Page 200«..1020..199200201202..210220..»

Voyager Therapeutics Announces Data Presentations at the 29th Annual Congress of the European Society of Gene & Cell Therapy – GlobeNewswire

Posted: October 4, 2022 at 2:04 am

CAMBRIDGE, Mass., Oct. 03, 2022 (GLOBE NEWSWIRE) -- Voyager Therapeutics, Inc.(Nasdaq: VYGR), a gene therapy and neuroscience company developing life-changing treatments and next-generation adeno-associated virus (AAV) capsids, today announced that it will present three posters at the upcoming 29th Annual Congress of the European Society of Gene & Cell Therapy (ESGCT), taking place October 11-14, 2022, in Edinburgh, Scotland.

Poster Presentation Details:

Presentation Title: Identification of a Cell Surface Receptor Utilized by an Engineered BBB-Penetrant Capsid Family withEnhanced Brain Tropism in Non-Human Primates and MicePoster Number: P024Presenting Author: Brett Hoffman, Ph.D., Senior Scientist, Capsid Discovery

Presentation Title: Dose-Response Evaluation of 9P801, an Engineered AAV Capsid with High BBB Penetration and CNS Transduction in Non-Human PrimatesPoster Number: P015Presenting Author: Mathieu Nonnenmacher, Ph.D., Vice President, Capsid Discovery

Presentation Title: Evaluation of an Early, Late, Very Late Expressed Rep in a Recombinant Baculovirus to Produce a More Potent AAV-based Gene Therapeutic in Insect CellsPoster Number: P065Presenting Author: Jeffrey Slack, Ph.D., Principal Scientist, Cell Culture Development

AboutVoyager TherapeuticsVoyager Therapeutics(Nasdaq: VYGR) is leading the next generation of AAV gene therapy to unlock the potential of the modality to treat devastating diseases. Proprietary capsids born from the Companys TRACER discovery platform are powering a rich early-stage pipeline of programs and may elevate the field to overcome the narrow therapeutic window associated with conventional gene therapy vectors across neurologic disorders and other therapeutic areas. voyagertherapeutics.com LinkedIn Twitter

Voyager Therapeutics is a registered trademark, and TRACER is a trademark, ofVoyager Therapeutics, Inc.

ContactsInvestorsInvestors@vygr.com

MediaPeg Rusconiprusconi@vergescientific.com

Visit link:
Voyager Therapeutics Announces Data Presentations at the 29th Annual Congress of the European Society of Gene & Cell Therapy - GlobeNewswire

Posted in Gene therapy | Comments Off on Voyager Therapeutics Announces Data Presentations at the 29th Annual Congress of the European Society of Gene & Cell Therapy – GlobeNewswire

Researchers Develop Potential Gene Therapy to Treat Blindness – Managed Healthcare Executive

Posted: October 4, 2022 at 2:04 am

Researchers at the National Eye Institute have designed a gene therapy approach that could help prevent blindness in children with Leber congenital amaurosis, a rare form of blindness.

A discovery by the National Eye Institute (NEI), part of the National Institutes of Health, could lead to a second gene therapy for a rare form of blindness. The researchers discovered that a type of Leber congenital amaurosis (LCA) is caused by mutations in the NPHP5 (also called IQCB1) gene and leads to severe defects in the primary cilium, a structure found in nearly all cells of the body. Primary cilia play a role in cell cycle regulation. In the eye, cilia play important roles in maintaining normal eye function.

Leber congenital amaurosis is an eye disorder that affects the tissue at the back of the eye that detects light and color. It is also associated with sensitivity to light, involuntary movements of the eye, and extreme farsightedness. Leber congenital amaurosis affects 2 to 3 per 100,000 newborns and is one of the most common causes of blindness in children.

There are at least 13 types of Leber congenital amaurosis, according to the National Library of Medicine. The types are distinguished by their genetic cause, patterns of vision loss, and related eye abnormalities. One gene therapy has already been approved to treat a degenerative eye disease. It is available for blindness associated with a mutation of RPE65, which provides the instructions for making a protein important for normal vision. In 2017, the FDA approved Spark Therapeutics Luxturna (voretigene neparvovec-rzyl), the first one-time gene therapy for patients with RPE65 mutation-associated retinal dystrophy and viable retinal cells.

The type of Leber congenital amaurosis caused by mutations in NPHP5 is relatively rare. In a healthy eye, NPHP5 protein is believed to help filter proteins that enter the cilium. Previous studies in mice have shown that NPHP5 is involved in the cilium, but researchers didnt know the exact role of NPHP5.

NPHP5 deficiency causes early blindness in its milder form, and in more severe forms, many patients also exhibit kidney disease along with retinal degeneration, the studys lead investigator, Anand Swaroop, Ph.D., senior investigator at the NEI Neurobiology Neurodegeneration and Repair Laboratory, said in a press release. Weve designed a gene therapy approach that could help prevent blindness in children with this disease and one that, with additional research, could perhaps even help treat other effects of the disease.

Three post-doctoral fellows, Kamil Kruczek, Ph.D., Zepeng Qu, Ph.D., and Emily Welby, Ph.D., at the National Eye Institute collected stem cell samples from two patients with NPHP5 deficiency at the NIH Clinical Center. These stem cell samples were used to generate retinal organoids, cultured tissue clusters that possess many of the structural and functional features of actual, native retina.

The found reduced levels of NPHP5 protein within the patient-derived retinal organoid cells, as well as reduced levels of another protein called CEP-290, which interacts with NPHP5 and forms the primary cilium gate. They also found that photoreceptor outer segments in the retinal organoids were missing and the opsin protein a light sensitive protein that should have been localized to the outer segments was instead found elsewhere in the photoreceptor cell body.

Researchers introduced an adeno-associated viral (AAV) vector a virus that is used mechanism to deliver the gene containing a functional version of NPHP5. The retinal organoids showed a restoration of opsin protein concentrated in the proper location in outer segments. The findings also suggest that functional NPHP5 may have stabilized the primary cilium gate.

The study was funded by the NEI Intramural program.

Read the original here:
Researchers Develop Potential Gene Therapy to Treat Blindness - Managed Healthcare Executive

Posted in Gene therapy | Comments Off on Researchers Develop Potential Gene Therapy to Treat Blindness – Managed Healthcare Executive

Viral Vector Manufacturing, Non-Viral Vector Manufacturing and Gene Therapy Manufacturing Market by Scale of Operation, Type of Vector, Application…

Posted: October 4, 2022 at 2:04 am

New York, Sept. 29, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Viral Vector Manufacturing, Non-Viral Vector Manufacturing and Gene Therapy Manufacturing Market by Scale of Operation, Type of Vector, Application Area, Therapeutic Area, and Geographical Regions : Industry Trends and Global Forecasts, 2022-2035" - https://www.reportlinker.com/p06323417/?utm_source=GNW In fact, in 2021, cell and gene therapy developers raised capital worth more than USD 20 billion, registering an increase of 19% from the amount raised in 2020 (~USD 17 billion). It is worth highlighting that, in February 2022, the USFDA approved second CAR-T therapy, CARVYKTI, developed by Johnson and Johnson, which can be used for the treatment of relapsed or refractory multiple myeloma. Additionally, close to 1,500 clinical trials are being conducted, globally, for the evaluation of cell and gene therapies. Over time, it has been observed that the clinical success of these therapies relies on the design and type of gene delivery vector used (in therapy development and / or administration). At present, several innovator companies are actively engaged in the development / production of viral vectors and / or non-viral vectors for cell and gene therapies. In this context, it is worth mentioning that, over the past few years, multiple viral vector and non-viral vector based vaccine candidates have been developed against COVID-19 (caused by novel coronavirus, SARS-CoV-2) and oncological disorders; this is indicative of lucrative opportunities for companies that have the required capabilities to manufacture vectors and gene therapies.

The viral and non-viral vector manufacturing landscape features a mix of industry players (well-established companies, mid-sized firms and start-ups / small companies), as well as several academic institutes. It is worth highlighting that several companies that have the required capabilities and facilities to manufacturing vectors for both in-house requirements and offer contract services (primarily to ensure the optimum use of their resources and open up additional revenue generation opportunities) have emerged in this domain. Further, in order to produce more effective and affordable vectors, several stakeholders are integrating various novel technologies; these technologies are likely to improve the scalability and quality of the resultant therapy. In addition, this industry has also witnessed a significant increase in the partnership and expansion activities over the past few years, with several companies having been acquired by the larger firms. Given the growing demand for interventions that require genetic modification, the vector and gene therapy manufacturing market is poised to witness substantial growth in the foreseen future.

