellowship at the University of California, Irvine. He is board-certified in Internal Medicine and Rheumatology.

Stem Cells: One of the human body's master cells, with the ability to grow into any one of the body's more than 200 cell types.

All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.

Stem cells contribute to the body's ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).

Read more:
Stem Cells: Get Facts on Definition, Types, and Research

Posted in Stem Cell Therapy | Comments Off on Stem Cells: Get Facts on Definition, Types, and Research

First UK patient receives stem cell treatment to cure loss …

Posted: October 1, 2015 at 2:41 am

A patient has become the first in the UK to receive an experimental stem cell treatment that has the potential to save the sight of hundreds of thousands of Britons.

By December, doctors will know whether the woman, who has age-related macular degeneration, has regained her sight after a successful operation at Moorfields Eye Hospital in London last month. Over 18 months, 10 patients will undergo the treatment.

The transplant involves eye cells, called retinal pigment epithelium, derived from stem cells and grown in the lab to form a patch that can be placed behind the retina during surgery.

Related: Stem cell therapy success in treatment of sight loss from macular degeneration

The potential is huge. Although the first patients have the wet form of macular degeneration, the doctors believe it might also eventually work for those who have the dry form, who are the vast majority of the UKs 700,000 sufferers.

The surgery is an exciting moment for the 10-year-old London Project to Cure Blindness, a collaboration between the hospital, the UCL Institute of Ophthalmology and the National Institute for Health Research, which was formed to find a cure for wet age-related macular degeneration, the more serious but less common form of the disease.

Prof Pete Coffey of UCL, one of the founders of the London Project, said he would not be working on the new treatment if he did not believe it would work. He hopes it could become a routine procedure for people afflicted by vision loss, which is as common a problem among older people as dementia.

It does involve an operation, but were trying to make it as straightforward as a cataract operation, he said. It will probably take 45 minutes to an hour. We could treat a substantial number of those patients.

First they have to get approval. The trial is not just about safety, but also efficacy. There will be a regulatory review after the first few transplants to ensure all is going well.

The group of patients chosen have the wet form of the disease and experienced sudden loss of vision within about six weeks. The support cells in the eye, which get rid of daily debris and allow the seeing part to function have died.

There is a possibility of restoring their vision, said Coffey. The aim of the transplant is to restore the support cells so the seeing part of the eye is not affected by what would become an increasingly toxic environment, causing deterioration and serious vision loss. The surgery is being performed by retinal surgeon Prof Lyndon Da Cruz from Moorfields, who is also a co-founder of the London Project.

The team chose people with this dramatic vision loss to see whether the experimental stem cell therapy would reverse the loss of vision. But in those with dry macular degeneration, said Coffey, the process is far slower, which would mean doctors could choose the time to intervene if the treatment works.

Helping people to regain their sight has long been one of the most hopeful prospects for stem cell transplantation. Other research groups have been trialling the use of stem cells in people with Stargardts disease, which destroys the vision at a much earlier age.

Stem cells have moved from the drawing board into human trials with incredible speed, scientists say. The first embryonic stem cell was derived in 1989. Using them in eyes was always going to have a big advantage over other prospects, because it is possible to transplant them without an all-out attack by the immune system, as would happen in other parts of the body. Most people who have any sort of transplant have to take drugs that suppress the immune system for the rest of their lives.

Just like conventional medicines, stem cell therapies will very likely have to be developed and marketed by large commercial concerns. The London Project has the US drug company Pfizer on board.

See more here:
First UK patient receives stem cell treatment to cure loss ...

