Page 1,940«..1020..1,9391,9401,9411,942..1,9501,960..»

Production of human motor neurons from stem cells gaining speed

Posted: November 11, 2014 at 11:49 am

Nov 10, 2014 Neurons (green) are detected by TuJI whereas motoneurons are revealed in red by the visicular transporter of acetylcholine. Credit: Inserm/Martinat, Ccile

The motor neurons that innervate muscle fibres are essential for motor activity. Their degeneration in many diseases causes paralysis and often death among patients. Researchers at the Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem - Inserm/AFM/UEVE), in collaboration with CNRS and Paris Descartes University, have recently developed a new approach to better control the differentiation of human pluripotent stem cells, and thus produce different populations of motor neurons from these cells in only 14 days. This discovery, published in Nature Biotechnology, will make it possible to expand the production process for these neurons, leading to more rapid progress in understanding diseases of the motor system, such as infantile spinal amyotrophy or amyotrophic lateral sclerosis (ALS).

Human pluripotent stem cells have the ability to give rise to every cell in the body. To understand and control their potential for differentiation in vitro is to offer unprecedented opportunities for regenerative medicine and for advancing the study of physiopathological mechanisms and the quest for therapeutic strategies. However, the development and realisation of these clinical applications is often limited by the inability to obtain specialised cells such as motor neurons from human pluripotent stem cells in an efficient and targeted manner. This inefficiency is partly due to a poor understanding of the molecular mechanisms controlling the differentiation of these cells.

Inserm researchers at the Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem - Inserm/French Muscular Dystrophy Association [AFM]/University of vry Val d'Essonne [UEVE]), in collaboration with CNRS and Paris-Descartes University, have developed an innovative approach to study the differentiation of human stem cells and thus produce many types of cells in an optimal manner.

"The targeted differentiation of human pluripotent stem cells is often a long and rather inefficient process. This is the case when obtaining motor neurons, although these are affected in many diseases. Today, we obtain these neurons with our approach in only 14 days, nearly twice as fast as before, and with a homogeneity rarely achieved," explains Ccile Martinat, an Inserm Research Fellow at I-Stem.

To achieve this result, the researchers studied the interactions between some molecules that control embryonic development. These studies have made it possible to both better understand the mechanisms governing the generation of these neurons during development, and develop an optimal "recipe" for producing them efficiently and rapidly.

"We are now able to produce and hence study different populations of neurons affected to various degrees in diseases that cause the degeneration of motor neurons. We plan to study why some neurons are affected and why others are preserved," adds Stphane Nedelec, an Inserm researcher in Ccile Martinat's team.

In the medium term, the approach should contribute to the development of treatments for paralytic diseases such as infantile spinal muscular amyotrophy or amyotrophic lateral sclerosis. "Rapid access to large quantities of neurons will be useful for testing a significant number of pharmacological drugs in order to identify those capable of preventing the death of motor neurons," concludes Ccile Martinat.

Explore further: Team finds a better way to grow motor neurons from stem cells

More information: Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes, Nature Biotechnology, 17 Nov 2014. DOI: 10.1038/nbt.3049

Continued here:
Production of human motor neurons from stem cells gaining speed

Posted in Stem Cells | Comments Off on Production of human motor neurons from stem cells gaining speed

Production of human motor neurons from stem cells is gaining speed

Posted: November 11, 2014 at 11:43 am

PUBLIC RELEASE DATE:

10-Nov-2014

Contact: Ccile Martinat CMARTINAT@istem.fr 33-603-855-477 INSERM (Institut national de la sant et de la recherche mdicale) @inserm

This news release is available in French.

The motor neurons that innervate muscle fibres are essential for motor activity. Their degeneration in many diseases causes paralysis and often death among patients. Researchers at the Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem - Inserm/AFM/UEVE), in collaboration with CNRS and Paris Descartes University, have recently developed a new approach to better control the differentiation of human pluripotent stem cells, and thus produce different populations of motor neurons from these cells in only 14 days. This discovery, published in Nature Biotechnology, will make it possible to expand the production process for these neurons, leading to more rapid progress in understanding diseases of the motor system, such as infantile spinal amyotrophy or amyotrophic lateral sclerosis (ALS).

