Page 1,889«..1020..1,8881,8891,8901,891..1,9001,910..»

Skin cancer: New mechanism involved in tumor initiation, growth and progression

Posted: January 10, 2015 at 3:40 pm

Squamous cell carcinoma (SCC) represents the second most frequent skin cancer with more than half million new patients affected every year in the world. Cancer stem cells (CSCs) are a population of cancer cells that have been described in many different cancers, including skin SCCs and that feed tumor growth, could be resistant to therapy thus being responsible for tumor relapse after therapy. However, still very little is known about the mechanisms that regulate CSCs functions.

In a new study published and making the cover of Cell Stem Cell, researchers led by Pr. Cdric Blanpain, MD/PhD, professor and WELBIO investigator at the IRIBHM, Universit libre de Bruxelles, Belgium, report the mechanisms regulating the different functions of Twist1 controlling skin tumour initiation, cancer stem cell function and tumor progression.

Benjamin Beck and colleagues used state of the art genetic mouse models to dissect, the functional role and molecular mechanisms by which Twist1 controls tumor initiation, cancer stem cell function and tumor progression. In collaboration with Dr Sandrine Rorive and Pr Isabelle Salmon from the department of Pathology at the Erasme Hospital, ULB and the group of Jean-Christophe Marine (VIB, KUL Leuven), they demonstrated that while Twist1 is not expressed in the normal skin, Twist1 deletion prevents skin cancer formation demonstrating the essential role of Twist1 during tumorigenesis. "It was really surprising to observe the essential role of Twist1 at the earliest step of tumor formation, as Twist1 was thought to stimulate tumor progression and metastasis" comments Benjamin Beck, the first author of this study.

The authors demonstrate that different levels of Twist1 are necessary for tumor initiation and progression. Low level of Twist1 is required for the initiation of benign tumors, while higher level of Twist1 is necessary for tumor progression. They also demonstrate that Twist1 is essential for tumor maintenance and the regulation of cancer stem cell function. The researchers also uncovered that the different functions of Twist1 are regulated by different molecular mechanisms, and identified a p53 independent role of Twist1 in regulating cancer stem cell functions.

In conclusion, this work shows that Twist1, a well-known regulator of tumor progression, is necessary for tumor initiation, regulation of cancer stem cell function and malignant progression. "It was really interesting to see that different levels of Twist1 are required to carry out these different tumor functions and that these different Twist1 functions are regulated by different molecular pathways. Given the diversity of cancers expressing Twist1, the identification of the different mechanisms controlled by Twist1 are likely to be relevant for other cancers" comments Cdric Blanpain, the last and corresponding author of this study.

Story Source:

The above story is based on materials provided by Libre de Bruxelles, Universit. Note: Materials may be edited for content and length.

The rest is here:
Skin cancer: New mechanism involved in tumor initiation, growth and progression

Posted in Stem Cell Therapy | Comments Off on Skin cancer: New mechanism involved in tumor initiation, growth and progression

CSU research on horse injuries, stem-cell recovery, may help humans

Posted: January 10, 2015 at 1:47 am

Doctors, nurses and anesthesiologist's care for a horse that will be receiving stem cells to help repair a meniscal tear in the stifle at the CSU Veterinary Teaching Hospital in Fort Collins. (Joe Amon, The Denver Post)

Stem-cell research by Colorado State University staffers using bone marrow from horses to heal joint injuries on the same animal is making strides, and researchers have great hope that the project will lead to human medical applications.

A team with CSU's Equine Orthopaedic Research Center reports that adding stem-cell therapy to traditional arthroscopic surgery on horses has significantly increased success rates.

Horses that had follow-up, stem-cell treatment were twice as likely to return to normal activity as those that did not, said David Frisbie, an associate professor of equine surgery with CSU and part of the research team.

"We've doubled it, conservatively," in treating cartilage damage in the knee, Frisbie said.

The team had results of its work published last year in the journal Veterinary Surgery.

Some lesions in the meniscus of horses that could not be treated by surgery have been successfully mended using stem cells alone.

"Western performance horses, reining and cutting horses, and barrel horses are very prone to meniscal injuries," Frisbie said.

Beyond meniscus damage, researchers also have focused on tendon lesions in the lower leg, which typically strike race horses.

Horses that suffered a tendon lesion had about a 66 percent chance of reinjury after surgery. Add stem-cell treatment and the reinjury rate drops to 21 percent, Frisbie said.