SCOPE OF THE REPORTThe Viral Vectors, Non-Viral Vectors and Gene Therapy Manufacturing Market (5th Edition) by Scale of Operation (Preclinical, Clinical and Commercial), Type of Vector (AAV Vector, Adenoviral Vector, Lentiviral Vector, Retroviral Vector, Plasmid DNA and Others), Application Area (Gene Therapy, Cell Therapy and Vaccine), Therapeutic Area (Oncological Disorders, Rare Disorders, Neurological Disorders, Sensory Disorders, Metabolic Disorders, Musco-skeletal Disorders, Blood Disorders, Immunological Diseases, and Others), and Geographical Regions (North America, Europe, Asia Pacific, MENA, Latin America and Rest of the World): Industry Trends and Global Forecasts, 2022-2035 report features an extensive study of the rapidly growing market of vector and gene therapy manufacturing, focusing on contract manufacturers, as well as companies having in-house manufacturing facilities. The study presents an in-depth analysis of the various firms / organizations that are engaged in this domain, across different regions of the globe. Amongst other elements, the report includes:An overview of the current status of the market with respect to the players engaged (both industry and non-industry) in the manufacturing of viral, non-viral and other novel types of vectors and gene therapies. It features information on the year of establishment, company size, location of headquarters, type of product manufactured (vector and gene therapy / cell therapy / vaccine), location of manufacturing facilities, type of manufacturers (in-house and contract services), scale of operation (preclinical, clinical and commercial), type of vector manufactured (AAV, adenoviral, lentiviral, retroviral, plasmid DNA and others) and application area (gene therapy, cell therapy, vaccine and others).An analysis of the technologies offered / developed by the companies enagaged in this domain, based on the type of technology (viral vector related platform, non-viral vector related platform and others), type of manufacturer (vector manufacturing, gene delivery, product manufacturing, transduction / transfection, vector packaging and other), scale of operation (preclinical, clinical and commercial), type of vector involved (AAV, adenoviral, lentiviral, retroviral, non-viral and other viral vectors), application area (gene therapy, cell therapy, vcaccine and others). It also highlights the most prominent players within this domain, in terms of number of technologies.A region-wise, company competitiveness analysis, highlighting key players engaged in the manufacturing of vectors and gene therapies, across key geographical areas, featuring a four-dimensional bubble representation, taking into consideration supplier strength (based on experience in this field), manufacturing strength (type of product manufactured, number of manufacturing facilites and number of application areas), service strength (scale of operation, number of vectors manufactured and geographical reach) and company size (small, mid-sized and large).Elaborate profiles of key players based in North America, Europe and Asia-Pacific (shortlisted based on proprietary criterion). Each profile features an overview of the company / organization, its financial performance (if available), information related to its manufacturing facilities, vector manufacturing technology and an informed future outlook.Tabulated profiles of the other key players headquartered in different regions across the globe (shortlisted based on proprietary criterion). Each profile features an overview of the company, its financial performance (if available), information related to its manufacturing capabilities, and an informed future outlook.An analysis of partnerships and collaborations established in this domain since 2015; it includes details of deals that were / are focused on the manufacturing of vectors, which were analyzed on the basis of year of partnership, type of partnership (manufacturing agreement, product / technology licensing, product development, merger / acqusition, research and development agreement, process development / optimization, service alliance, production asset / facility acquisition, supply agreement and others), scale of operation (preclinical, clinical and commercial), type of vector involved (AAV, adenoviral, lentiviral, retroviral, plasmid and others), region and most active players (in terms of number of partnerships).An analysis of the expansions related to viral vector and non-viral vector manufacturing, which have been undertaken since 2015, based on several parameters, such as year of expansion, type of expansion (new facility / plant establishment, facility expansion, technology installation / expansion, capacity expansion, service expansion and others), type of vector (AAV, adenoviral, lentiviral, retroviral, plasmid and others), application area (gene therapy, cell therapy, vaccine and others) and geographical location of the expansion.An analysis evaluating the potential strategic partners (comparing vector based therapy developers and vector purification product developers) for vector and gene therapy product manufacturers, based on several parameters, such as developer strength, product strength, type of vector, therapeutic area, pipeline strength (preclinical and clinical).An overview of other viral / non-viral gene delivery approaches that are currently being researched for the development of therapies involving genetic modification.An in-depth analysis of viral vector and plasmid DNA manufacturers, featuring three schematic representations, a three dimensional grid analysis, representing the distribution of vector manufacturers (on the basis of type of vector) across various scales of operation and type of manufacturer (in-house operations and contract manufacturing services), a heat map of viral vector and plasmid DNA manufacturers based on the type of vector (AAV, adenoviral vector, lentiviral vector, retroviral vector and plasmid DNA) and type of organization (industry (small, mid-sized and large) and non-industry), and a schematic world map representation, highlighting the headquarters and geographical location of key vector manufacturing hubs.An analysis of the various factors that are likely to influence the pricing of vectors, featuring different models / approaches that may be adopted by product developers / manufacturers in order to decide the prices of proprietary vectors.An estimate of the overall, installed vector manufacturing capacity of industry players based on the information available in the public domain, and insights generated via both secondary and primary research. The analysis also highlights the distribution of the global capacity by company size (small, mid-sized and large), scale of operation (clinical and commercial), type of vector (viral vector and plasmid DNA) and region (North America, Europe, Asia Pacific and the rest of the world).An informed estimate of the annual demand for viral and non-viral vectors, taking into account the marketed gene-based therapies and clinical studies evaluating vector-based therapies; the analysis also takes into consideration various relevant parameters, such as target patient population, dosing frequency and dose strength.A discussion on the factors driving the market and various challenges associated with the vector production process.A qualitative analysis, highlighting the five competitive forces prevalent in this domain, including threats for new entrants, bargaining power of drug developers, bargaining power of vector and gene therapy manufacturers, threats of substitute technologies and rivalry among existing competitors.

One of the key objectives of this report was to evaluate the current market size and the future opportunity associated with the vector and gene therapy manufacturing market, over the coming decade. Based on various parameters, such as the likely increase in number of clinical studies, anticipated growth in target patient population, existing price variations across different types of vectors, and the anticipated success of gene therapy products (considering both approved and late-stage clinical candidates), we have provided an informed estimate of the likely evolution of the market in the short to mid-term and long term, for the period 2022-2035. In order to provide a detailed future outlook, our projections have been segmented on the basis of scale of operation (preclinical, clinical and commercial), type of vector (AAV vector, adenoviral vector, lentiviral vector, retroviral vector, plasmid DNA and others), application area (gene therapy, cell therapy and vaccine), therapeutic area (oncological disorders, rare disorders, neurological disorders, sensory disorders, metabolic disorders, musco-skeletal disorders, blood disorders, immunological diseases, and others) and geographical region (North America, Europe, Asia Pacific, MENA, Latin America and rest of the world). In order to account for future uncertainties and to add robustness to our model, we have provided three forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industrys growth.

The research, analysis and insights presented in this report are backed by a deep understanding of key insights generated from both secondary and primary research. For the purpose of the study, we invited over 300 stakeholders to participate in a survey to solicit their opinions on upcoming opportunities and challenges that must be considered for a more inclusive growth. The opinions and insights presented in this study were also influenced by discussions held with senior stakeholders in the industry. The report features detailed transcripts of interviews held with the following industry and non-industry players:Menzo Havenga (Chief Executive Officer and President, Batavia Biosciences)Nicole Faust (Chief Executive Officer & Chief Scientific Officer, CEVEC Pharmaceuticals)Cedric Szpirer (Former Executive & Scientific Director, Delphi Genetics)Olivier Boisteau, (Co-Founder / President, Clean Cells), Laurent Ciavatti (Former Business Development Manager, Clean Cells) and Xavier Leclerc (Head of Gene Therapy, Clean Cells)Alain Lamproye (Former President of Biopharma Business Unit, Novasep)Joost van den Berg (Former Director, Amsterdam BioTherapeutics Unit)Bakhos A Tannous (Director, MGH Viral Vector Development Facility, Massachusetts General Hospital)Eduard Ayuso, DVM, PhD (Scientific Director, Translational Vector Core, University of Nantes)Colin Lee Novick (Managing Director, CJ Partners)Semyon Rubinchik (Scientific Director, ACGT)Astrid Brammer (Senior Manager Business Development, Richter-Helm)Marco Schmeer (Project Manager, Plasmid Factory) and Tatjana Buchholz (Former Marketing Manager, Plasmid Factory)Brain M Dattilo (Business Development Manager, Waisman Biomanufacturing)Beatrice Araud (ATMP Key Account Manager, EFS-West Biotherapy)Nicolas Grandchamp (R&D Leader, GEG Tech)Graldine Gurin-Peyrou (Director of Marketing and Technical Support, Polypus Transfection)Naiara Tejados, Head of Marketing and Technology Development, VIVEBiotech)Jeffery Hung (Independent Consultant)

All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.

RESEARCH METHODOLOGYThe data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market may evolve across different regions and technology segments. Wherever possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include:Annual reportsInvestor presentationsSEC filingsIndustry databasesNews releases from company websitesGovernment policy documentsIndustry analysts views

While the focus has been on forecasting the market over the period 2022-2035, the report also provides our independent view on various technological and non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information.

KEY QUESTIONS ANSWEREDWho are the leading players (contract service providers and in-house manufacturers) engaged in the development of vectors and gene therapies?Which regions are the current manufacturing hubs for vectors and gene therapies?Which type of vector related technologies are presently offered / being developed by the stakeholders engaged in this domain?Which companies are likely to partner with viral and non-viral vector contract manufacturing service providers?Which partnership models are commonly adopted by stakeholders engaged in this industry?What type of expansion initiatives are being undertaken by players in this domain?What are the various emerging viral and non-viral vectors used by players for the manufacturing of genetically modified therapies?What are the strengths and threats for the stakeholders engaged in this industry?What is the current, global demand for viral and non-viral vector, and gene therapies?How is the current and future market opportunity likely to be distributed across key market segments?

CHAPTER OUTLINES

Chapter 2 is an executive summary of the insights captured in our research. It offers a high-level view on the likely evolution of the vector and gene therapy manufacturing market in the short to mid-term, and long term.

