Page 2,076«..1020..2,0752,0762,0772,078..2,0902,100..»

Patient Testimonial 7 – Video

Posted: July 10, 2014 at 10:43 pm


Patient Testimonial 7

By: Plexus Neuro and Stem Cell Research Centre

More:
Patient Testimonial 7 - Video

Posted in Stem Cell Research | Comments Off on Patient Testimonial 7 – Video

Patient Testimonial 6 – Video

Posted: July 10, 2014 at 10:43 pm


Patient Testimonial 6

By: Plexus Neuro and Stem Cell Research Centre

Originally posted here:
Patient Testimonial 6 - Video

Posted in Stem Cell Research | Comments Off on Patient Testimonial 6 – Video

Robert Harman, DVM Talks About What Stem Cells are in His Latest Blog Series for Vet-Stem, Inc.

Posted: July 10, 2014 at 9:45 pm

Poway, CA (PRWEB) July 10, 2014

Robert Harman, DVM, Founder and CEO of Vet-Stem, Inc., the leading Regenerative Veterinary Medicine company, is proud to announce the relaunch of his highly informative blog, now named Stem Cells for Pets, launching with a new series called What are Stem Cells? Dr. Harmans purpose for blogging is to give an honest and straightforward foundation in the basics of stem cell therapy so that pet owners can make an educated decision on the right type of treatment when considering regenerative medicine.

A veterinarian by trade, Dr. Harman is in his third decade of biotechnology entrepreneurial-ship, has overseen the completion of more than a thousand contract research projects in veterinary and human products, and has led a handful of companies to licensing and sale. Harmans current company, Vet-Stem, was the first to provide an adipose-derived stem cell service to veterinarians for their patients. As a pioneer in the field, Vet-Stem now holds exclusive licenses to over 50 patents, and continues blazing the trail for clinical trials and scientific studies.

Dr. Harman leverages this experience and Vet-Stems over 10,000 horse, dog, cat, and exotic animal cases in the last decade to present supporting data, not only for orthopedic conditions, but also on the use of stem cells for various degenerative, immune-mediated, inflammatory, and organ diseases. He has authored several book chapters, created a stem cell RACE (Registry of Approved Continuing Education for the American Association of Veterinary State Boards) Continuing Education course for veterinarians and technicians, and is currently developing a curriculum for a Regenerative Veterinary Medicine college course. All the while he truly enjoys communicating with interest groups and pet owners about cutting-edge medicine for their animals.

Dr. Harman speaks with agility groups, working dog clubs, performance horse gatherings, and at industry conferences with the desire of spreading the facts about the positive capabilities of stem cells. He will be using his new blog, Stem Cells for Pets, as a public forum for pet owners to read about basic topics explaining where stem cells come from, how they work and their capabilities; as well as what stem cells are currently being used to treat, what to expect from the treatment, and alternative therapies that can be partnered with stem cell therapy for advanced improvement.

In small animal health care more and more pet owners are educating themselves on breed specific ailments and diseases. This is also an area of interest for Dr. Harman, who is committed to investigating and reporting of stem cell therapy for alternative uses such as chronic kidney failure in cats and inflammatory bowel disease in dogs. Although Vet-Stem Cell Therapy was originally created for acute injuries in horses, like bowed tendons and torn ligaments, Vet-Stems mission is to improve the lives of all animals through regenerative medicine.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Excerpt from:
Robert Harman, DVM Talks About What Stem Cells are in His Latest Blog Series for Vet-Stem, Inc.

Posted in Regenerative Medicine | Comments Off on Robert Harman, DVM Talks About What Stem Cells are in His Latest Blog Series for Vet-Stem, Inc.

Stem cell heart failure treatment advances

Posted: July 10, 2014 at 9:42 pm

Stem cells grown under low oxygen. These stem cells from Stemedica are licensed to CardioCell.

CardioCell, a San Diego stem cell company, has started a Phase 2a trial of its treatment for chronic heart failure.

