Page 1,917«..1020..1,9161,9171,9181,919..1,9301,940..»

Vast Majority of Life-Saving Cord Blood Sits Unused

Posted: December 5, 2014 at 12:47 pm

High costs keep patients from using stem cells harvested from umbilical cords

Scientists are studying ways to treat HIV, cerebral palsy and other diseases using umbilical cord blood, although little of the collected blood will actually be used. Credit:Banc de Sang via flickr

Youd think doctors and patients would be clamoring for cells so versatile they could help reboot a body suffering from everything from leukemia to diabetes. But a new report shows that an important source of these stem cellsdiscarded umbilical cordsis rarely used because of high costs and the risk of failure.

Stem cells drawn from newborns umbilical cord blood are sometimes used to treat medical conditions, especially bone and blood cancers like multiple myeloma or lymphoma by replacing dysfunctional blood-producing cells in bone marrow. Generally the diseased cells are destroyed with chemotherapy and irradiation. Then new stem cells are transplanted into the patient to restore function. Cord blood stem cells are an alternative to bone marrow transplants and peripheral blood transplants, in which stem cells are gathered from the blood stream. Cord blood tends to integrate better with the body and it is easier to find a suitable donor than the alternatives.

Yet less than 3 percent of cord blood collected in the U.S. is ever used whereas the rest sits uselessly in blood banks, according to a recent report in Genetic Engineering & Biotechnology News. Immunologist Enal Razvi is author of the report and managing director of Select Biosciences, a biotechnology consulting agency. Razvi found that public cord blood banks, which store donated frozen units for transplants as needed, have only a 1 to 3 percent turnover annually. Most of their inventory sits unused year after year. For example, at Community Blood Services in New Jersey, patients have only used 278 of its 13,000 cords since it opened in 1996, according to business development director Misty Marchioni. Usage is even lower at private cord blood banks, which charge clients thousands of dollars to store a cord in the event a family member one day needs it.

Unlike bone marrow, the main alternative stem cell source, cells transplanted from cord blood carry little risk of graft-versus-host disease, a deadly condition in which the body rejects a transplant. Scientists believe this is because a babys immune system is closer to a blank slate, so their stem cells can integrate with the patients body more easily. But cord blood transplants also take longer to start working, requiring longer hospital stays and upping the bill. Due to storage and testing costs, the cords themselves also get pricy. The cost of the cord is prohibitively high, Razvi explains. Each unit of cord blood costs between $35,000 and $40,000 and most adults require two units for a successful transplant. Insurance companies will generally pay a set amount for a stem cell transplant regardless of where the cells come from. The price tag on a cord blood transplant can run up to $300,000, which may not be fully covered.

Cord blood stem cell transplants also have a higher failure rate than other transplant methods. If the transplant fails, it leaves patients with a compromised immune system in addition to their original disease and medical bills. Because the preparation for transplant includes wiping out the patients original bone marrow, the entire body has to be repopulated with stem cells able to replace it. There are not many stem cells in each cord. Compared with bone marrow or peripheral blood there is a greater chance that there will not be enough stem cells that actually implant and begin producing blood and bone marrow. Its like spreading a small amount of seeds in a big garden, says Mitchell Horwitz, who teaches cell therapy at Duke University Medical Center. Sometimes it just doesnt take.

Martin Smithmyer, chief executive of the private bank Americord, claims that more clients will eventually use their cords, especially as more applications are found for cord blood stem cells. But some scientists disagree. Steven Joffe, a professor of medical ethics at the University of Pennsylvania Perelman School of Medicine, says that many treatments cannot be done with a patients own stem cells because genetic diseases would already be present in the cord blood and that bone marrow might be a better option for relatives. The likelihood they are ever going to use that product is vanishingly small, he says.