Chapter 3 is a general introduction to the various types of viral and non-viral vectors. It includes a detailed discussion on the design, manufacturing requirements, advantages, limitations and applications of the currently available gene delivery vehicles. The chapter also features the clinical and approved pipeline of genetically modified therapies. Further, it includes a review of the latest trends and innovations in the contemporary vector manufacturing market.

Chapter 4 provides a detailed overview of close to 150 companies, featuring both contract service providers and in-house manufacturers that are actively involved in the production of viral vectors and / or gene therapies utilizing viral vectors. The chapter provides details on the year of establishment, company size, location of headquarters, type of product manufactured (vector and gene therapy / cell therapy / vaccine), location of manufacturing facilities, type of manufacturer (in-house and contract services), scale of operation (preclinical, clinical and commercial), type of vector manufactured (AAV, adenoviral, lentiviral, retroviral, plasmid DNA and others) and application area (gene therapy, cell therapy, vaccine and others).

Chapter 5 provides an overview of close to 70 industry players that are actively involved in the production of plasmid DNA and other non-viral vectors and / or gene therapies utilizing non-viral vectors. The chapter provides details on the the year of establishment, company size, location of headquarters, type of product manufactured (vector and gene therapy / cell therapy / vaccine), location of plasmid DNA manufacturing facilities, type of manufacturer (in-house and contract services), scale of operation (preclinical, clinical and commercial) and application area (gene therapy, cell therapy, vaccine and others).

Chapter 6 provides an overview of close to 90 non-industry players (academia and research institutes) that are actively involved in the production of vectors (both viral and non-viral) and / or gene therapies. The chapter provides details on the year of establishment, type of manufacturer (in-house and contract services), scale of operation (preclinical, clinical and commercial), location of headquarters, type of vector manufactured (AAV, adenoviral, lentiviral, retroviral, plasmid DNA and others) and application area (gene therapy, cell therapy, vaccine and others).

Chapter 7 features an in-depth analysis of the technologies offered / developed by the companies engaged in this domain, based on the type of technology (viral vector and non-viral vector related platform), purpose of technology (vector manufacturing, gene delivery, product manufacturing, transduction / transfection, vector packaging and other), scale of operation (preclinical, clinical and commerical), type of vector involved (AAV, adenoviral, lentiviral, retroviral, non-viral and other viral vectors), application area (gene therapy, cell therapy, vaccine and others) and leading technology providers.

Chapter 8 presents a detailed competitiveness analysis of vector manufacturers across key geographical areas, featuring a four-dimensional bubble representation, taking into consideration supplier strength (based on its experience in this field), manufacturing strength (type of product manufactured, number of manufacturing facilities and number of application area), service strength (scale of operation, number of vectors manufactured and geographical reach) and company size (small, mid-sized and large).

Chapter 9 features detailed profiles of some of the key players that have the capability to manufacture viral vectors / plasmid DNA in North America. Each profile presents a brief overview of the company, its financial information (if available), details on vector manufacturing facilities, manufacturing experience and an informed future outlook.

Chapter 10 features detailed profiles of some of the key players that have the capability to manufacture viral vectors / plasmid DNA in Europe. Each profile presents a brief overview of the company, its financial information (if available), details on vector manufacturing facilities, manufacturing experience and an informed future outlook.

Chapter 11 features detailed profiles of some of the key players that have the capability to manufacture viral vectors / plasmid DNA in Asia-Pacific. Each profile presents a brief overview of the company, its financial information (if available), details on vector manufacturing facilities, manufacturing experience and an informed future outlook.

Chapter 12 features tabulated profiles of the other key players that have the capability to manufacture viral vectors / plasmid DNA. Each profile features an overview of the company, its financial performance (if available), information related to its manufacturing capabilities, and an informed future outlook.

Chapter 13 features in-depth analysis and discussion of the various partnerships inked between the players in this market, during the period, 2015-2022, covering analysis based on parameters such as year of partnership, type of partnership(manufacturing agreement, product / technology licensing, product development, merger / acquisition, research and development agreement, process development / optimization, service alliance, production asset / facility acquisition, supply agreement and others), scale of operation (preclinical, clinical and commercial) and type of vector (AAV, adenoviral, lentiviral, retroviral, plasmid and others) most active players (in terms of number of partnerships).

Chapter 14 features an elaborate discussion and analysis of the various expansions that have been undertaken, since 2015. Further, the expansion activities in this domain have been analyzed on the basis of year of expansion, type of expansion (new facility / plant establishment, facility expansion, technology installation / expansion, capacity expansion, service expansion and others), geographical location of the facility, type of vector (AAV, adenoviral, lentiviral, retroviral, plasmid and others) and application area (gene therapy, cell therapy, vaccine and others).

Chapter 15 highlights potential strategic partners (vector based therapy developers and vector purification product developers) for vector and gene therapy product manufacturers, based on several parameters, such as developer strength, product strength, type of vector, therapeutic area, pipeline strength (clinical and preclinical). The analysis aims to provide the necessary inputs to the product developers, enabling them to make the right decisions to collaborate with industry stakeholders with relatively more initiatives in the domain.

Chapter 16 provides detailed information on other viral / non-viral vectors. These include alphavirus vectors, Bifidobacterium longum vectors, Listeria monocytogenes vectors, myxoma virus based vectors, Sendai virus based vectors, self-complementary vectors (improved versions of AAV), minicircle DNA and Sleeping Beauty transposon vectors (non-viral gene delivery approach) and chimeric vectors, that are currently being utilized by pharmaceutical players to develop gene therapies, T-cell therapies and certain vaccines, as well. This chapter presents overview on all the aforementioned types of vectors, along with examples of companies that use them in their proprietary products. It also includes examples of companies that are utilizing specific technology platforms for the development / manufacturing of some of these novel vectors.

Chapter 17 presents a collection of key insights derived from the study. It includes a grid analysis, highlighting the distribution of viral vectors and plasmid DNA manufacturers on the basis of their scale of operation and type of manufacturer (fulfilling in-house requirement / contract service provider). In addition, it consists of a heat map of viral vector and plasmid DNA manufacturers based on the type of vector (AAV, adenoviral vector, lentiviral vector, retroviral vector and plasmid DNA) and type of organization (industry (small, mid-sized and large) and non-industry). The chapter also consists of six world map representations of manufacturers of viral / non-viral vectors (AAV, adenoviral, lentiviral, retroviral vectors, and plasmid DNA), depicting the most active geographies in terms of the presence of the organizations. Furthermore, we have provided a schematic world map representation to highlight the geographical locations of key vector manufacturing hubs across different continents.

Chapter 18 highlights our views on the various factors that may be taken into consideration while pricing viral vectors / plasmid DNA. It features discussions on different pricing models / approaches that manufacturers may choose to adopt to decide the prices of their proprietary products.Chapter 19 features an informed analysis of the overall installed capacity of the vectors and gene therapy manufacturers. The analysis is based on meticulously collected data (via both secondary and primary research) on reported capacities of various small, mid-sized and large companies, distributed across their respective facilities. The results of this analysis were used to establish an informed opinion on the vector production capabilities of the organizations by company size (small, mid-sized and large), scale of operation (clinical and commercial), type of vector (viral vector and plasmid DNA) and region (North America, Europe, Asia Pacific and the rest of the world).

Chapter 20 features an informed estimate of the annual demand for viral and non-viral vectors, taking into account the marketed gene-based therapies and clinical studies evaluating vector-based therapies. This section offers an opinion on the required scale of supply (in terms of vector manufacturing services) in this market. For the purpose of estimating the current clinical demand, we considered the active clinical studies of different types of vector-based therapies that have been registered till date. The data was analyzed on the basis of various parameters, such as number of annual clinical doses, trial location, and the enrolled patient population across different geographies. Further, in order to estimate the commercial demand, we considered the marketed vector-based therapies, based on various parameters, such as target patient population, dosing frequency and dose strength.

Chapter 21 presents a comprehensive market forecast analysis, highlighting the likely growth of vector and gene therapy manufacturing market till the year 2030. We have segmented the financial opportunity on the basis of type of vector (AAV vector, adenoviral vector, lentiviral vector, retroviral vector, plasmid DNA and others), application area (gene therapy, cell therapy and vaccine), therapeutic area (oncological disorders, rare disorders, neurological disorders, sensory disorders, metabolic disorders, musco-skeletal disorders, blood disorders, immunological diseases, and others), scale of operation (preclinical, clinical and commercial) and geography (North America, Europe, Asia Pacific, MENA, Latin America and rest of the world). Due to the uncertain nature of the market, we have presented three different growth tracks outlined as the conservative, base and optimistic scenarios.

Chapter 22 highlights the qualitative analysis on the five competitive forces prevalent in this domain, including threats for new entrants, bargaining power of drug developers, bargaining power of vector and gene therapy manufacturers, threats of substitute technologies and rivalry among existing competitors.

Chapter 23 provides details on the various factors associated with popular viral vectors and plasmid DNA that act as market drivers and the various challenges associated with the production process. This information has been validated by soliciting the opinions of several industry stakeholders active in this domain.

Chapter 24 presents insights from the survey conducted on over 300 stakeholders involved in the development of different types of gene therapy vectors. The participants, who were primarily Director / CXO level representatives of their respective companies, helped us develop a deeper understanding on the nature of their services and the associated commercial potential.

Chapter 25 summarizes the entire report, highlighting various facts related to contemporary market trend and the likely evolution of the viral vector, non-viral vector and gene therapy manufacturing market.

