Page 1,786«..1020..1,7851,7861,7871,788..1,8001,810..»

Stem Cells: Get Facts on Uses, Types, and Therapies

Posted: May 31, 2015 at 5:41 pm

Stem cell facts Stem cells are primitive cells that have the potential to differentiate, or develop into, a variety of specific cell types. There are different types of stem cells based upon their origin and ability to differentiate. Bone marrow transplantation is an example of a stem cell therapy that is in widespread use. Research is underway to determine whether stem cell therapy may be useful in treating a wide variety of conditions, including diabetes, heart disease, Parkinson's disease, and spinal cord injury. What are stem cells?

Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, "unspecialized" cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as "undifferentiated" cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples areas in which stem cells function to renew and repair tissue.

The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight to sixteen, and so on; doubling rapidly until it ultimately creates the entire sophisticated organism. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.

The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.

Medically Reviewed by a Doctor on 1/23/2014

Stem Cells - Experience Question: Please describe your experience with stem cells.

Stem Cells - Umbilical Cord Question: Have you had your child's umbilical cord blood banked? Please share your experience.

Stem Cells - Available Therapies Question: Did you or someone you know have stem cell therapy? Please discuss your experience.

Medical Author:

Melissa Conrad Stppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.

View original post here:
Stem Cells: Get Facts on Uses, Types, and Therapies

Posted in Stem Cell Videos | Comments Off on Stem Cells: Get Facts on Uses, Types, and Therapies

Stem Cell Basics: Introduction [Stem Cell Information]

Posted: May 31, 2015 at 5:41 pm

Introduction: What are stem cells, and why are they important? What are the unique properties of all stem cells? What are embryonic stem cells? What are adult stem cells? What are the similarities and differences between embryonic and adult stem cells? What are induced pluripotent stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized? Where can I get more information?

Stem cells have the remarkable potential to develop into many different cell types in the body during early life and growth. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions. In some organs, such as the gut and bone marrow, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide under special conditions.

Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. The functions and characteristics of these cells will be explained in this document. Scientists discovered ways to derive embryonic stem cells from early mouse embryos more than 30 years ago, in 1981. The detailed study of the biology of mouse stem cells led to the discovery, in 1998, of a method to derive stem cells from human embryos and grow the cells in the laboratory. These cells are called human embryonic stem cells. The embryos used in these studies were created for reproductive purposes through in vitro fertilization procedures. When they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. In 2006, researchers made another breakthrough by identifying conditions that would allow some specialized adult cells to be "reprogrammed" genetically to assume a stem cell-like state. This new type of stem cell, called induced pluripotent stem cells (iPSCs), will be discussed in a later section of this document.

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

Given their unique regenerative abilities, stem cells offer new potentials for treating diseases such as diabetes, and heart disease. However, much work remains to be done in the laboratory and the clinic to understand how to use these cells for cell-based therapies to treat disease, which is also referred to as regenerative or reparative medicine.

Laboratory studies of stem cells enable scientists to learn about the cells essential properties and what makes them different from specialized cell types. Scientists are already using stem cells in the laboratory to screen new drugs and to develop model systems to study normal growth and identify the causes of birth defects.

Research on stem cells continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.

I.Introduction|Next

The rest is here:
Stem Cell Basics: Introduction [Stem Cell Information]

Posted in Stem Cell Videos | Comments Off on Stem Cell Basics: Introduction [Stem Cell Information]

StemCells, Inc. – Official Site

Posted: May 31, 2015 at 5:41 pm

StemCells, Inc. is engaged in clinical development of its proprietary HuCNS-SC (purified human neural stem cells) platform technology to treat disorders of the central nervous system (CNS). Learnmore

Spinal cord injury (SCI) is the second leading cause of paralysis in the U.S. Transplantation of HuCNS-SC cells holds much promise. Learnmore

StemCells, Inc. has been very professional. They have given me all the support that I need.

Phase I/II SCI Clinical Trial Patient Learnmore

StemCells, Inc. being controlled by a U.S. company, and the way they were following up with their patients, just made me feel safer.

Phase I/II SCI Clinical Trial Patient Learnmore

Age-related Macular Degeneration (AMD) is the leading cause of vision loss in developed countries. HuCNS-SC cells may be a viable therapy. Learnmore

I was not ready to give in and say I was going to be blind I was ready to be a pioneer.