Despite the low usage, advocates say cord blood programs have been crucial in improving transplant options for racial minorities, because it can be hard to find a bone marrow match for some groups. Cord blood does not need to match the patient as perfectly as bone marrow. This has transformed the treatment of minority patients, says Andromachi Scaradavou, medical director of the National Cord Blood Program, a public bank based in New York City. In the past we didnt have good donors to offer them. Community Blood Servicess Marchioni also maintains that cord blood is a good emergency option, because finding a compatible bone marrow or peripheral blood donor can take months or years. If you need a transplant quickly, she says, its easy to get cord blood off of a shelf.

Still, experts are working on more efficient ways of ensuring widespread availability of cord blood without having so much of it sit forever unused. Researchers are also continuing to look for ways to improve transplant success and to increase the number of stem cells obtained from each cord, potentially bringing down costs and making cord blood transplants feasible for more patients. If the cost could be lowered, Scaradavou says, it would help a lot of patients get the treatment they need.

Read more:
Vast Majority of Life-Saving Cord Blood Sits Unused

Posted in Stem Cells | Comments Off on Vast Majority of Life-Saving Cord Blood Sits Unused

Laminine – Seminar Diabetes – Video

Posted: December 5, 2014 at 12:44 pm


Laminine - Seminar Diabetes
Apa manfaat Laminine bagi penderita diabetes? Kunjungi website kami facebook: http://www.facebook.com/superlaminine website : http://lamininestemcell.com Contacts: LIA MASTURA Phone: ...

By: Laminine Nutrisi Stem Cell Terbaik

Visit link:
Laminine - Seminar Diabetes - Video

Posted in Diabetes | Comments Off on Laminine – Seminar Diabetes – Video

Asymmetrex Stem Cell Medicine – Video

Posted: December 5, 2014 at 12:41 pm


Asymmetrex Stem Cell Medicine

By: Brad Cooper

Read this article:
Asymmetrex Stem Cell Medicine - Video

Posted in Cell Medicine | Comments Off on Asymmetrex Stem Cell Medicine – Video

Uniting the Global Stem Cell Community

Posted: December 5, 2014 at 12:41 pm

Posted by Dana Sparks (@danasparks) 3 day(s) ago

Uniting the Global Stem Cell Community

The World Stem Cell Summit, December 3-5 in San Antonio, unites and educates the global stem cell community. With more than 1,200 attendees from more than 40 countries, the annual World Stem Cell Summits interdisciplinary agenda explores disease updates, research directions, cell standardization, regulatory pathways, reimbursements, financing, venture capital and economic development.

Throughout the week, the Mayo Clinic Center for Regenerative Medicine will use social media to connect using the hashtag #WSCS14. At the end of the week, we'll let the tweets, Google+ posts, Flickr photos, Facebook posts and YouTube videos tell the story.

The World Stem Cell Summit includes in-depth programming and more than 200 international speakers, including leaders from theMayo Clinic Center for Regenerative Medicine:

About the World Stem Cell SummitMayo Clinic, The University of Texas Health Science Center at San Antonio, Kyoto University Institute for Integrated Cell-Material Sciences (iCeMS), BioBridge Global, Baylor College of Medicine and the Regenerative Medicine Foundation have joined the Genetics Policy Institute to organize the10th Annual World Stem Cell Summit the largest and most comprehensive multi-track interdisciplinary stem cell conference.

Related LinksMayo Clinic at World Stem Cell Summit 2013Mayo Clinic at World Stem Cell Summit 2012

Regenerative MedicineWorld Stem Cell Summit

Originally posted here:
Uniting the Global Stem Cell Community

Posted in Cell Medicine | Comments Off on Uniting the Global Stem Cell Community

Cytori Expects New Japan Laws to Boost Adoption of Cytori Cell Therapy

Posted: December 5, 2014 at 12:41 pm

SAN DIEGO--(BUSINESS WIRE)--Cytori Therapeutics, Inc. (NASDAQ: CYTX) today confirmed that two Japanese regenerative medicine laws, which went into effect on November 25, 2014, remove regulatory uncertainties and provide a clear path for the Company to commercialize and market Cytori Cell Therapy and its Celution System under the Companys existing and planned regulatory approvals.