Chapter 26 is a collection of transcripts of the interviews conducted with representatives from renowned organizations that are engaged in the vector and gene therapy manufacturing domain. In this study, we spoke to Menzo Havenga (Chief Executive Officer and President, Batavia Biosciences), Nicole Faust (Chief Executive Officer & Chief Scientific Officer, CEVEC Pharmaceuticals), Cedric Szpirer (Former Executive & Scientific Director, Delphi Genetics), Olivier Boisteau, (Co-Founder / President, Clean Cells), Laurent Ciavatti (Former Business Development Manager, Clean Cells) and Xavier Leclerc (Head of Gene Therapy, Clean Cells), Alain Lamproye (Former President of Biopharma Business Unit, Novasep), Joost van den Berg (Former Director, Amsterdam BioTherapeutics Unit), Bakhos A Tannous (Director, MGH Viral Vector Development Facility, Massachusetts General Hospital), Eduard Ayuso, DVM, PhD (Scientific Director, Translational Vector Core, University of Nantes), Colin Lee Novick (Managing Director, CJ Partners), Semyon Rubinchik (Scientific Director, ACGT), Astrid Brammer (Senior Manager Business Development, Richter-Helm), Marco Schmeer (Project Manager, Plasmid Factory) and Tatjana Buchholz (Former Marketing Manager, Plasmid Factory), Brain M Dattilo (Business Development Manager, Waisman Biomanufacturing), Beatrice Araud (ATMP Key Account Manager, EFS-West Biotherapy), Nicolas Grandchamp (R&D Leader, GEG Tech), Graldine Gurin-Peyrou (Director of Marketing and Technical Support, Polypus Transfection), Naiara Tejados, Head of Marketing and Technology Development, VIVEBiotech) and Jeffery Hung (Independent Consultant)

Chapter 27 is an appendix, which provides tabulated data and numbers for all the figures in the report.

Chapter 28 is an appendix that provides the list of companies and organizations that have been mentioned in the report.Read the full report: https://www.reportlinker.com/p06323417/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Excerpt from:
Viral Vector Manufacturing, Non-Viral Vector Manufacturing and Gene Therapy Manufacturing Market by Scale of Operation, Type of Vector, Application...

Posted in Gene therapy | Comments Off on Viral Vector Manufacturing, Non-Viral Vector Manufacturing and Gene Therapy Manufacturing Market by Scale of Operation, Type of Vector, Application…

Real Endpoints Marketplace announces collaboration with bluebird bio to help scale delivery of a first-of-its-kind value-based contract for one-time…

Posted: October 4, 2022 at 2:04 am

FLORHAM PARK, N.J., Oct. 04, 2022 (GLOBE NEWSWIRE) -- Real Endpoints, the leading market-access platform and advisory firm, announced a collaboration with bluebird bio, inc. (Nasdaq: BLUE), to provide multiple health plans with access to an innovative, outcomes-based agreement for ZYNTEGLO (betibeglogene autotemcel) through the Real Endpoints (RE) Marketplace.

These plans cover nearly 16 million individuals across the U.S.; while treatment-dependent beta-thalassemia is a rare disease, together these plans comprise a significant portion of the patient population in the U.S. ZYNTEGLO is currently the only FDA-approved gene therapy for people with beta-thalassemia who require regular red blood cell transfusions.

Through a single contract, the plans in RE Marketplace can take immediate advantage of bluebirds innovative agreement, which offers rebates of up to 80% if treatment with ZYNTEGLO does not enable a patient to achieve and maintain transfusion independence in the two years following therapy.

RE Marketplace performs all the required analytics and financial reconciliation as an expert, independent third-party. RE Marketplace provides participating plans and manufacturers with end-to-end capabilities for efficient, scalable value-based contracting and does so with complete financial and data transparency.

bluebirds ZYNTEGLO is a giant step forward for medicine, commented Jane Barlow, MD, Chief Clinical Officer at Real Endpoints. The plans in RE Marketplace are thrilled to be able to easily access bluebirds innovative risk-sharing agreement, which speeds the delivery of both clinical and economic innovations. That is a win for both patients and the broader health system, she said.

About RE Marketplace

The RE Marketplace platform provides members of mid-sized and smaller health plans speedier access to innovative treatments such as rare disease drugs, cell and gene therapies, and digital medicines. From four founding member plans, RE Marketplace now represents several mid-sized and regional plans approaching nearly 16 million beneficiaries across all lines of business. Both industry and payer participants benefit from the efficiency and flexibility of RE Marketplace, which can support a range of innovative contracts through a standard contracting process. There is also the potential for more generous rebate opportunities without additional Medicaid Best Price risk. RE Marketplace performs all the critical analytics and financial reconciliation transparently and with full audit rights, using a highly robust, secure, HIPAA-compliant system already tested and used in multiple value-based agreements. For more about RE Marketplace, please visit this link: https://realendpoints.com/products/re-marketplace/

About Real Endpoints

Real Endpoints solutions create patient access to meaningful medical innovations and prepare companies for competition in the value-based economy. Working collaboratively with biopharma, diagnostic and medical device companies, RE provides unique answers across a wide range of coverage and reimbursement issues from pricing and distribution to patient support services. RE is also the leading advisor to the industry on innovative contracting, including the evaluation, structuring, negotiating, and third-party management of the analytics and financial reconciliation of value-based contracts. For more information about Real Endpoints, visit http://www.realendpoints.com.

Website: http://www.realendpoints.comLinkedIn: https://www.linkedin.com/company/real-endpoints/

Contact: Aurore Duboille Email: aduboille@realendpoints.comPhone: 973-805-2300

Link:
Real Endpoints Marketplace announces collaboration with bluebird bio to help scale delivery of a first-of-its-kind value-based contract for one-time...

Posted in Gene therapy | Comments Off on Real Endpoints Marketplace announces collaboration with bluebird bio to help scale delivery of a first-of-its-kind value-based contract for one-time…

Sanofi partners with Scribe to gain gene editing tools for cell therapy work – BioPharma Dive

Posted: October 4, 2022 at 2:04 am

Sanofi will partner with the Californian biotechnology company Scribe Therapeutics in a deal that extends its exploration of new ways to build cancer cell therapies.

Under a partnership announced Tuesday, Sanofi will pay Scribe $25 million upfront to gain access to the five-year-old startups gene editing technology. The pharmaceutical company is also promising more than $1 billion in additional payments based on unspecified development and commercial milestones, although that money may never be paid out.

In return, Sanofi gets non-exclusive rights to use Scribes CRISPR-based gene editing technology to develop cancer treatments constructed from modified natural killer, or NK, cells. A type of immune defender, NK cells have drawn increasing interest from cancer drugmakers looking for alternatives to the T cells used in CAR-T treatments for leukemia, lymphoma and multiple myeloma.

This collaboration with Scribe complements our robust research efforts across the NK cell therapy spectrum and offers our scientists unique access to engineered CRISPR-based technologies as they strive to deliver off-the-shelf NK cell therapies and novel combination approaches that improve upon the first generation of cell therapies, said Frank Nestle, Sanofis head of research and chief scientific officer, in a statement.

Sanofi missed the first wave of cancer cell therapy development, which companies like Novartis, Gilead and, more recently, Bristol Myers Squibb have led. But it appears interested in making up ground with bets on newer technologies.

In November 2020, Sanofi bought Kiadis Pharma and its pipeline of donor-derived NK cell therapies. Five months later, the company acquired Tidal Therapeutics, which was attempting to use messenger RNA to reprogram immune cells in the body to attack cancers.

While a much smaller financial commitment, the partnership with Scribe could help Sanofi better develop NK cells therapies. Scribes gene editing technology relies on the CRISPR framework pioneered by its cofounder Jennifer Doudna, but the company has developed its own DNA-cutting enzymes, too.

Scribe raised $100 million in a Series B round last spring and in March hired ex-Barclays banker David Parrot as its chief financial officer. In an interview with CFO Dive, Parrot said he had been brought on to help eventually launch an initial public offering, but noted the company would focus first on inking partnerships as public markets remain cool to IPOs.

The deal with Sanofi is the second Scribe has disclosed publicly. Its also working with Biogen on a research collaboration focused on ALS and another undisclosed disease.

View original post here:
Sanofi partners with Scribe to gain gene editing tools for cell therapy work - BioPharma Dive

Posted in Gene therapy | Comments Off on Sanofi partners with Scribe to gain gene editing tools for cell therapy work – BioPharma Dive

Vertex given green light to seek US approval of CRISPR-based therapy – BioPharma Dive

Posted: October 4, 2022 at 2:04 am

By the end of March, Vertex Pharmaceuticals and CRISPR Therapeutics expect to have submitted a U.S. approval application for a gene editing medicine designed to treat two rare blood disorders.

On Tuesday, the companies said the Food and Drug Administration is allowing a so-called rolling review of their medicine, named exa-cel, for the treatment of sickle cell disease and beta thalassemia. Filing is slated to begin in November, with a completed application anticipated some time in the first quarter of next year. In Europe, where Vertex and CRISPR are also seeking approval, the companies said theyre on track to file by the end of this year.

If approved, exa-cel would become the first marketed therapy based on the CRISPR gene editing technology that won a Nobel Prize in 2020. Data generated in clinical studies have so far shown that, for most patients, a one-time treatment with exa-cel significantly alleviates the symptoms and burdens of sickle cell and beta thalassemia.