The companys special stem cells will be injected into patients with heart failure not caused by a heart attack. Nearly 2 million Americans have that kind of heart failure.

CardioCell is also testing these stem cells on heart attack patients to help their recovery. The cells are licensed from Stemedica, CardioCell's parent company.

Taken from bone marrow, the stem cells produce chemicals intended to heal malfunctioning heart cells. They are grown under low oxygen conditions, or hypoxia. CardioCell says hypoxia reflects the conditions under which natural stem cells exist. Histogen, also of San Diego, is developing its own kind of low-oxygen stem cells.

Growing stem cells with abundant oxygen reduces their "stemness," and they become prone to differentiate, said Sergey Sikora, CardioCell's president and chief executive.

Sergey Sikora, president and CEO of CardioCell / CardioCell

More than 20 patients are being sought to take part in the study, which is taking place at three locations. These are Emory University in Atlanta, Northwestern University in Chicago, and the University of Pennsylvania in Philadelphia.

Patients will receive injections of the stem cells, and a control group will receive a saline injection. After 90 days, the groups will be reversed. Patients who had received the stem cells will get a saline injection, and the control group will get the stem cells.

The stem cells last for about a month, after which they disappear, Sikora said.

Originally posted here:
Stem cell heart failure treatment advances

Posted in Stem Cell Therapy | Comments Off on Stem cell heart failure treatment advances

No extra mutations in modified stem cells

Posted: July 10, 2014 at 1:55 pm

The ability to switch out one gene for another in a line of living stem cells has only crossed from science fiction to reality within this decade. As with any new technology, it brings with it both promise-the hope of fixing disease-causing genes in humans, for example-as well as questions and safety concerns.

Now, Salk scientists have put one of those concerns to rest: using gene-editing techniques on stem cells doesn't increase the overall occurrence of mutations in the cells. The new results were published July 3 in the journal Cell Stem Cell.

"The ability to precisely modify the DNA of stem cells has greatly accelerated research on human diseases and cell therapy," says senior author Juan Carlos Izpisua Belmonte, professor in Salk's Gene Expression Laboratory. "To successfully translate this technology into the clinic, we first need to scrutinize the safety of these modified stem cells, such as their genome stability and mutational load."

When scientists want to change the sequence of a stretch of DNA inside cells-either for research purposes or to fix a genetic mutation for therapeutic purposes-they have their choice of two methods. They can use an engineered virus to deliver the new gene to a cell; the cell then integrates the new DNA sequence in place of the old one.

Or scientists can use what's known as custom targeted nucleases, such as TALEN proteins, which cut DNA at any desired location. Researchers can use the proteins to cut a gene they want to replace, then add a new gene to the mix. The cell's natural repair mechanisms will paste the new gene in place.

Previously, Belmonte's lab had pioneered the use of modified viruses, called helper-dependent adenoviral vectors (HDAdVs) to correct the gene mutation that causes sickle cell disease, one of the most severe blood diseases in the world.

He and his collaborators used HDAdVs to replace the mutated gene in a line of stem cells with a mutant-free version, creating stem cells that could theoretically be infused into patients' bone marrow so that their bodies create healthy blood cells.

Before such technologies are applied to humans, though, researchers like Belmonte wanted to know whether there were risks of editing the genes in stem cells. Even though both common gene-editing techniques have been shown to be accurate at altering the right stretch of DNA, scientists worried that the process could make the cells more unstable and prone to mutations in unrelated genes-such as those that could cause cancer.

"As cells are being reprogrammed into stem cells, they tend to accumulate many mutations," says Mo Li, a postdoctoral fellow in Belmonte's lab and an author of the new paper. "So people naturally worry that any process you perform with these cells in vitro-including gene editing-might generate even more mutations."

To find out whether this was the case, Belmonte's group, in collaboration with BGI and the Institute of Biophysics, Chinese Academy of Sciences in China, turned to a line of stem cells containing the mutated gene that causes sickle cell disease.