Japans new regenerative medicine laws substantially clarify regulatory ambiguities of pre-existing guidelines and this news represents a significant event for Cytori, said Dr. Marc Hedrick, President & CEO of Cytori. We have a decade of operating experience in Japan and Cytori is nicely positioned to see an impact both on existing commercial efforts and on our longer-term efforts to obtain therapeutic claims and reimbursement for our products.

Under the two new laws, Cytori believes its Celution System and autologous adipose-derived regenerative cells (ADRCs) can be provided by physicians under current Class I device regulations and used under the lowest risk category (Tier 3) for many procedures with only the approval by accredited regenerative medicine committees and local agencies of the Ministry of Health, Labour and Welfare (MHLW). This regulatory framework is expected to streamline the approval and regulatory process and increase clinical use of Cytori Cell Therapy and the Celution System over the former regulations.

Before these new laws were enacted, the regulatory pathway for clinical use of regenerative cell therapy was one-size-fits-all, irrespective of the risk posed by certain cell types and approaches, said Dr. Hedrick. Now, Cytoris point-of-care Celution System can be transparently integrated into clinical use by providers under our Class I device status and the streamlined approval process granted to cell therapies that pose the lowest risk. Our technology is unique in that respect.

Cytoris Celution System Is in Lowest of Three Risk Categories

The Act on the Safety of Regenerative Medicines and an amendment of the 2013 Pharmaceutical Affairs Act (the PMD Act), collectively termed the Regenerative Medicine Laws, replace the Human Stem Cell Guidelines. Under the new laws, the cell types used in cell therapy and regenerative medicine are classified based on risk. Cell therapies using cells derived from embryonic, induced pluripotent, cultured, genetically altered, animal and allogeneic cells are considered higher risk (Tiers 1 and 2) and will undergo an approval pathway with greater and more stringent oversight due to the presumed higher risk to patients. Cytoris Celution System, which uses the patients own cells at the point-of-care, will be considered in the lowest risk category (Tier 3) for most cases, and will be considered in Tier 2 if used as a non-homologous therapy.

Streamlined Regulatory Approval for Certain Medical Devices

In the near future, Cytori intends to pursue disease-specific or therapeutic claims and reimbursement for Cytoris Celution System and the Company would, at that point, sponsor a clinical trial to obtain Class III device-based approval and reimbursement. The new laws include changes to streamline regulation of Class II and some Class III devices, which will now require the approval of certification bodies rather than the PMDA, similar to the European notified body model. To date, certification bodies have only been used for some Class II devices.

Conditional Regulatory Approval and Reimbursement Potential

As a supplementary benefit to Cytori, the Company may also choose to take advantage of the new conditional approval opportunities granted under the new laws. Once clinical safety and an indication of efficacy are shown, sponsors may apply for their cell product to receive conditional approval for up to seven years and may be eligible for reimbursement under Japans national insurance coverage. Under the conditional approval, the sponsor can then generate post-marketing data to demonstrate further efficacy and cost effectiveness.

See more here:
Cytori Expects New Japan Laws to Boost Adoption of Cytori Cell Therapy

Posted in Cell Medicine | Comments Off on Cytori Expects New Japan Laws to Boost Adoption of Cytori Cell Therapy

Predicting the storm: Can computer models improve stem cell transplantation?

Posted: December 5, 2014 at 12:41 pm

PUBLIC RELEASE DATE:

4-Dec-2014

Contact: John Wallace wallacej@vcu.edu 804-628-1550 Virginia Commonwealth University @vcunews

Is the human immune system similar to the weather, a seemingly random yet dynamical system that can be modeled based on past conditions to predict future states? Scientists at VCU Massey Cancer Center's award-winning Bone Marrow Transplant (BMT) Program believe it is, and they recently published several studies that support the possibility of using next-generation DNA sequencing and mathematical modeling to not only understand the variability observed in clinical outcomes of stem cell transplantation, but also to provide a theoretical framework to make transplantation a possibility for more patients who do not have a related donor.