Human pluripotent stem cells have the ability to give rise to every cell in the body. To understand and control their potential for differentiation in vitro is to offer unprecedented opportunities for regenerative medicine and for advancing the study of physiopathological mechanisms and the quest for therapeutic strategies. However, the development and realisation of these clinical applications is often limited by the inability to obtain specialised cells such as motor neurons from human pluripotent stem cells in an efficient and targeted manner. This inefficiency is partly due to a poor understanding of the molecular mechanisms controlling the differentiation of these cells.

Inserm researchers at the Institute for Stem Cell Therapy and Exploration of Monogenic Diseases (I-Stem - Inserm/French Muscular Dystrophy Association [AFM]/University of vry Val d'Essonne [UEVE]), in collaboration with CNRS and Paris-Descartes University, have developed an innovative approach to study the differentiation of human stem cells and thus produce many types of cells in an optimal manner.

"The targeted differentiation of human pluripotent stem cells is often a long and rather inefficient process. This is the case when obtaining motor neurons, although these are affected in many diseases. Today, we obtain these neurons with our approach in only 14 days, nearly twice as fast as before, and with a homogeneity rarely achieved," explains Ccile Martinat, an Inserm Research Fellow at I-Stem.

To achieve this result, the researchers studied the interactions between some molecules that control embryonic development. These studies have made it possible to both better understand the mechanisms governing the generation of these neurons during development, and develop an optimal "recipe" for producing them efficiently and rapidly.

"We are now able to produce and hence study different populations of neurons affected to various degrees in diseases that cause the degeneration of motor neurons. We plan to study why some neurons are affected and why others are preserved," adds Stphane Nedelec, an Inserm researcher in Ccile Martinat's team.

See the rest here:
Production of human motor neurons from stem cells is gaining speed

Posted in Stem Cell Therapy | Comments Off on Production of human motor neurons from stem cells is gaining speed

Family's desperate bet on a diabetes cure

Posted: November 11, 2014 at 11:43 am

The day Olivia Cox was diagnosed with Type 1 diabetes at age 16, her mother vowed to find a cure.

"I said to her, "there's someone walking this Earth who has been cured of diabetes, and I'm going to find him," Ruth Cox said.

Cox's search started with a call to Harvard University and ended with a family trip to Lima, Peru. It was at a clinic there that now 18-year-old Olivia and her father, Jeff, 54, who also has diabetes, received an infusion of stem cells designed to wipe out diabetes in their bodies or, at the very least, lessen its impact. The treatment illegal in the United States cost $70,000 for both father and daughter. Two months later, the Niskayuna family is waiting for a transformation and wondering if, in their desperation for a cure, they were snookered by false promises.

Because stem cells can be programmed to become anything from heart muscle to toenails, stem cell therapy can hypothetically be used to treat anything, from baldness to Lou Gehrig's Disease. But the study of regenerative medicine is still nascent in the United States, where it is restricted to procedures that use the patient's own cells, and it has been primarily used in treating cancer a procedure that saved Ruth Cox 13 years ago, when she had breast cancer.

Stem cell treatment using donor cells is more common elsewhere in the world, but with varying results and none that could be described as a cure. An executive order from President Barack Obama opened up funding for stem cell research and there are now more than 4,000 clinical trials under way, some on animals and some recruiting people with various ailments.

The American Diabetes Association strongly supports stem cell research, according to a statement posted on its website, which reads in part:

"Scientists from across the United States and throughout the world, including those involved with the American Diabetes Association believe that stem cell research, especially embryonic stem cell research, holds great promise in the search for a cure and better treatments for diabetes."

Jeff Cox, diagnosed with Type 1 diabetes when he was 11, has suffered none of the complications that often come with the disease neuropathy, loss of vision and heart disease. But Cox said living with diabetes is hell. He pricks his finger at least a dozen times a day to check his blood sugar level, because it is a more precise reading than the glucose monitor he wears. He also wears a pump that he programs to inject him with insulin automatically based on his diet and exercise each day. All the therapies used to treat diabetes are designed to intervene where the pancreas has gone awry.