Phase I/II AMD Clinical Trial Patient Learnmore

As a patient with a cervical SCI, you may be eligible to participate in a clinical research study called the Pathway Study. The study is evaluating human neural stem cell transplantation as a potential therapy for SCI.

Excerpt from:
StemCells, Inc. - Official Site

Posted in Stem Cell Videos | Comments Off on StemCells, Inc. – Official Site

Nine Things to Know About Stem Cell Treatments

Posted: May 31, 2015 at 5:41 pm

Stem cells have tremendous promise to help us understand and treat a range of diseases, injuries and other health-related conditions. Their potential is evident in the use of blood stem cells to treat diseases of the blood, a therapy that has saved the lives of thousands of children with leukemia; and can be seen in the use of stem cells for tissue grafts to treat diseases or injury to the bone, skin and surface of the eye. Important clinical trials involving stem cells are underway for many other conditions and researchers continue to explore new avenues using stem cells in medicine.

There is still a lot to learn about stem cells, however, and their current applications as treatments are sometimes exaggerated by the media and other parties who do not fully understand the science and current limitations, and also by clinics looking to capitalize on the hype by selling treatments to chronically ill or seriously injured patients. The information on this page is intended to help you understand both the potential and the limitations of stem cells at this point in time, and to help you spot some of the misinformation that is widely circulated by clinics offering unproven treatments.

It is important to discuss these Nine Things to Know and any research or information you gather with your primary care physician and other trusted members of your healthcare team in deciding what is right for you.

Visit link:
Nine Things to Know About Stem Cell Treatments

Posted in Stem Cell Treatments | Comments Off on Nine Things to Know About Stem Cell Treatments

Research – Stem Cell Biology and Regenerative Medicine …

Posted: May 31, 2015 at 5:40 pm

Every one of us completely regenerates our own skin every 7 days. A cut heals itself and disappears in a week or two. Every single cell in our skeleton is replaced every 7 years.

The future of medicine lies in understanding how the body creates itself out of a single cell and the mechanisms by which it renews itself throughout life.

When we achieve this goal, we will be able to replace damaged tissues and help the body regenerate itself, potentially curing or easing the suffering of those afflicted by disorders like heart disease, Alzheimers, Parkinsons, diabetes, spinal cord injury and cancer.

Research at the institute leverages Stanfords many strengths in a way that promotes that goal. The institute brings together experts from a wide range of scientific and medical fields to create a fertile, multidisciplinary research environment.

There are four major research areas of emphasis at the institute:

Theres no way to know, beforehand, which particular avenue of stem cell research will most expediently yield a successful treatment or cure. Therefore, we need to vigorously pursue a broad number of promising leads concurrently.

--Philip A. Pizzo, MD Carl and Elizabeth Naumann Professor Dean, Stanford University School of Medicine

See the original post here:
Research - Stem Cell Biology and Regenerative Medicine ...

Posted in Stem Cell Research | Comments Off on Research – Stem Cell Biology and Regenerative Medicine …

Human stem cell research: all viewpoints – Religious tolerance

Posted: May 31, 2015 at 5:40 pm

Stem cells are a special form of human life: they are alive and contain human DNA. They have a unique feature in that they can be coaxed into developing into some or all of the 220 cell types found in the human body. Eventually, stem cells may be routinely used by doctors to generate new organs or new replacement body parts for people: They might become a new pancreas to cure a person with diabetes, or new nerve cells to cure a paralized person, etc.

There are three types of stem cells:

"...reprogrammed a dozen cell types, including those from the brain, skin, lung and liver, hinting that the method will work with most, if not all, cell types. On average, she says, 25% of the cells survive the stress and 30% of those convert to pluripotent cells already a higher proportion than the roughly 1% conversion rate of iPS cells." 1

Sponsored link.

The National Institutes of Health web site states:

"To realize the promise of novel cell-based therapies for such pervasive and debilitating diseases, scientists must be able to manipulate stem cells so that they possess the necessary characteristics for successful differentiation, transplantation, and engraftment. The following is a list of steps in successful cell-based treatments that scientists will have to learn to control to bring such treatments to the clinic. To be useful for transplant purposes, stem cells must be reproducibly made to:

See more here:
Human stem cell research: all viewpoints - Religious tolerance

Posted in Stem Cell Research | Comments Off on Human stem cell research: all viewpoints – Religious tolerance

Adult Stem Cells – Therapies and Treatments

Posted: May 31, 2015 at 5:40 pm

Life-Saving Stem Cells - Discover, Learn, ShareNearly everyone inside and outside of the medical and scientific community agrees that stem cell research represents one of the most exciting and promising frontiers for treating people with a myriad of diseases and conditions. Stem cell research and treatments represent perhaps mankind's greatest opportunity to fulfill that ancient call to "heal the sick," relieve suffering and improve the quality of life for untold millions of people.