Despite efforts to match patients with genetically similar donors, it is still nearly impossible to predict whether a stem cell transplant recipient will develop potentially fatal graft-versus-host disease (GVHD), a condition where the donor's immune system attacks the recipient's body. Two studies recently published by the online journal Frontiers in Immunology explored data obtained from the whole exome sequencing of nine donor-recipient pairs (DRPs) and found that it could be possible to predict which patients are at greatest risk for developing GVHD and, therefore, in the future tailor immune suppression therapies to possibly improve clinical outcomes. The data provides evidence that the way a patient's immune system rebuilds itself following stem cell transplantation is representative of a dynamical system, a system in which the current state determines what future state will follow.

"The immune system seems chaotic, but that is because there are so many variables involved," says Amir Toor, M.D., member of the Developmental Therapeutics research program at Massey and associate professor in the Division of Hematology, Oncology and Palliative Care at the VCU School of Medicine. "We have found evidence of an underlying order. Using next-generation DNA sequencing technology, it may be possible to account for many of the molecular variables that eventually determine how well a donor's immune system will graft to a patient."

Toor's first study revealed a large and previously unmeasured potential for developing GVHD for which the conventional approach used for matching DRPs does not account. The conventional approach for donor-recipient compatibility determination uses human leucocyte antigen (HLA) testing. HLA refers to the genes that encode for proteins on the surface of cells that are responsible for regulating the immune system. HLA testing seeks to match DRPs who have similar HLA makeup.

Specifically, Toor and his colleagues used whole exome sequencing to examine variation in minor histocompatibility antigens (mHA) of transplant DRPs. These mHA are protein fragments presented on the HLA molecules, which are the receptors on cells' surface to which these fragments of degraded proteins from within a cell bind in order to promote an immune response. Using advanced computer-based analysis, the researchers examined potential interactions between the mHA and HLA and discovered a high level of mHA variation in HLA-matched DRPs that could potentially contribute to GVHD. These findings may help explain why many HLA-matched recipients experience GVHD, but why some HLA-mismatched recipients experience none remains a mystery. This seeming paradox is explained in a companion paper, also published in the journal Frontiers in Immunology. In this manuscript, the team suggests that by inhibiting peptide generation through immunosuppressive therapies in the earliest weeks following stem cell transplantation, antigen presentation to donor T cells could be diminished, which reduces the risk of GVHD as the recipients reconstitute their T-cell repertoire.

Following stem cell transplantation, a patient begins the process of rebuilding their T-cell repertoire. T cells are a family of immune system cells that keep the body healthy by identifying and launching attacks against pathogens such as bacteria, viruses or cancer. T cells have small receptors that recognize antigens. As they encounter foreign antigens, they create thousands of clones that can later be called upon to guard against the specific pathogen that presented the antigen. Over the course of a person's life, they will develop millions of these clonal families, which make up their T-cell repertoire and protect them against the many threats that exist in the environment.

This critical period where the patient rebuilds their immune system was the focus of the researchers' efforts. In previous research, Toor and his colleagues discovered a fractal pattern in the DNA of recipients' T-cell repertoires. Fractals are self-similar patterns that repeat themselves at every scale. Based on their data, the researchers believe that the presentation of minor histocompatability antigens following transplantation helps shape the development of T-cell clonal families. Thus, inhibiting this antigen presentation through immunosuppressive therapies in patients who have high mHA variation can potentially reduce the risk of GVHD by influencing the development of their T-cell repertoire. This is backed by data from clinical studies that show immune suppression soon after transplantation improves outcomes in unrelated DRPs.

Link:
Predicting the storm: Can computer models improve stem cell transplantation?

Posted in Cell Medicine | Comments Off on Predicting the storm: Can computer models improve stem cell transplantation?

New single-cell analysis reveals complex variations in stem cells

Posted: December 5, 2014 at 12:40 pm

PUBLIC RELEASE DATE:

4-Dec-2014

Contact: Kat J. McAlpine katherine.mcalpine@wyss.harvard.edu 617-432-8266 Wyss Institute for Biologically Inspired Engineering at Harvard @wyssinstitute

(BOSTON) -- Stem cells offer great potential in biomedical engineering due to their pluripotency, which is the ability to multiply indefinitely and also to differentiate and develop into any kind of the hundreds of different cells and bodily tissues. But the precise complexity of how stem cell development is regulated throughout states of cellular change has been difficult to pinpoint until now.