We continue to work with urgency to bring forward the first CRISPR therapy for a genetic disease, and one that holds potential to transform the lives of patients, said Nia Tatsis, Vertexs chief regulatory and quality officer, in a statement.

Vertex previously aimed to submit a full application by the end of 2022, wrote Brian Abrahams, an analyst at the investment firm RBC Capital Markets, in a note to clients.Still, Abrahams and his team wouldnt expect a few months of difference in expected filing time to be material.

More concerning, according to the RBC team, is the potential sales outlook for exa-cel.

Several companies, including deep-pocked players like Pfizer, Novartis and Novo Nordisk, are trying to develop new medicines for sickle cell and beta thalassemia. And just last month, Massachusetts-based Bluebird bio secured FDA approval of a gene therapy another one-time, long-lasting treatment for patients with severe beta thalassemia who require blood transfusions. Bluebird is developing a gene therapy for sickle cell, too.

Additionally, the way exa-cel is administered could affect how many patients seek it out.

The medicine is made with a patients own stem cells, which are engineered and then implanted back into the bone marrow. The process requires patients be conditioned with busulfan, a chemotherapy-based regimen that can be difficult to tolerate. For example, one patient in the exa-cel clinical trial experienced bleeding in the brain that researchers attributed to this regimen.

CRISPR has said its exploring alternative conditioning procedures that dont involve chemotherapy. Even so, some analysts remain skeptical. Luca Issi, an RBC analyst who covers Beam Therapeutics, another company developing a gene-editing treatment for sickle cell, believes the commercial prospects for Beams program would be capped by its use of busulfan conditioning.

We remain cautious on exa-cel's ultimate commercial opportunity given our prior [conversations with doctors and patients], at least not until the much longer term once less toxic pre-conditioning regimens can be deployed, Abrahams wrote.

Vertex, meanwhile, has appeared more confident in exa-cels sales potential. Last year, the company paid CRISPR $900 million to amend their partnership so Vertex receives a greater portion of the profits should exa-cel come to market.

Excerpt from:
Vertex given green light to seek US approval of CRISPR-based therapy - BioPharma Dive

Posted in Gene therapy | Comments Off on Vertex given green light to seek US approval of CRISPR-based therapy – BioPharma Dive

Meet with the OrganaBio executives in-person at The Cell & Gene Meeting on the Mesa – Business Wire

Posted: October 4, 2022 at 2:04 am

MIAMI--(BUSINESS WIRE)--The 2022 Cell & Gene Meeting on the Mesa annual conference will be held in Carlsbad, California, on October 11-13, 2022, bringing together senior executives and top decision-makers in the industry to advance cutting-edge research into cures. Tackling the commercialization hurdles facing the cell and gene therapy sector today, this meeting covers a wide range of topics from clinical trial design to alternative payment models to scale-up and supply chain platforms for advanced therapies. Meet with the OrganaBio team to learn about our reliable supply of high-quality, ethically sourced tissue and cellular raw materials with clear paths to clinical translation, and the advanced processing and characterization capabilities we offer to speed up novel therapeutic development.

OrganaBios CEO, Justin Irizarry, and VP of Corporate Development, Dr. Priya Baraniak, will join the over 1,700 attendees, and will be available for one-on-one meetings to discuss available solutions to cell therapy developers.

http://www.organabio.com

Read the original post:
Meet with the OrganaBio executives in-person at The Cell & Gene Meeting on the Mesa - Business Wire

Posted in Gene therapy | Comments Off on Meet with the OrganaBio executives in-person at The Cell & Gene Meeting on the Mesa – Business Wire

Atsena Therapeutics Announces Positive Results from Phase I/II Clinical Trial of ATSN-101 for the Treatment of GUCY2D-associated Leber Congenital…

Posted: October 4, 2022 at 2:04 am

Atsena Therapeutics

ATSN-101 demonstrated clinically meaningful improvements in vision with no drug-related serious adverse events

Data presented at the American Academy of Ophthalmology 2022 Annual Meeting

DURHAM, N.C., Oct. 03, 2022 (GLOBE NEWSWIRE) -- Atsena Therapeutics, a clinical-stage gene therapy company focused on bringing the life-changing power of genetic medicine to reverse or prevent blindness, announced positive results from the Phase I/II clinical trial of ATSN-101, its lead investigational gene therapy product formerly known as SAR439483, for the treatment ofGUCY2D-associated Leber congenital amaurosis (LCA1).

The data demonstrated that subretinal delivery of ATSN-101 was well tolerated and patients treated with the highest dose (1.0E11 vg/eye) saw clinically meaningful improvements in vision, as measured by full-field stimulus testing (FST) and multi-luminance mobility testing (MLMT), at more than one-month post treatment.

As of the July 25, 2022, data cut-off date, 15 patients, including three pediatric patients, were treated with ascending doses of ATSN-101. Patients treated with the highest dose (N=9) demonstrated a significantly larger mean change from baseline in retinal sensitivity and a trend toward a larger mean change in best-corrected visual acuity (BCVA) in treated eyes as compared with untreated eyes. In addition, three of four patients tested on MLMT demonstrated at least two-level improvement from baseline light levels. No drug-related serious adverse events were reported, and most treatment-emergent adverse events were mild and transient.

Patients with LCA1 have profound visual impairment or blindness at birth, but their retinal structure remains intact, which indicates an opportunity to confer meaningful improvements following delivery of a subretinal gene therapy such as ATSN-101, said Kenji Fujita, MD, Chief Medical Officer of Atsena Therapeutics. Were encouraged by these data that demonstrate ATSN-101 improved visual function while maintaining a favorable safety profile. We look forward to launching a pivotal trial for the evaluation of ATSN-101, which will lay the groundwork for successful registration and commercialization. We also look forward to advancing other promising programs in our gene therapy pipeline to reverse or prevent blindness for people with inherited retinal diseases.

Story continues

The data were presented on Saturday, Oct. 1, in a Late Breaking Developments session during the Retina Subspecialty Day at the American Academy of Ophthalmology Annual Meeting (AAO 2022) in Chicago, by Christine Nichols Kay, MD, Clinical Ophthalmology Advisor for Atsena.

About GUCY2D-associated Leber congenital amaurosis (LCA1)LCA1 is a monogenic eye disease that disrupts the function of the retina. It is caused by mutations in the GUCY2D gene and results in early and severe vision impairment or blindness. GUCY2D-LCA1 is one of the most common forms of LCA, affecting roughly 20 percent of patients who live with this group of inherited retinal diseases. There are currently no approved treatments for LCA1.

About Atsena TherapeuticsAtsena Therapeutics is a clinical-stage gene therapy company developing novel treatments for inherited forms of blindness. The companys ongoing Phase I/II clinical trial is evaluating a potential therapy for a form of LCA, one of the most common causes of blindness in children. Its additional pipeline of leading preclinical assets is powered by an adeno-associated virus (AAV) technology platform tailored to overcome significant hurdles presented by inherited retinal disease, and its unique approach is guided by the specific needs of each patient condition to optimize treatment. Founded by ocular gene therapy pioneers Dr. Shannon Boye and Sanford Boye of the University of Florida, Atsena is based in North Carolinas Research Triangle, an environment rich in gene therapy expertise. For more information, please visitatsenatx.com.

Media Contact:Tony Plohoros6 Degrees(908) 591-2839tplohoros@6degreespr.com

Business Contact:info@atsenatx.com

More here:
Atsena Therapeutics Announces Positive Results from Phase I/II Clinical Trial of ATSN-101 for the Treatment of GUCY2D-associated Leber Congenital...

Posted in Gene therapy | Comments Off on Atsena Therapeutics Announces Positive Results from Phase I/II Clinical Trial of ATSN-101 for the Treatment of GUCY2D-associated Leber Congenital…

Missouri S&T welcomes new faculty – Missouri S&T News and Research

Posted: October 4, 2022 at 2:03 am

At the start of the fall semester, Missouri S&T welcomed 15 faculty members to campus. Their expertise ranges from aerothermodynamics and advanced manufacturing to sports marketing and quantum physics.

This years new faculty are:

Dr. Mohammad Abbas, assistant teaching professor of mechanical and aerospace engineering. Abbas earned three degrees from Missouri S&T a Ph.D. and masters degree in aerospace engineering and a bachelors degree in mechanical engineering. His areas of expertise include thermodynamics, fluid mechanics, aerospace propulsion, vehicle performance, and general mechanics. He previously served as a graduate teaching assistant and course instructor at S&T.

Dr. Richard Billo, director of the Kummer Institute Center for Advanced Manufacturing and professor of mechanical and aerospace engineering. Billo joined S&T on Jan. 4 from the University of Notre Dame, where he served as associate vice president for research and professor of computer science and engineering. Billos areas of research expertise include advanced manufacturing, industrial information systems, metallurgy and liquid fuels processes. He holds a Ph.D. and a masters degree in industrial engineering from Arizona State University. He also holds a masters degree in psychology from the University of the Pacific and a bachelors degree in psychology from West Virginia University.

Dr. David Bojanic, Kummer Professor of Business and Information Technology. He was previously the Anheuser-Bush Foundation Professor in Marketing in the Carlos Alvarez College of Business at the University of Texas at San Antonio. Bojanic holds a Ph.D. in marketing from the University of Kentucky, an MBA from James Madison University and a bachelors degree in marketing from Pennsylvania State University. He has conducted extensive research in the areas of sports, events and tourism, hospitality organizations, and other service and nonprofit organizations.