View post:
No extra mutations in modified stem cells

Posted in Stem Cells | Comments Off on No extra mutations in modified stem cells

Patient-specific stem cells and personalized gene therapy

Posted: July 10, 2014 at 1:55 pm

PUBLIC RELEASE DATE:

10-Jul-2014

Contact: Lucky Tran lt2549@cumc.columbia.edu 212-305-3689 Columbia University Medical Center

NEW YORK, NY (July 10, 2014) Columbia University Medical Center (CUMC) researchers have created a way to develop personalized gene therapies for patients with retinitis pigmentosa (RP), a leading cause of vision loss. The approach, the first of its kind, takes advantage of induced pluripotent stem (iPS) cell technology to transform skin cells into retinal cells, which are then used as a patient-specific model for disease study and preclinical testing.

Using this approach, researchers led by Stephen H. Tsang, MD, PhD, showed that a form of RP caused by mutations to the gene MFRP (membrane frizzled-related protein) disrupts the protein that gives retinal cells their structural integrity. They also showed that the effects of these mutations can be reversed with gene therapy. The approach could potentially be used to create personalized therapies for other forms of RP, as well as other genetic diseases. The paper was published recently in the online edition of Molecular Therapy, the official journal of the American Society for Gene & Cell Therapy.

"The use of patient-specific cell lines for testing the efficacy of gene therapy to precisely correct a patient's genetic deficiency provides yet another tool for advancing the field of personalized medicine," said Dr. Tsang, the Laszlo Z. Bito Associate Professor of Ophthalmology and associate professor of pathology and cell biology.

While RP can begin during infancy, the first symptoms typically emerge in early adulthood, starting with night blindness. As the disease progresses, affected individuals lose peripheral vision. In later stages, RP destroys photoreceptors in the macula, which is responsible for fine central vision. RP is estimated to affect at least 75,000 people in the United States and 1.5 million worldwide.

More than 60 different genes have been linked to RP, making it difficult to develop models to study the disease. Animal models, though useful, have significant limitations because of interspecies differences. Researchers also use human retinal cells from eye banks to study RP. As these cells reflect the end stage of the disease process, however, they reveal little about how the disease develops. There are no human tissue culture models of RP, as it would dangerous to harvest retinal cells from patients. Finally, human embryonic stem cells could be useful in RP research, but they are fraught with ethical, legal, and technical issues.

The use of iPS technology offers a way around these limitations and concerns. Researchers can induce the patient's own skin cells to revert to a more basic, embryonic stem celllike state. Such cells are "pluripotent," meaning that they can be transformed into specialized cells of various types.

In the current study, the CUMC team used iPS technology to transform skin cells taken from two RP patientseach with a different MFRP mutationinto retinal cells, creating patient-specific models for studying the disease and testing potential therapies.

Read the original:
Patient-specific stem cells and personalized gene therapy

Posted in Stem Cells | Comments Off on Patient-specific stem cells and personalized gene therapy

Lung Institute Reveals New Stem Cell Therapy Case Study

Posted: July 10, 2014 at 1:49 pm

Tampa, FL (PRWEB) July 10, 2014

The Lung Institute works to help people who have received a diagnosis of debilitating lung disease get their quality of life back. The latest case study demonstrates how stem cell therapy can be used effectively to treat interstitial lung disease. After his recent stem cell treatment at the Lung Institute, Al Corter can now complete his daily tasks on his horse farm much faster, and finally attend the Silver Spur Riding Club Open Horse Show the weekend of July 12th in Fonda, NY.

Twelve years ago, Al was exposed to toxic fumes in the workplace and subsequently diagnosed with interstitial lung disease and bronchiectasis, a form of chronic obstructive pulmonary disorder (COPD). Living in upstate New York and running his horse farm, Als serious pulmonary conditions had a major effect on his life. Shortness of breath, coughing, reliance on supplemental oxygen and fatigue were taking a toll. Al needed a new solution.