Continue reading here:
CSU research on horse injuries, stem-cell recovery, may help humans

Posted in Cell Therapy | Comments Off on CSU research on horse injuries, stem-cell recovery, may help humans

Quadriplegic veteran to receive stem cell treatments

Posted: January 9, 2015 at 3:56 am

LAWTON, Okla._A stem cell surgery procedure, not yet approved by the FDA, could give a local paralyzed veteran the use of his arms again.

Two years ago, retired Senior Airman Ted "TJ" Williams was left as a quadriplegic when his Humvee rolled over in a freak accident while on duty in Montana. He spent several weeks in a coma.

Now, he and his wife have found a surgery that may improve his physical abilities. They're dipping into their funds to pay for the procedure, since it's not covered by insurance, but they've set up a GoFundMe account to raise $7,500 to cover travel expenses out of the country to get the treatment.

Williams is able to move his left wrist and arm more, and has even gained more core control, thanks to therapy. But, he still needs his wife's help for simple tasks like getting dressed and using the restroom.

Williams sits next to his wife in his wheelchair and watches TV. Years ago, he would've been running outside, but one accident changed everything.

"I just remember leaving base and then waking up 2 or 3 weeks later, wondering where am I. I couldn't move anything. It was just shocking seeing my family around my bed. I was just like, Wow. What's going on,'" recalled Williams.

On November 29, 2012, Williams was on duty with his security forces team. He was in the back seat when his Humvee suddenly swerved to miss a herd of deer, rolling several times. He was ejected from the vehicle and was later found 60 feet away.

Williams was rushed to the hospital. When he woke up from the coma, doctors told him he had broken the vertebrae in his neck and lost function from the chest down.

"I was really upset and scared. Me and my wife are young. We haven't had children yet or anything. It scared me not knowing what the future was to hold," said Williams.

He was sent to a VA hospital in San Antonio for in-patient rehab. Once he was finished, he met a physical trainer in who specializes in exercises for those who are suffering from spinal cord and other neurological injuries, which was just what he needed.

View original post here:
Quadriplegic veteran to receive stem cell treatments

Posted in Montana Stem Cells | Comments Off on Quadriplegic veteran to receive stem cell treatments

Functional tissue-engineered intestine grown from human cells

Posted: January 9, 2015 at 3:52 am

A new study by researchers at Children's Hospital Los Angeles has shown that tissue-engineered small intestine grown from human cells replicates key aspects of a functioning human intestine. The tissue-engineered small intestine they developed contains important elements of the mucosal lining and support structures, including the ability to absorb sugars, and even tiny or ultra-structural components like cellular connections.

Published online January 8 by the American Journal of Physiology: GI & Liver, the work brings surgeons one step closer to helping human patients using this regenerative medicine technique.

Tissue-engineered small intestine (TESI) grows from stem cells contained in the intestine and offers a promising treatment for short bowel syndrome (SBS), a major cause of intestinal failure, particularly in premature babies and newborns with congenital intestinal anomalies. TESI may one day offer a therapeutic alternative to the current standard treatment, which is intestinal transplantation, and could potentially solve its largest challenges -- donor shortage and the need for lifelong immunosuppression.

Tracy C. Grikscheit, MD, a principal investigator in The Saban Research Institute of CHLA and its Developmental Biology and Regenerative Medicine program, is also a pediatric surgeon at Children's Hospital Los Angeles and an assistant professor of surgery at the Keck School of Medicine of the University of Southern California.

Grikscheit aims to help her most vulnerable young patients, including babies who are born prematurely and develop a devastating disease called necrotizing enterocolitis (NEC), where life-threatening intestinal damage requires removal of large portions of the small intestine. Without enough intestinal length, the babies are dependent on intravenous feeding, which is costly and may cause liver damage. NEC and other contributors to intestinal failure occur in 24.5 out of 100,000 live births, and the incidence of SBS is increasing. Nearly a third of patients die within five years.

CHLA scientists had previously shown that TESI could be generated from human small intestine donor tissue implanted into immunocompromised mice. However, in those initial studies -- published in July 2011 in the biomedical journal Tissue Engineering, Part A -- only basic components of the intestine were identified. For clinical relevance, it remained necessary to more fully investigate intact components of function such as the ability to form a healthy barrier while still absorbing nutrition or specific mechanisms of electrolyte exchange.

The new study determined that mouse TESI is highly similar to the TESI derived from human cells, and that both contain important building blocks such as the stem and progenitor cells that will continue to regenerate the intestine as a living tissue replacement. And these cells are found within the engineered tissue in specific locations and in close proximity to other specialized cells that are known to be necessary in healthy human intestine for a fully functioning organ.

"We have shown that we can grow tissue-engineered small intestine that is more complex than other stem cell or progenitor cell models that are currently used to study intestinal regeneration and disease, and proven it to be fully functional as it develops from human cells," said Grikscheit. "Demonstrating the functional capacity of this tissue-engineered intestine is a necessary milestone on our path toward one day helping patients with intestinal failure."