In Type 1 diabetes, the pancreas doesn't produce insulin due to an autoimmune attack against the beta cell that produces insulin the hormone that converts glucose into energy our bodies need to survive. The Coxes didn't want their daughter to face a lifetime of managing her diabetes. They wanted a cure, and they were willing to take a risk to find it.

In order to treat diabetes with stem cell therapy, pancreatic stem cells isolated from umbilical cord blood that are programmed to produce insulin, plus autologous mesenchymal stem cells from the patient's bone marrow, are injected. Once in the pancreas, the cells are supposed to replicate themselves, gradually replacing the non-insulin producing cells in the host's pancreas. The treatment is conducted in Peru, China, Russia and India and elsewhere, but Zubin Master, a bioethicist at Albany Medical College, said the risks of traveling abroad for stem cell therapy range from paying for an expensive treatment that doesn't work, to cancer and death.

Visit link:
Family's desperate bet on a diabetes cure

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Family's desperate bet on a diabetes cure

Mayo Clinic Researchers Identify First Steps in Formation of Pancreatic Cancer

Posted: November 10, 2014 at 12:06 pm

Released: 10-Nov-2014 9:00 AM EST Source Newsroom: Mayo Clinic Contact Information

Available for logged-in reporters only

Newswise JACKSONVILLE, Fla. Researchers at Mayo Clinics campus in Jacksonville say they have identified first steps in the origin of pancreatic cancer and that their findings suggest preventive strategies to explore.

In an online issue of Cancer Discovery, the scientists described the molecular steps necessary for acinar cells in the pancreas the cells that release digestive enzymes to become precancerous lesions. Some of these lesions can then morph into cancer.

Pancreatic cancer develops from these lesions, so if we understand how these lesions come about, we may be able to stop the cancer train altogether, says the studys lead investigator, Peter Storz, Ph.D., a cancer biologist.

The need for new treatment and prevention strategies is pressing, Dr. Storz says. Pancreatic cancer is one of the most aggressive human cancers symptoms do not occur until the cancer is well advanced. One-year survival after diagnosis is only 20 percent. It is the fourth leading cause of cancer death in this country.

The scientists studied pancreatic cells with Kras genetic mutations. Kras produces a protein that regulates cell division, and the gene is often mutated in many cancers. More than 95 percent of pancreatic cancer cases have a Kras mutation.

The researchers detailed the steps that led acinar cells with Kras mutations to transform into duct-like cells with stem cell-like properties. Stem cells, which can divide at will, are also often implicated in cancer.

They found that Kras proteins in the acinar cells induce the expression of a molecule, ICAM-1, which attracts macrophages, a specific kind of immune cells. These inflammatory macrophages release a variety of proteins, including some that loosen the structure of the cells, allowing acinar cells to morph into different types of cells. These steps produced the precancerous pancreatic lesions.

We show a direct link between Kras mutations and the inflammatory environment that drive the initiation of pancreatic cancer, Dr. Storz says.

Read the original here:
Mayo Clinic Researchers Identify First Steps in Formation of Pancreatic Cancer

Posted in Minnesota Stem Cells | Comments Off on Mayo Clinic Researchers Identify First Steps in Formation of Pancreatic Cancer

Stem cell therapy for sidelined star Smoko

Posted: November 10, 2014 at 11:50 am

Magnifisio dashed home strongly over 1400m to win Saturdays Lee-Steere Stakes at Ascot. Picture: Westernracepix

Sprinter Smoko will have stem cell therapy at Murdoch Veterinary Hospital to a strained suspensory ligament in his off-foreleg.

Vets found Smoko had strained the ligament when he pulled up sore following his shock sixth as a $2 favourite to Shining Knight in last Tuesday's Colonel Reeves Stakes (1100m) at Ascot.

Co-trainer Ross Price said Smoko would be sidelined for months.

"He will go to Murdoch where they will look at him and see about stem cell therapy," he said.