Al decided to travel to Florida to undergo stem cell treatment at the Lung Institute facility in Tampa. He was seeking an alternative treatment to help with his symptoms. Stem cell therapy is a minimally invasive process that involves extracting stem cells, and then reintroducing them to cue the bodys natural healing processes. The stem cells are taken from the patients own body, so there is no controversy or risk of rejection.

Stem cell therapy is a viable option for many people with lung disease, said Dr. Burton Feinerman, Medical Director of the Lung Institute. Our patients are breathing easier, walking further and depending less on supplemental oxygen.

Prior to stem cell therapy, Al was needing more and more supplemental oxygen. His quality of life had taken a sharp turn downward. Following adipose stem cell treatment, Al is feeling better. He is getting back to the routine at the farm. Al used to use 5 to 6 liters of continuous oxygen to get his outdoor farm work done. Now, he is able to do these daily chores faster, and uses only 4 to 5 liters of oxygen on a pulsing regulator.

Im getting everyday tasks done quicker, said Al. Im using about half the amount of oxygen as I was before to do the same activities. My quality of life has definitely improved.

The Lung Institute has treated hundreds of patients with lung disease from around the country and the world. Regardless of the stage of the disease, patients are able to undergo stem cell therapy, which helps damaged lung tissue, and can lessen their symptoms.

About Lung Institute At the Lung Institute, we are changing the lives of hundreds of people across the nation through the innovative technology of regenerative medicine. We are committed to providing patients a more effective way to address pulmonary conditions and improve quality of life. Our physicians, through their designated practices, have gained worldwide recognition for the successful application of revolutionary minimally invasive stem cell therapies. With over a century of combined medical experience, our doctors have established a patient experience designed with the highest concern for patient safety and quality of care. For more information, visit our website at LungInstitute.com, like us on Facebook, follow us on Twitter or call us today at (855) 469-5864.

###

Originally posted here:
Lung Institute Reveals New Stem Cell Therapy Case Study

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Lung Institute Reveals New Stem Cell Therapy Case Study

No Extra Mutations in Modified Stem Cells, Study Finds

Posted: July 9, 2014 at 9:59 pm

Contact Information

Available for logged-in reporters only

Newswise LA JOLLA-The ability to switch out one gene for another in a line of living stem cells has only crossed from science fiction to reality within this decade. As with any new technology, it brings with it both promise--the hope of fixing disease-causing genes in humans, for example--as well as questions and safety concerns. Now, Salk scientists have put one of those concerns to rest: using gene-editing techniques on stem cells doesn't increase the overall occurrence of mutations in the cells. The new results were published July 3 in the journal Cell Stem Cell.

"The ability to precisely modify the DNA of stem cells has greatly accelerated research on human diseases and cell therapy," says senior author Juan Carlos Izpisua Belmonte, professor in Salk's Gene Expression Laboratory. "To successfully translate this technology into the clinic, we first need to scrutinize the safety of these modified stem cells, such as their genome stability and mutational load."

When scientists want to change the sequence of a stretch of DNA inside cells--either for research purposes or to fix a genetic mutation for therapeutic purposes--they have their choice of two methods. They can use an engineered virus to deliver the new gene to a cell; the cell then integrates the new DNA sequence in place of the old one. Or scientists can use what's known as custom targeted nucleases, such as TALEN proteins, which cut DNA at any desired location. Researchers can use the proteins to cut a gene they want to replace, then add a new gene to the mix. The cell's natural repair mechanisms will paste the new gene in place.

Previously, Belmonte's lab had pioneered the use of modified viruses, called helper-dependent adenoviral vectors (HDAdVs) to correct the gene mutation that causes sickle cell disease, one of the most severe blood diseases in the world. He and his collaborators used HDAdVs to replace the mutated gene in a line of stem cells with a mutant-free version, creating stem cells that could theoretically be infused into patients' bone marrow so that their bodies create healthy blood cells.

Before such technologies are applied to humans, though, researchers like Belmonte wanted to know whether there were risks of editing the genes in stem cells. Even though both common gene-editing techniques have been shown to be accurate at altering the right stretch of DNA, scientists worried that the process could make the cells more unstable and prone to mutations in unrelated genes--such as those that could cause cancer.