Dr. Mehrzad Boroujerdi, vice provost and dean of the College of Arts, Sciences, and Education and professor of political science. Boroujerdi joined S&T from Virginia Tech, where he led the School of Public and International Affairs.

Prior to Virginia Tech, Boroujerdi spent 27 years on the political science faculty at Syracuse University. He has been a postdoctoral fellow at Harvard University and the University of Texas-Austin, a visiting scholar at the University of California, Los Angeles, president of the Association for Iranian Studies, a non-resident scholar at the Middle East Institute in Washington, D.C., and a fellow of the American Council on Education. Boroujerdi, who is an author or co-author of four books, is an expert in comparative politics, Middle East regional politics and Iranian history. He earned a Ph.D. in international relations from The American University, a masters degree in political science from Northeastern University and a bachelors degree in political science from Boston University.

Dr. Ryan Cheek, assistant professor of English and technical communication. Cheek comes to S&T from Utah State University, where he worked as a graduate instructor while earning a Ph.D. in technical communication and rhetoric.

He holds a bachelors degree in sociology from Weber State University and a masters degree in communication from the University of Wyoming. His research addresses how technical rhetoric and technological phenomena iterate social relations, political ideologies and ethical commitments.

Dr. Alexander Douglas, assistant teaching professor of mining and explosives engineering. He worked at Hexagon Mining in Tucson, Arizona, for five years before pursuing a Ph.D. in mining engineering at S&T. He holds bachelors and masters degrees, both in mining engineering, from the University of Kentucky. While a Ph.D. student, Douglas served as a graduate research assistant and graduate teaching assistant at S&T before joining the faculty. He is currently assisting Dr. Catherine Johnson with U.S. Army-funded research on post-blast forensics training.

Dr. Xiaosong Du, assistant professor of mechanical and aerospace engineering, joined S&T from the University of Michigan, where he was a postdoctoral research fellow.

Du holds a Ph.D. in aerospace engineering from Iowa State University, a masters degree in aerospace engineering from Beijing University, and a bachelors degree in aerospace engineering from Nanjing University of Aeronautics and Astronautics in China. Dus research interests include machine and deep learning; rapid aerodynamic forward; robust design; and single- and multi-fidelity predictive modeling.

Dr. Halyna Hodovanets, assistant professor of physics. She previously taught as an assistant professor of physics at Texas Tech University in Lubbock. Before Texas Tech, she was an assistant research scientist at the Maryland Quantum Materials Center and the University of Marylands physics department in College Park. Hodovanets earned a Ph.D. in condensed matter physics at Iowa State University in Ames.

She holds a masters degree in physics from Minnesota State University in Mankato and bachelors degrees in physics and English from Drohobych State Pedagogical University in Ukraine. Her research focuses on the synthesis and discovery, characterization and optimization of new quantum materials in a single crystalline form.

Dr. Hyunsoo Kim, assistant professor of physics. Kim previously was as an assistant research scientist for the Maryland Quantum Materials Center at the University of Maryland-College Park.

He holds a Ph.D. in physics from Iowa State University as well as masters and bachelors degrees, both in physics, from Pusan National University in South Korea. Kims research interests include quantum materials, topological phases and superconductivity.

Dr. Zhi Liang, associate professor of mechanical and aerospace engineering. Liang joined S&T from California State University, Fresno, where he had served as assistant and then associate professor of mechanical engineering since 2016. Liang earned a Ph.D. in mechanical engineering from S&T, and masters and bachelors degrees in materials science and engineering from Shanghai Jiao Tong University in China. His research interests include microscale and nanoscale thermodynamics and heat transfer; dynamics of nanodroplets, nanobubbles and nanoparticles; and computational modeling.

Dr. Melody Lo, the John and Ruth Steinmeyer Memorial Endowed Chair of Economics. She was previously a senior advisor to the chancellor and a professor of economics in the Neil Griffin College of Business at Arkansas State University in Jonesboro.

She has also held teaching and research positions at the University of Texas at San Antonio, the University of Houston and the University of Southern Mississippi. Los research focuses on government interventions in a foreign exchange market. She holds a Ph.D. in economics from Purdue University.

Dr. Andrea Scharf, assistant professor of biological sciences. She comes to S&T from Washington University School of Medicine in St. Louis, where she worked as a postdoctoral scientist.

She earned a Ph.D. and completed undergraduate studies in biology at the Heinrich-Heine-University Duesseldorf, Germany. Her research focuses on the plasticity of biological systems from cells to populations, and their ability to respond to changing environmental conditions.

Dr. Davide Vigan, assistant professor of mechanical and aerospace engineering. He joins S&T from The University of Texas at Arlington, where he earned a Ph.D. in aerospace engineering and worked as a postdoctoral research associate at the Aerodynamics Research Center.

He holds undergraduate degrees in aerospace engineering from Polytechnic University of Milan in Italy. Vigans research interests include hypersonic air-breathing propulsion, compressible turbulent mixing, vortex dynamics, hypersonic aerothermodynamics, experimental fluid dynamics, and instrumentation development.

Dr. Javier Valentn-Svico, assistant teaching professor of engineering management and systems engineering. He earned a Ph.D. in engineering management from S&T in July and holds a masters degree in electrical engineering from S&T and a bachelors degree in electrical engineering from the University of Puerto Rico Mayaguez Campus.

Valentn-Svico worked in various engineering roles for Hewlett-Packard in Aguadilla, Puerto Rico, from 2001 to 2019. He has also worked at Johns Hopkins Universitys Applied Physics Laboratory in Laurel, Maryland, and DuPont in Chattanooga, Tennessee.

Dr. Xiaoming Wang, the Gary W. Havener Endowed Chair of Mathematics and Statistics. He previously led the mathematics department at Southern University of Science and Technology in Shenzhen, China. Wang earned a Ph.D. in mathematics from Indiana University-Bloomington. After graduating, he served as a postdoctoral fellow at New York University. He has served as a faculty member at Iowa State University, New York University, Florida State University and Fudan University in Shanghai, China.

Wang has co-authored two books, presented at hundreds of invited talks and lectures, and been featured as an expert on PBSs NOVA television series.

Missouri University of Science and Technology (Missouri S&T) is a STEM-focused research university of over 7,000 students. Part of the four-campus University of Missouri System and located in Rolla, Missouri, Missouri S&T offers 101 degrees in 40 areas of study and is among the nations top 10 universities for return on investment, according to Business Insider. S&T also is home to the Kummer Institute, made possible by a $300 million gift from Fred and June Kummer. For more information about Missouri S&T, visitwww.mst.edu.

Originally posted here:
Missouri S&T welcomes new faculty - Missouri S&T News and Research

Posted in Missouri Stem Cells | Comments Off on Missouri S&T welcomes new faculty – Missouri S&T News and Research

Grafting and Budding Nursery Crop Plants – North Carolina State University

Posted: October 4, 2022 at 2:02 am

Grafting and budding are horticultural techniques used to join parts from two or more plants so that they appear to grow as a single plant. In grafting, the upper part (scion) of one plant grows on the root system (rootstock) of another plant. In the budding process, a bud is taken from one plant and grown on another.

Although budding is considered a modern art and science, grafting is not new. The practice of grafting can be traced back 4,000 years to ancient China and Mesopotamia. As early as 2,000 years ago, people recognized the incompatibility problems that may occur when grafting olives and other fruiting trees.

Since grafting and budding are asexual or vegetative methods of propagation, the new plant that grows from the scion or bud will be exactly like the plant it came from. These methods of plant reproduction are usually chosen because cuttings from the desired plant root poorly (or not at all). Also, these methods give the plant a certain characteristic of the rootstock - for example, hardiness, drought tolerance, or disease resistance. Since both methods require extensive knowledge of nursery crop species and their compatibility, grafting and budding are two techniques that are usually practiced only by more experienced nursery operators.

Most woody nursery plants can be grafted or budded, but both processes are labor intensive and require a great deal of skill. For these reasons they can be expensive and come with no guarantee of success. The nurseryman must therefore see in them a marked advantage over more convenient propagation techniques to justify the time and cost.

Clones or varieties within a species can usually be grafted or budded interchangeably. For example, Pink Sachet dogwood can be budded or grafted onto White Flowering dogwood rootstock and vice versa. Bradford pear can be grafted or budded onto Callery pear rootstock and vice versa. However, Pink Sachet dogwood cannot be grafted or budded onto Callery pear.

Grafting and budding can be performed only at very specific times when weather conditions and the physiological stage of plant growth are both optimum. The timing depends on the species and the technique used. For example, conditions are usually satisfactory in June for budding peaches, but August and early September are the best months to bud dogwoods. Conversely, flowering pears can be grafted while they are dormant (in December and January) or budded during July and August.

Budding and grafting may increase the productivity of certain horticultural crops because they make it possible to do the following things:

When to GraftUnlike budding, which can be performed before or during the growing season, most grafting is done during winter and early spring while both scion and rootstock are still dormant. Containerized plants may be moved indoors during the actual grafting process; after grafting, these plants are placed in protected areas or in unheated overwintering houses. Field-grown stock, of course, must be grafted in place. Some deciduous trees are commonly grafted as bare rootstock during the winter and stored until spring planting. Indoor winter grafting is often referred to as bench grafting because it is accomplished at a bench.