By using powerful new single-cell genetic profiling techniques, scientists at the Wyss Institute for Biologically Inspired Engineering and Boston Children's Hospital have uncovered far more variation in pluripotent stem cells than was previously appreciated. The findings, reported today in Nature, bring researchers closer to a day when many different kinds of stem cells could be leveraged for disease therapy and regenerative treatments.

"Stem cell colonies contain much variability between individual cells. This has been considered somewhat problematic for developing predictive approaches in stem cell engineering," said the study's co-senior author James Collins, Ph.D., who is a Wyss Institute Core Faculty member, the Henri Termeer Professor of Medical Engineering & Science at MIT, and a Professor of Biological Engineering at MIT. "Now, we have discovered that what was previously considered problematic variability could actually be beneficial to our ability to precisely control stem cells."

The research team has learned that there are many small fluctuations in the state of a stem cell's pluripotency that can influence which developmental path it will follow.

It's a very fundamental study but it highlights the wide range of states of pluripotency," said George Daley, study co-senior author, Director of Stem Cell Transplantation at Boston Children's Hospital and a Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. "We've captured a detailed molecular profile of the different states of stem cells."

Taking this into account, researchers are now better equipped to manipulate and precisely control which cell and tissue types will develop from an individual pluripotent stem cell or stem cell colony.

"The study was made possible through the use of novel technologies for studying individual cells, which were developed in part by collaborating groups at the Broad Institute, giving our team an unprecedented view of stem cell heterogeneity at the individual cell level," said Patrick Cahan, co-lead author on the study and Postdoctoral Fellow at Boston Children's Hospital and Harvard Medical School.

The rest is here:
New single-cell analysis reveals complex variations in stem cells

Posted in Stem Cell Therapy | Comments Off on New single-cell analysis reveals complex variations in stem cells

Professor Eva Sykova about experiments using stem cell in Institute of Experimantal Medicine – Video

Posted: December 5, 2014 at 7:47 am


Professor Eva Sykova about experiments using stem cell in Institute of Experimantal Medicine
In the Institute of Experimantal Medicine in Czech Republic scientists work on a lot of diseases, brain injury, spinal cord injury, Alzheimer #39;s disease, Parkinson #39;s disease, amyotrophic lathero...

By: Bio-Tech Media

See the article here:
Professor Eva Sykova about experiments using stem cell in Institute of Experimantal Medicine - Video

Posted in Stem Cell Videos | Comments Off on Professor Eva Sykova about experiments using stem cell in Institute of Experimantal Medicine – Video

Stem cells applications in CNS disorders – Professor Eva Sykova – Video

Posted: December 5, 2014 at 7:47 am


Stem cells applications in CNS disorders - Professor Eva Sykova
In central nervous system there are many diseases that are incurable. So far, scientists learned how to treat only the symptoms of those diseases, so stem cells are the only candidates to treat...

By: Bio-Tech Media

See the original post:
Stem cells applications in CNS disorders - Professor Eva Sykova - Video

Posted in Stem Cell Videos | Comments Off on Stem cells applications in CNS disorders – Professor Eva Sykova – Video

Stem Cell Therapy | stem cells osteoarthritis independent – Video

Posted: December 5, 2014 at 7:47 am


Stem Cell Therapy | stem cells osteoarthritis independent
http://www.arthritistreatmentcenter.com On the flip side, another study refutes the study I commented on the other day regarding stem cells from osteoarthritis patients Chondrogenic Potential...

By: Nathan Wei

Visit link:
Stem Cell Therapy | stem cells osteoarthritis independent - Video

Posted in Stem Cell Videos | Comments Off on Stem Cell Therapy | stem cells osteoarthritis independent – Video

Page 1,917«..1020..1,9161,9171,9181,919..1,9301,940..»