This website provides scientific facts and concise information for those of us who are not scientists, researchers or medical professionals. You will learn answers toquestions like ..."Who is benefitting from stem cell research and therapies today?" and "What types of stem cells are working?" In addition, basic questions such as"What is a stem cell?""Why do we need stem cell research?" are answered.

The video patient profiles featured on this site emphasize ADULT stem cell advances with the goal of informing and the hope of inspiring you to take action. These real-life stories represent a small sampling of people and the many diseases and conditions now being helped by adult stem cells naturally found in the human body. Stem Cell Research Facts illustrates how current adult treatments and therapies directly impact the lives of patients and their families today - as opposed to debating themerits of other types of stem cell research.

We invite you to discover, learn and share the incredible possibilites of stem cell research. We welcome your feedback and encourage you to return for the latest developments in the world of stem cell research. Thank you!

See the original post here:
Adult Stem Cells - Therapies and Treatments

Posted in Stem Cell Research | Comments Off on Adult Stem Cells – Therapies and Treatments

Stem Cells Cerebral Palsy

Posted: May 30, 2015 at 2:50 pm

Cerebral palsy (CP) is an encompassing group of non-progressive non-contagious motor conditions that cause physical disability in human development, mainly in the various areas of body movement.

Cerebral palsys nature as an umbrella term means it is defined mostly via several different subtypes, especiallyspastic, and also mixtures of those subtypes.

Cerebral palsy is caused by damage to the motor control centers of the developing brain and can occur duringpregnancy, duringchildbirthor after birth up to about age three.Resulting limits in movement and posture cause activity limitation and are often accompanied by disturbances of sensation,depth perceptionand other sight-based perceptual problems, communication ability, impairments can also be found incognition; andepilepsyis found in 1/3. CP, no matter what the type, is often accompanied by secondary musculoskeletal problems that arise as a result of the underlying etiology.

Of the many types and subtypes of CP, none of them has a knowncure. Usually, medical intervention is limited to the treatment and prevention of complications arising from CPs effects.

Cerebral Palsy is divided into four major classifications to describe different movement impairments.

1. Spastic cerebral palsy is the most common type of overall cerebral palsy, occurring in 70% to 80% of all cases. People with this type of CP are hypertonic and have what is essentially a neuromuscular mobility impairment (rather than hypotonia or paralysis) stemming from an upper motor neuron lesion in the brain as well as the corticospinal tract or the motor cortex, this damage impairs the ability of some nerve receptors in the spine to properly receive gamma amino butyric acid, leading to hypertonia in the muscles signaled by those damaged nerves.

2. Ataxic type: These forms are less common types of cerebral palsy, occurring in less than 10% of all cases. Motor skills such as writing, typing, or using scissors might be affected, as well as balance, especially while walking. It is common for individuals to have difficulty with visual and/or auditory processing.

3. Athetoid or dyskinetic cerebral palsy is mixed muscle tone. People with athetoid CP have trouble holding themselves in an upright, steady position for sitting, standing or walking, and often show involuntary motions. It occurs in 10% to 20% of all cases

4. Hypotonia / hypotonic CP, people with hypotonic CP have musculature that is limp, and can move only minimally or not at all. It is the least common type of cerebral palsy.

See more here:
Stem Cells Cerebral Palsy

Posted in Arizona Stem Cells | Comments Off on Stem Cells Cerebral Palsy

Diabetes mellitus

Posted: May 30, 2015 at 6:49 am

This information is not meant to be a substitute for veterinary care. Always follow the instructions provided by your veterinarian.

Diabetes mellitus occurs when the pancreas doesn't produce enough insulin. Insulin is required for the body to efficiently use sugars, fats and proteins.

Diabetes most commonly occurs in middle age to older dogs and cats, but occasionally occurs in young animals. When diabetes occurs in young animals, it is often genetic and may occur in related animals. Diabetes mellitus occurs more commonly in female dogs and in male cats.