Selecting and Handling Scion WoodThe best quality scion wood usually comes from shoots grown the previous season. Scions should be severed with sharp, clean shears or knives and placed immediately in moistened burlap or plastic bags. It is good practice during the harvesting of scions and the making of grafts to clean the cutting tools regularly. This may be done by flaming or immersing them in a sterilizing solution. Isopropyl (rubbing) alcohol also works well as a sterilant, although it evaporates quite readily. An alternative sterilizing solution may be prepared by mixing one part household bleach with nine parts water (by volume). However, this bleach solution can be highly corrosive to certain metals.

For best results, harvest only as much scion wood as can be used for grafting during the same day. Select only healthy scion wood that is free from insect, disease, or winter damage. Be sure the stock plants are of good quality, healthy, and true to type. Scion wood that is frozen at harvest often knits more slowly and in lower percentage. If large quantities of scion wood must be harvested at one time, follow these steps:

NOTE: In grafting, as well as budding, the vascular cambium of the scion or bud must be aligned with the vascular cambium of rootstock. In woody plants the cambium is a very thin ribbon of actively dividing cells located just below the bark. The cambium produces conductive tissue for the actively growing plant (Figure 1). This vascular cambium initiates callus tissue at the graft and bud unions in addition to stimulating tissue growth on the basal ends of many vegetative cuttings before they have rooted.

Types of GraftsNurserymen can choose from a number of different types of grafts. This section describes only those basic types of grafts used on nursery crop plants.

Cleft GraftOne of the simplest and most popular forms of grafting, cleft grafting (Figure 2), is a method for top working both flowering and fruiting trees (apples, cherries, pears, and peaches) in order to change varieties. Cleft grafting is also used to propagate varieties of camellias that are difficult to root. This type of grafting is usually done during the winter and early spring while both scion and rootstock are still dormant. Cleft grafting may be performed on main stems or on lateral or scaffold branches.The rootstock used for cleft grafting should range from 1 to 4 inches in diameter and should be straight grained. The scion should be about 14-inch in diameter, straight, and long enough to have at least three buds. Scions that are between 6 and 8 inches long are usually the easiest to use.

NOTE: The temperature of grafting wax is critical. It must be hot enough to flow but not so hot as to kill plant tissue. Recently, paint-like sealants have replaced wax in many areas because they are easier to use and require no heating.

Bark GraftBark grafting (Figure 3) is used primarily to top work flowering and fruiting trees. In contrast to cleft grafting, this technique can be applied to rootstock of larger diameter (4 to 12 inches) and is done during early spring when the bark slips easily from the wood but before major sap flow. The rootstock is severed with a sharp saw, leaving a clean cut as with cleft grafting.

Side-Veneer GraftAt one time the side-veneer graft (Figure 4) was a popular technique for grafting varieties of camellias and rhododendrons that are difficult to root. Currently, it is the most popular way to graft conifers, especially those having a compact or dwarf form. Side-veneer grafting is usually done on potted rootstock.

Splice GraftSplice grafting (Figure 5) is used to join a scion onto the stem of a rootstock or onto an intact rootpiece. This simple method is usually applied to herbaceous materials that callus or "knit" easily, or it is used on plants with a stem diameter of 12-inch or less. In splice grafting, both the stock and scion must be of the same diameter.

Whip and Tongue GraftThe whip and tongue technique (Figure 6) is most commonly used to graft nursery crops or woody ornamentals. Both the rootstock and scion should be of equal size and preferably no more than 12-inch in diameter. The technique is similar to splice grafting except that the whip on the rootstock holds the tongue of the scion in place (and vice versa). This leaves both hands free to wrap the joint.

For the whip and tongue graft, make similar cuts on both the stock and scion. These cuts should be made with a single draw of the knife and should have a smooth surface so that the two can develop a good graft union. Up to this point, rootstock and scion are cut the same as for a splice graft.

Saddle GraftSaddle grafting (Figure 7) is a relatively easy technique to learn and once mastered can be performed quite rapidly. The stock may be either field-grown or potted. Both rootstock and scion should be the same diameter. For best results, use saddle grafting on dormant stock in mid- to late winter. Stock should not be more than 1 inch in diameter.

All of the preceding techniques are used to top work horticultural crops for a particular purpose. Occasionally, however, grafting is used to repair injured or diseased plants. Two common techniques available for this purpose are bridge grafting and inarch grafting.

Bridge GraftBridge grafting (Figure 8) is used to "bridge" a diseased or damaged area of a plant, usually at or near the base of the trunk. Such damage commonly results from contact with grading or lawn maintenance equipment, or it may be caused by rodents, cold temperatures, or disease organisms. The bridge graft provides support as well as a pipeline that allows water and nutrients to move across the damaged area.

Bridge grafts are usually done in early spring just before active plant growth begins. They may be performed any time the bark on the injured plant "slips."

Inarch GraftInarching, like bridge grafting, is used to bypass or support a damaged or weakened area of a plant stem (Figure 9). Unlike bridge grafting, the scion can be an existing shoot, sucker, or watersprout that is already growing below and extending above the injury. The scion may also be a shoot of the same species as the injured plant growing on its own root system next to the main trunk of the damaged tree. With the inarching technique, the tip of the scion is grafted in above the injury using the same method as for bark or bridge grafting.

Figure 1. Cross section of a woody plant stem.

Figure 2. Cleft graft.

Figure 3. Bark graft.

Figure 4. Side veneer graft.

Figure 5. Splice graft.

Figure 6. Whip and tongue graft.

Figure 7. Saddle graft.

Figure 8. Bridge graft.

Figure 9. Inarch graft.

Budding is a grafting technique in which a single bud from the desired scion is used rather than an entire scion containing many buds. Most budding is done just before or during the growing season. However some species may be budded during the winter while they are dormant.

Budding requires the same precautions as grafting. Be sure that the scion and rootstock are compatible, that the scion has mature buds, and that the cambia of the scion and rootstock match. Be especially careful to prevent drying or contamination of grafting materials. With practice, the speed with which the process can be performed and the percentage of successful grafts those that "take" - should equal or surpass those of other grafting techniques used on the same species. Generally, deciduous fruit and shade trees are well suited to budding.

Preparing the RootstockRootstock can be grown in the field where it will be budded, or dormant liners can be transplanted into the field and then allowed to grow under moderate fertility until they reach the desired 316- to 716-inch caliper. Since budding is generally done less than 4 inches above the soil surface, leaves and side branches must be removed from this portion of the rootstock to create a clean, smooth working area. To avoid quickly dulling the knife, remove any soil from the rootstock where the cut will be made just before actual budding takes place. The stem can be cleaned by brushing or rubbing it gently by hand or with a piece of soft cloth.

Preparing the BudwoodCollect scion or budwood early in the day while temperatures are cool and the plants are still fully turgid. The best vegetative buds usually come from the inside canopy of the tree on the current season's growth. Mature buds are most desirable; discard terminal and younger buds because they are often not mature. To keep budwood from drying out, getting hot, or freezing (depending on the season), place it into plastic bags or wrap it in moist burlap as it is collected. Then move to a shaded or sheltered area to prepare the buds. Place budwood of only one variety in each labeled bag.

Budsticks are usually prepared in a cool, shaded area. Remove the leaves but keep the petioles (leaf stem) intact to serve as handles when inserting a bud into the rootstock. Then cut the sticks to a convenient length, leaving three to six buds per stick. Budsticks that will not be used immediately should be bundled, labeled, and stored in moisture-retaining containers such as plastic bags or waxed cardboard boxes and kept cool (32 to 45F). The longer budwood is stored, the less likely it is to "take." Generally, budwood stored for more than a few days should be discarded.

When budwood is taken to the field, equal precautions against drying should be taken. Storing budwood in a picnic cooler with ice will help keep it cool and moist. Individual bundles of scions carried by budders are often wrapped in moist burlap or kept in dark (not clear) plastic.

Budding Techniques

T-BuddingT-budding is most commonly used for summer budding of apples, crabapples, dogwoods, peaches, and pears. T-budding must be one when the bark will "slip." Slipping means that, when cut, the bark easily lifts or peels in one uniform layer from the underlying wood without tearing. The exact time when this condition occurs depends on soil moisture, temperature, and time of year. It varies with species and variety. Dry or excessively hot or cold weather can shorten the period when bark slips. Irrigation can be valuable in extending the T-budding season. The best time for budding in North Carolina usually occurs at about these times (earlier in the East, later in the mountains):

Peach - Memorial Day to July 1Apple - June 22 to August 1Pear - July 4 to September 15Dogwood - July 15 to September

Since budding is usually done during the warm summer months, two other precautions are commonly taken to ensure success. First, buds should not be added when the air temperature exceeds 90F. Second, buds should be inserted on the cooler north or east sides of stems.

Preparing the Stock. Budding knives usually have a curved tip (Figure 10), making it easier to cut a T-shaped slit. First, insert the point of the knife and use a single motion to cut the top of the T. Then without removing the point of the knife, twist it perpendicularly to the original cut and rock the blade horizontally down the stem to make the vertical slit of the T. If bark is slipping properly, a slight twist of the knife at the end of this cut will pop open the flaps of the cut and make it easier to insert the bud. In practice, the top of the T is usually slanted slightly (Figure 11).

This same type of cut can be made using two separate strokes, one vertical and one horizontal, and then using the back of the budding knife tip to pry up the flaps slightly. Although much slower, this technique may be easier.

Removing Buds from the Budstick. The bud to be inserted is often just a shield of bark with a bud attached or a very thin layer of wood with both the bark shield and bud attached (Figure 12). Various techniques can be used to make these cuts, but the shape of the cut remains the same.