Posted in Stem Cell Treatments | Comments Off on First UK patient receives stem cell treatment to cure loss …

Faculty Positions in Stem Cell Biology, Employment | ASCB

Posted: September 30, 2015 at 11:45 pm

The College of Science and the Center for Stem Cells and Regenerative Medicine at the University of Notre Dame invites applications for multiple tenured/tenure-track faculty positions in the area of stem cell biology. The ranks of these hires are open (Full, Associate and Assistant Professor) and will be commensurate with the experience of the successful candidate. These hires represent the beginning of a university-funded initiative in stem cell biology that will include 6 new faculty hires over the next few years. We seek candidates with research expertise and interests consistent with one or more broad areas within our initiative in adult stem cell and iPS cell biology, including, but not limited to: developmental and regenerative biology, function and regulation of the stem cell niche, mechanisms underlying cellular dedifferentiation and reprogramming, regulation of gene expression in stem cells and iPS cells, tissue engineering, stem cells in tumor formation and progression, and stem cells in disease models and therapy development.

Successful candidates will have a demonstrated record of research accomplishments and interest in collaborative and interdisciplinary research. These hires will have access to several excellent research facilities within the university, including the AAALAC-accredited Freimann Animal Facility, Center for Zebrafish Research, Notre Dame Integrated Imaging Facility, Harper Cancer Research Institute, Eck Center for Global Health, Keck Center for Transgene Research, Boler-Parseghian Center for Rare and Neglected Diseases, and the Center for the Study of Biocomplexity. The University also supports state-of-the-art genomics, bioinformatics, NMR, MS, molecular structure and imaging core facilities. Information on departments, college faculty, and facilities can be found at http://science.nd.edu. Opportunities also exist for collaboration with faculty in the University of Notre Dame College of Engineering and the adjoining Indiana University School of Medicine-South Bend. Successful candidates are also expected to contribute to our teaching program at both the undergraduate and graduate levels.

These positions include an attractive salary, competitive start-up package, and laboratory space tailored to the applicants research needs. Review of applications will commence on November 1, 2015, and continue until suitable candidates are identified. Qualified individuals should send in PDF format: a cover letter, curriculum vitae, separate statements of research and teaching interests, and arrange for three letters of reference to be submitted to: http://apply.interfolio.com/31396

The University of Notre Dame, an international Catholic research university, is an equal opportunity employer.

Go here to see the original:
Faculty Positions in Stem Cell Biology, Employment | ASCB

Posted in Indiana Stem Cells | Comments Off on Faculty Positions in Stem Cell Biology, Employment | ASCB

Using Stem Cells in Teeth for Future Use in Developing …

Posted: September 30, 2015 at 11:45 pm

The tooth is nature's 'safe' for your family's unique stem cells

While stem cells can be found in most tissues of the body, they are usually buried deep, are few in number and are similar in appearance to surrounding cells. With the discovery of stem cells in teeth, an accessible and available source of stem cells has been identified.

The tooth is nature's "safe" for these valuable stem cells, and there is an abundance of these cells in baby teeth, wisdom teeth and permanent teeth - Tooth Eligibility Criteria. The stem cells contained within teeth are capable of replicating themselves and can be readily recovered at the time of a planned dental procedure.

Living stem cells found within extracted teeth were routinely discarded every day, but now, with the knowledge from recent medical research, StemSave gives you the opportunity to save these cells for future use in developing medical treatments for your family.

Aside from being the most convenient stem cells to access, dental stem cells have significant medical benefits in the development of new medical therapies. Using one's own stem cells for medical treatment means a much lower risk of rejection by the body and decreases the need for powerful drugs that weaken the immune system, both of which are negative but typical realities that come into play when tissues or cells from a donor are used to treat patients.

Further, the stem cells from teeth have been observed in research studies to be among the most powerful stem cells in the human body. Stem cells from teeth replicate at a faster rate and for a longer period of time than do stem cells harvested from other tissues of the body.

Stem cells in the human body age over time and their regenerative abilities slow down later in life. The earlier in life that your family's stem cells are secured, the more valuable they will be when they are needed most.

.

Read the original post:
Using Stem Cells in Teeth for Future Use in Developing ...

Posted in Georgia Stem Cells | Comments Off on Using Stem Cells in Teeth for Future Use in Developing …

Page 1,754«..1020..1,7531,7541,7551,756..1,7601,770..»