Story Source:

The above story is based on materials provided by Childrens Hospital Los Angeles. Note: Materials may be edited for content and length.

Link:
Functional tissue-engineered intestine grown from human cells

Posted in California Stem Cells | Comments Off on Functional tissue-engineered intestine grown from human cells

Researchers Grow Functional Tissue-Engineered Intestine from Human Cells

Posted: January 8, 2015 at 11:46 pm

Contact Information

Available for logged-in reporters only

Newswise A new study by researchers at Childrens Hospital Los Angeles has shown that tissue-engineered small intestine grown from human cells replicates key aspects of a functioning human intestine. The tissue-engineered small intestine they developed contains important elements of the mucosal lining and support structures, including the ability to absorb sugars, and even tiny or ultra-structural components like cellular connections.

Published online January 8 by the American Journal of Physiology: GI & Liver, the work brings surgeons one step closer to helping human patients using this regenerative medicine technique.

Tissue-engineered small intestine (TESI) grows from stem cells contained in the intestine and offers a promising treatment for short bowel syndrome (SBS), a major cause of intestinal failure, particularly in premature babies and newborns with congenital intestinal anomalies. TESI may one day offer a therapeutic alternative to the current standard treatment, which is intestinal transplantation, and could potentially solve its largest challenges donor shortage and the need for lifelong immunosuppression.

Tracy C. Grikscheit, MD, a principal investigator in The Saban Research Institute of CHLA and its Developmental Biology and Regenerative Medicine program, is also a pediatric surgeon at Childrens Hospital Los Angeles and an assistant professor of surgery at the Keck School of Medicine of the University of Southern California.

Grikscheit aims to help her most vulnerable young patients, including babies who are born prematurely and develop a devastating disease called necrotizing enterocolitis (NEC), where life-threatening intestinal damage requires removal of large portions of the small intestine. Without enough intestinal length, the babies are dependent on intravenous feeding, which is costly and may cause liver damage. NEC and other contributors to intestinal failure occur in 24.5 out of 100,000 live births, and the incidence of SBS is increasing. Nearly a third of patients die within five years.

CHLA scientists had previously shown that TESI could be generated from human small intestine donor tissue implanted into immunocompromised mice. However, in those initial studies published in July 2011 in the biomedical journal Tissue Engineering, Part A only basic components of the intestine were identified. For clinical relevance, it remained necessary to more fully investigate intact components of function such as the ability to form a healthy barrier while still absorbing nutrition or specific mechanisms of electrolyte exchange.

The new study determined that mouse TESI is highly similar to the TESI derived from human cells, and that both contain important building blocks such as the stem and progenitor cells that will continue to regenerate the intestine as a living tissue replacement. And these cells are found within the engineered tissue in specific locations and in close proximity to other specialized cells that are known to be necessary in healthy human intestine for a fully functioning organ.

We have shown that we can grow tissue-engineered small intestine that is more complex than other stem cell or progenitor cell models that are currently used to study intestinal regeneration and disease, and proven it to be fully functional as it develops from human cells, said Grikscheit. Demonstrating the functional capacity of this tissue-engineered intestine is a necessary milestone on our path toward one day helping patients with intestinal failure.

Here is the original post:
Researchers Grow Functional Tissue-Engineered Intestine from Human Cells

Posted in Regenerative Medicine | Comments Off on Researchers Grow Functional Tissue-Engineered Intestine from Human Cells

Stem Cells Dr. Newman – Video

Posted: January 8, 2015 at 11:40 pm


Stem Cells Dr. Newman
Dr Newman is the innovator who formulated our anti-aging skin care line. Watch as he answers some inportant questions regarding the stem cell skin care. Feel free to contact me for more informatio...

By: Jeff Valentine

Read this article:
Stem Cells Dr. Newman - Video

Posted in Stem Cell Videos | Comments Off on Stem Cells Dr. Newman – Video

Gamida Cell's NiCord gets FDA and EMA orphan drug status

Posted: January 8, 2015 at 5:46 am

Published 07 January 2015

Gamida Cell, a leader in cell therapy technologies and products for transplantation and adaptive immune therapy, announced that orphan drug designation has been granted by The US Department of Health and Human Services, The FDA Office of Orphan Products Development (OOPD) for the investigational medicinal product NiCord for the treatment of acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin lymphoma and myelodysplastic syndrome (MDS).