Begin the first scion cut about 12-inch below the bud and draw the knife upward just under the bark to a point at least 14-inch above the bud. Grasp the petiole from the detached leaf between the thumb and forefinger of the free hand. Make the second cut by rotating the knife blade straight across the horizontal axis of the budstick and about 14 inch above the desired bud. This cut should be deep enough to remove the bud, its shield of bark, and a thin sliver of wood.

A variation often used with dogwood is to slant the first upward cut so that it goes about halfway through the budstick. Then make the top cut and bend the budstick by applying gentle but constant finger pressure behind the bud. The bark should lift and peel off to the side, yielding bark and bud but no wood. Caution: Straight lifting rather than the sideward motion will separate the bud from the bark rather than keeping it intact. Shields removed this way are useless!

The cut surface of the rootstock and bud must stay clean. Do not touch these parts with your fingers. Also, do not set buds down or put them in your mouth.

Inserting the Bud. Insert the bud shield into the T flaps of the stock and slide it down to ensure that it makes intimate contact with the rootstock (Figure 13).

Securing the Bud. Pull the cut together by winding a 4- or 5-inch long budding rubber around the stem to hold the flaps tightly over the bud shield and prevent drying (Figure 14). Secure the budding rubber by overlapping all windings and tucking the end under the last turn. Do not cover the bud.

Chip BuddingChip budding is a technique that may be used whenever mature buds are available. Because the bark does not have to "slip," the chip-budding season is longer than the T-budding season. Species whose bark does not slip easily without tearing - such as some maples - may be propagated more successfully by chip budding than by T-budding.

Preparing the Stock and the Scion Bud. Although all the basics in handling budwood and stock are the same for chip budding and Tbudding, the cuts made in chip budding differ radically. The first cut on both stock and scion is made at a 45 to 60 downward angle to a depth of about 18-inch (Figure 15). After making this cut on a smooth part of the rootstock, start the second cut about 34-inch higher and draw the knife down to meet the first cut. (The exact spacing between the cuts varies with species and the size of the buds.) Then remove the chip.

Cuts on both the scion (to remove the bud) and the rootstock (to insert the bud) should be exactly the same (Figure 16). Although the exact location is not essential, the bud is usually positioned one-third of the way down from the beginning of the cut. If the bud shield is significantly narrower than the rootstock cut, line up one side exactly.

Securing the Bud. Wrapping is extremely important in chip budding. If all exposed edges of the cut are not covered, the bud will dry out before it can take. Chip budding has become more popular over the past 5 years because of the availability of thin (2-mil) polyethylene tape as a wrapping material. This tape is wrapped to overlap all of the injury, including the bud (Figure 17), and forms a miniature plastic greenhouse over the healing graft.

Budding Aftercare

When irrigation is available, apply water at normal rates for plants that bud before August 1. Ornamental peaches and pears often will break bud and grow the same year they are budded. Dogwoods and most other species budded after August 1 should be irrigated at a normal rate for only two to three weeks after budding except during extreme drought. Following these irrigation practices will enable buds to heal completely with no bud break before frost.

Although budding rubbers and polyethylene tape reportedly decompose and need not be removed, studies show that unless they are taken off, binding or girdling of fast-growing plants like Bradford pear may occur within a month. Summer buds should take in two to three weeks.

On species budded in early summer, it may be desirable for the buds to break and grow during the same season. In this case, either remove the stock tops entirely or break them over within a few weeks of budding to encourage the scion buds to break. Once the buds have broken, completely remove the stock above the bud or keep a few leaves intact but remove the terminals, depending upon the species.

For dogwoods and other plants budded in late summer, remove the tops just before growth starts the following spring. A slanting cut away from the bud is preferred (Figure 18). If possible, set up stakes or other devices to insure that straight growth will occur before the buds break. Straight shoots, however, are so essential to the growth of high-quality grafted and budded stock that stakes should be set as they are needed.

To insure a top-quality plant, it is essential to remove unwanted sprouts. These sprouts should be "rubbed" off as soon as they are visible so that they do not reduce the growth and quality of the budded stock. If they are removed regularly and early, large scars or "doglegs" can be avoided.

Figure 10. Budding knives.

Figure 11. T-shaped cut on rootstock.

Figure 12. Removing the bark shield with the bud attached.

Figure 13. Bark shield with bud inserted into T cut.

Figure 14. Wrapped bud.

Figure 15. Rootstock cut for T budding.

Figure 16. Removing chip from budstick.

Figure 17. Chip bud wrapped with plastic tape.

Figure 18. Budded plant after pruning.

Grafting and budding techniques combine the science and the art of horticulture. The scientific aspects include comparability, timing, disease and insect resistance, drought, tolerance, and hardiness. Information on these topics may be found in have a broad working knowledge of a variety of texts and pamphlets. Acquiring practical skills in the art of grafting and budding, on the other hand, requires hours and even years of practice to perfect. Usually the careful supervision of a trained propagator is required for the serious student of budding and grafting to learn this art.

From this publication it should be clear that many types of budding and grafting techniques are available. Individual propagators usually have a broad working knowledge of all of these techniques but a high degree of skill in only two or three.

These budding and grafting techniques can be used successfully, especially on a commercial basis, to propagate clonal plant materials. In fact, perpetuating many of our horticultural clones depends on the successful application of these techniques.

Tools and Supplies for Budding and Grafting

KnivesGrafting and budding knives are designed specifically for these purposes and should not be used for carving and whittling wood. They are available in either left- or right-handed models. The blade is beveled on only one side, unlike conventional knives, which have blades that bevel on both sides down to the cutting edge. Grafting and budding knives must be kept razor sharp so they will cut smoothly.

Pruning and Lopping ShearsPruning and lopping shears should be the scissors or sliding blade type rather than the blade and anvil type. If used to harvest scion wood or budsticks, blade and anvil pruner will crush plant tissue. As with knives, pruning and lopping shears should be kept razor sharp to give clean, close cuts.

Grafting ToolsA special device known as a grafting tool has been designed for making the cleft graft. It is used when the rootstock's diameter is greater than 1 inch. The wedge-shaped blade is used to split the stock, and the flat pick opens the cleft so that the scions can be inserted. Once in place, the flat pick is removed and the cleft comes together to hold the scions in position.

Wax MelterWax melters are used to heat the wax for sealing graft and bud junctions. They are usually made by modifying kerosene lanterns. The chimney is replaced by a small tin pot that serves as a receptacle for the wax. When the flame is kept low, the wax is melted without burning and can be kept at a suitable temperature.

Grafting and Budding Terms

The specialized terms listed here are often used in discussing grafting and budding. The drawings in Figure 19, Figure 20, Figure 21 and Figure 22 will help in understanding these terms.

Adventitious buds - buds that can produce roots or shoots at an unusual location on the plant if environmental conditions are favorable.

Bark - all tissues lying outward from the vascular cambium.

Bud - an immature or embryonic shoot, flower, or inflorescence.

Budding rubber - a strip of pliable rubber 316- to 38-inch wide by 4 to 8 inches long and 0.01 inch thick used to hold a bud in proper position until the plant tissue has knitted together.

Callus - undifferentiated (parenchyma) tissue formed at a wounded surface.

Cambium - a thin layer of living cells between the xylem (outer sapwood) and phloem (inner bark) that is responsible for secondary growth. Because cambium cells divide and make new cells, the cambia of two different but related plant will grow together if they are fixed and held firmly in contact.

Compatible - plant parts (scion and rootstock) that are capable of forming a permanent union when grafted together.

Double-worked plant - a plant that has been grafted twice, usually to overcome incompatibility between scion and rootstock; it consists of a rootstock, interstock, and scion.

Graft - a finished plant that comes from joining a scion and a rootstock.

Graft or bud union - the junction between a scion or bud and its supporting rootstock.

Grafting paint - A mixture used like warm grafting wax to cover wounds and prevent drying. It requires no heating before use and dries to a moisture-proof seal when exposed to air. Unlike conventional paints, it does not damage plant tissue.

Grafting strip - a rubber strip used to hold scions in place until knitting has occurred. Grafting strips are thicker and less pliable than budding rubber.

Grafting twine - treated jute or raffia used to wrap graft junctions to keep scions in place and cambia properly aligned.

Incompatible - plants whose parts will not form a permanent union when grafted together.

lnterstock - an intermediate plant part that is compatible with both the scion and the rootstock. Used in cases where the scion and rootstock are not directly compatible with each other or where additional dwarfing and cold or disease resistance is desired.

Parafilm - registered tradename for a nonsticky, self-adhering parafin film. Can be stretched over a bud or graft to hold the bud or scion in position as well as to seal the junction. Used in place of a rubber strip or twine.

Polarity - a condition where stems grow shoots at the apical or terminal end and roots at the basal end.

Raffia - One of several materials available for securing scions or buds to the rootstock, A natural fiber from the fronds of the raphia plam, raffia is one of the oldest materials in use. It should be graded for uniform size and length and moistened just before use to make it pliable.

Rootstock - the portion of a grafted plant that has (or will develop) the root system onto which the scion is grafted.

Scion - a plant part that is grafted onto the interstock or the rootstock. The scion usually has two or more buds.

Link:
Grafting and Budding Nursery Crop Plants - North Carolina State University

Posted in North Carolina Stem Cells | Comments Off on Grafting and Budding Nursery Crop Plants – North Carolina State University

Page 200«..1020..199200201202..210220..»