"In about 10 days we will take him up there and see what they can do. It is then going to be five months off and hoping."

Smoko was a $6.50 chance in Saturday week's Winterbottom Stakes (1200m) before he was scratched. WA's hopes of winning back the Group 1 weight-for-age hinge on Magnifisio, Shining Knight and Testamezzo, with Barakey in doubt after struggling to recover from a virus.

"He is still feeling flat and I will have to wait and see if he improves over the next few days," trainer Jim Taylor said.

Magnifisio firmed from $12 into $8 on the TAB yesterday following her strong win at her debut over 1400m in Saturday's Group 2 Lee-Steere Stakes at Ascot.

Melbourne sprinters Angelic Light, Moment Of Change and reigning champion Buffering dominate betting at $4.30, $6.50 and $7.50.

Here is the original post:
Stem cell therapy for sidelined star Smoko

Posted in Stem Cell Therapy | Comments Off on Stem cell therapy for sidelined star Smoko

Engineering Microenvironments for Stem Cells – Adam Engler, UC San Diego – Video

Posted: November 10, 2014 at 10:49 am


Engineering Microenvironments for Stem Cells - Adam Engler, UC San Diego
Speaker: Adam Engler, Ph.D., Associate Professor, Department of Bioengineering, UC San Diego.

By: Alliance for Regenerative Medicine

Visit link:
Engineering Microenvironments for Stem Cells - Adam Engler, UC San Diego - Video

Posted in Stem Cell Videos | Comments Off on Engineering Microenvironments for Stem Cells – Adam Engler, UC San Diego – Video

Engineering Microenvironments for Stem Cells – Shaochen Chen, UC San Diego – Video

Posted: November 10, 2014 at 10:49 am


Engineering Microenvironments for Stem Cells - Shaochen Chen, UC San Diego
Speaker: Shaochen Chen, Ph.D., Professor, NanoEngineering Bioengineering; Co-Director, Biomaterials Tissue Engineering Center, UC San Diego.

By: Alliance for Regenerative Medicine

Go here to read the rest:
Engineering Microenvironments for Stem Cells - Shaochen Chen, UC San Diego - Video

Posted in Stem Cell Videos | Comments Off on Engineering Microenvironments for Stem Cells – Shaochen Chen, UC San Diego – Video

Clinical Trials: Advanced Cell Technology – Stem Cell Therapy – Video

Posted: November 10, 2014 at 10:49 am


Clinical Trials: Advanced Cell Technology - Stem Cell Therapy
Last month (October 2014) in The Lancet, Advanced Cell Technology (ACT) published their preliminary phase 1 clinical data for their Stem Cell therapy trials for Stargardt #39;s Macular Dystrophy...

By: Essceejulies

See the original post:
Clinical Trials: Advanced Cell Technology - Stem Cell Therapy - Video

Posted in Stem Cell Videos | Comments Off on Clinical Trials: Advanced Cell Technology – Stem Cell Therapy – Video

Why Stem Cells Aren’t Being Tested in the US – Video

Posted: November 10, 2014 at 10:49 am


Why Stem Cells Aren #39;t Being Tested in the US
Stem cell treatment is restricted in the United States, and we discuss the reasons the FDA has been so restrictive about the game-changing research and therapy with Dr. Neil Riordan. Patent...

By: TheLipTV

More:
Why Stem Cells Aren't Being Tested in the US - Video

Posted in Stem Cell Videos | Comments Off on Why Stem Cells Aren’t Being Tested in the US – Video

The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch – Video

Posted: November 10, 2014 at 10:49 am


The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch
I played the FART SNDS seed and a bug happened, ED, or tyrone... Tyrone is a black name but he is Hispanic but appears to be white skin... Stem Cells The Binding of Isaac: Rebirth https://store.so...

By: djsponge10

Excerpt from:
The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch - Video

Posted in Stem Cell Videos | Comments Off on The Binding of Isaac: Rebirth Unlimited Fart Sound Glitch – Video

Page 1,940«..1020..1,9391,9401,9411,942..1,9501,960..»