The FDA orphan drug designation coincides with the positive opinion of the European Medicines Agency's (EMA's) Committee for Orphan Medicinal Products (COMP) regarding NiCord as a treatment for AML. Gamida Cell intends to file for NiCord orphan drug status with the EMA for other indications as well.

"Receipt of orphan drug status for NiCord in the US and Europe advances Gamida Cell's commercialization plans a major step further, as both afford significant advantages. We very much appreciate the positive feedback and support of the FDA and EMA and look forward to continuing what has been a very positive dialogue with these important agencies," said Gamida Cell president and CEO Dr. Yael Margolin.

The FDA and EMA grant an orphan drug designation to promote the development of products that demonstrate promise for the treatment of rare diseases or conditions. Orphan drug designation provides for various regulatory and economic benefits, including seven years of market exclusivity in the U.S. and 10 years in the EU.

NiCord is derived from a single cord blood unit which has been expanded in culture and enriched with stem cells using Gamida Cell's proprietary NAM technology.

It is currently being tested in a Phase I/II study as an investigational therapeutic treatment for hematological malignancies such as leukemia and lymphoma. In this study, NiCord is being used as the sole stem cell source.

See more here:
Gamida Cell's NiCord gets FDA and EMA orphan drug status

Posted in Cell Therapy | Comments Off on Gamida Cell's NiCord gets FDA and EMA orphan drug status

A Simple Stem Cells Explanation… – Video

Posted: January 7, 2015 at 6:44 pm


A Simple Stem Cells Explanation...
A simple explanation of stem cells and they #39;re roll in our health and longevity.

By: Rob Witty

See the rest here:
A Simple Stem Cells Explanation... - Video

Posted in Stem Cell Videos | Comments Off on A Simple Stem Cells Explanation… – Video

My acne and Jeunesse – Video

Posted: January 7, 2015 at 5:45 am


My acne and Jeunesse
Facial cleansing and skin care based on stem cells of Jeunesse Luminesce Rejuvenation Serum. See Details - http://www.circlekk.com/testimonial/acne-jeunesse-luminesce-rejuvenation-serum/ ...

By: Jeunesse Global Circle

Read the original post:
My acne and Jeunesse - Video

Posted in Stem Cell Videos | Comments Off on My acne and Jeunesse – Video

Circadian rhythms regulate skin stem cell metabolism and expansion, study finds

Posted: January 7, 2015 at 2:46 am

UC Irvine scientists studying the role of circadian rhythms in skin stem cells found that this clock plays a key role in coordinating daily metabolic cycles and cell division.

Their research, which appears Jan. 6 in Cell Reports, shows for the first time how the body's intrinsic day-night cycles protect and nurture stem cell differentiation. Furthermore, this work offers novel insights into a mechanism whereby an out of synch circadian clock can contribute to accelerated skin aging and cancers.

Bogi Andersen, professor of biological chemistry and medicine, and Enrico Gratton, professor of biomedical engineering, focused their efforts on the epidermis, the outermost protective layer of the skin that is maintained and healed by long-lived stem cells.

While the role of the circadian clock in processes such as sleep, feeding behavior and metabolism linked to feeding and fasting are well known, much less is known about whether the circadian clock also regulates stem cell function.

The researchers used novel two-photon excitation and fluorescence lifetime imaging microscopy in Laboratory of Fluorescence Dynamics in UCI's Department of Biomedical Engineering to make sensitive and quantitative measurements of the metabolic state of single cells within the native microenvironment of living tissue.

They discovered that the circadian clock regulates one form of intermediary metabolism in these stem cells, referred to as oxidative phosphorylation. This type of metabolism creates oxygen radicals that can damage DNA and other components of the cell. In fact, one theory of aging posits that aging is caused by the accumulative damage from metabolism-generated oxygen radicals in stem cells.

The Andersen-Gratton study also revealed that the circadian clock within stem cells shifts the timing of cell division such that the stages of the cell division cycle that are most sensitive to DNA damage are avoided during times of maximum oxidative phosphorylation.

Other studies in animals have linked aging to disruption of circadian rhythms, and Andersen said that accelerated aging could be caused by asynchrony in the metabolism and cell proliferation cycles in stem cells.

"Our studies were conducted in mice, but the greater implication of the work relates to the fact that circadian disruption is very common in modern society, and one consequence of such disruption could be abnormal function of stem cells and accelerated aging," he said.

Andersen adds that it is possible that future studies could advance therapeutic insights from this research.

See original here:
Circadian rhythms regulate skin stem cell metabolism and expansion, study finds

Posted in Cell Medicine | Comments Off on Circadian rhythms regulate skin stem cell metabolism and expansion, study finds

Page 1,889«..1020..1,8881,8891,8901,891..1,9001,910..»