Certain conditions predispose a dog or cat to developing diabetes. Animals that are overweight or those with inflammation of the pancreas are predisposed to developing diabetes. Some drugs can interfere with insulin, leading to diabetes. Glucocorticoids, which are cortisone-type drugs, and hormones used for heat control are drugs that are most likely to cause diabetes. These are commonly used drugs and only a small percentage of animals receiving these drugs develop diabetes after long term use.

The body needs insulin to use sugar, fat and protein from the diet for energy. Without insulin, sugar accumulates in the blood and spills into the urine. Sugar in the urine causes the pet to pass large amounts of urine and to drink lots of water. Levels of sugar in the brain control appetite. Without insulin, the brain becomes sugar deprived and the animal is constantly hungry, yet they may lose weight due to improper use of nutrients from the diet. Untreated diabetic pets are more likely to develop infections and commonly get bladder, kidney, or skin infections. Diabetic dogs, and rarely cats, can develop cataracts in the eyes. Cataracts are caused by the accumulation of water in the lens and can lead to blindness. Fat accumulates in the liver of animals with diabetes. Less common signs of diabetes are weakness or abnormal gait due to nerve or muscle dysfunction. There are two major forms of diabetes in the dog and cat: 1) uncomplicated diabetes and 2) diabetes with ketoacidosis. Pets with uncomplicated diabetes may have the signs just described but are not extremely ill. Diabetic pets with ketoacidosis are very ill and may be vomiting and depressed.

The diagnosis of diabetes is made by finding a large increase in blood sugar and a large amount of sugar in the urine. Animals, especially cats, stressed by having a blood sample drawn, can have a temporary increase in blood sugar, but there is no sugar in the urine. A blood screen of other organs is obtained to look for changes in the liver, kidney and pancreas. A urine sample may be cultured to look for infection of the kidneys or bladder. Diabetic patients with ketoacidosis may have an elevation of waste products that are normally removed by the kidneys.

The treatment is different for patients with uncomplicated diabetes and those with ketoacidosis. Ketoacidotic diabetics are treated with intravenous fluids and rapid acting insulin. This treatment is continued until the pet is no longer vomiting and is eating, then the treatment is the same as for uncomplicated diabetes.

the inset picture shows the top of the insulin bottle

Diabetes is managed long term by the injection of insulin by the owner once or twice a day. Some diabetic cats can be treated with oral medications instead of insulin injections, but the oral medications are rarely effective in the dog. There are three general types of insulin used in dogs and cats:

In general, cats and small dogs need insulin injections more frequently, usually twice daily, compared to large breed dogs that may only require one dose of insulin daily. The action of insulin varies in each individual and some large dogs will need 2 insulin shots daily. The insulin needs of the individual animal are determined by collecting small amounts of blood for glucose (sugar) levels every 1-2 hours for 12-24 hours. This is called an insulin-glucose-response curve. When insulin treatment is first begun, it is often necessary to perform several insulin-glucose-response curves to determine:

The rest is here:
Diabetes mellitus

Posted in Diabetes | Comments Off on Diabetes mellitus

Stem Cell Clinic

Posted: May 29, 2015 at 8:40 pm

iPSC are derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state that enables the development of an unlimited source of any type of human cell needed for therapeutic purposes. For example, iPSC can be prodded into becoming beta islet cells to treat diabetes, blood cells to create new blood free of cancer cells for a leukemia patient, or neurons to treat neurological disorders

Source Link(s) Are Here

Induced Pluripotent Stem Cells (iPS) | UCLA Broad Stem ...

Induced stem cells (iSC) are stem cells artificially derived from somatic, reproductive, pluripotent or other cell types by deliberate epigenetic reprogramming.

Source Link(s) Are Here

Induced stem cells - Wikipedia, the free encyclopedia

Volume 11, Issue 5, October 2013, Pages 299303 Special Issue: Induced Pluripotent Stem Cells Edited By Qi Zhou Induced pluripotent stem (iPS) cells can be generated by forced expression of four pluripotency factors in somatic cells.

Source Link(s) Are Here

Pluripotency of Induced Pluripotent Stem Cells

Our center is a research affiliate of Cell Surgical Network (CSN). Carolina Stem Cell uses adipose derived mesenchymal stem cells for deployment & clinical research. Early stem cell research has traditionally been associated with the controversial use of embryonic stem cells

See the article here:
Stem Cell Clinic

Posted in Stell Cell Genetics | Comments Off on Stem Cell Clinic

Page 1,786«..1020..1,7851,7861,7871,788..1,8001,810..»