"As cells are being reprogrammed into stem cells, they tend to accumulate many mutations," says Mo Li, a postdoctoral fellow in Belmonte's lab and an author of the new paper. "So people naturally worry that any process you perform with these cells in vitro--including gene editing--might generate even more mutations."

To find out whether this was the case, Belmonte's group, in collaboration with BGI and the Institute of Biophysics, Chinese Academy of Sciences in China, turned to a line of stem cells containing the mutated gene that causes sickle cell disease. They edited the genes of some cells using one of two HDAdV designs, edited others using one of two TALEN proteins, and kept the rest of the cells in culture without editing them. Then, they fully sequenced the entire genome of each cell from the four edits and control experiment.

While all of the cells gained a low level of random gene mutations during the experiments, the cells that had undergone gene-editing--whether through HDAdV- or TALEN-based approaches--had no more mutations than the cells kept in culture.

See the original post:
No Extra Mutations in Modified Stem Cells, Study Finds

Posted in Stem Cells | Comments Off on No Extra Mutations in Modified Stem Cells, Study Finds

Stem cell boss joins board he funded

Posted: July 9, 2014 at 9:53 pm

Alan Trounson, then president of the California Institute for Regenerative Medicine, poses for a portrait at his offices in San Francisco, Monday, March 9, 2009. (AP Photo/Eric Risberg)

The former head of California's stem cell agency, which is handing out $3 billion of voter-approved funds for research, has joined the board of a major grant recipient one week after leaving his post.

Alan Trounson, the former president of the California Institute for Regenerative Medicine, has joined the board of StemCells Inc., the recipient of $19.4 million from the agency.

The agency has been grappling with potential conflicts of interest, some of which are built into its governance under Proposition 71, approved by voters in 2004. CIRM paid $700,000 for a report last year making recommendations on how to mitigate conflicts.

Trounson's move has reignited debate over the issue.

"The announcement raises serious and obvious concerns on a number of fronts," Chairman Jonathan Thomas wrote to his colleagues on the CIRM board. "Under state law, however, it is permissible for Dr. Trounson to accept employment with a CIRM-funded company. Nonetheless, state law does impose some restrictions on Dr. Trounsons post-CIRM employment activities.

Board members will be forbidden to discuss the company with Trounson for one year after his departure, Thomas wrote.

Randy Mills, Trounson's successor as agency president, said in a statement Wednesday that "in the interests of transparency and good governance we will be conducting a full review of all CIRM activities relating to StemCells Inc.

"We take even the appearance of conflicts of interest very seriously," Mills said in the statement.

Not only board members, but CIRM employees are being reminded of the conflict of interest rules.

See original here:
Stem cell boss joins board he funded

Posted in Cell Medicine | Comments Off on Stem cell boss joins board he funded

Keck Medicine pushing into O.C. with oncology network acquisition

Posted: July 9, 2014 at 9:53 pm

Keck Medicine of USC has acquired a small oncology network, Orange Coast Oncology Hematology, to expand its growing presence in Orange County.

Keck intends to change the name of the newly acquired network to USC Oncology/Hematology, which will operate out of offices in Newport Beach and Irvine.

Orange County cancer patients will now have access to university-based treatment, including clinical trials and genetic stem cell research, without having to drive to Los Angeles, said Thomas Jackiewicz, chief of Keck Medicine of USC.

The acquisition is part of Keck Medicines ongoing expansion into Orange County, Jackiewicz said. Keck Medicine has previously affiliated with Hoag Memorial Hospital Presbyterian in Newport Beach as part of its Orange County outreach.

We realized a lot of people were leaving Orange County for their cancer care, Jackiewicz said. We really wanted to make it about the patient and try to bring cancer care closer to home.

Under the acquisition, which was announced Wednesday, physicians with the former Orange Coast Oncology Hematology will become faculty at Keck School of Medicine. The physicians joining Keck include Greg Richard Angstreich, Minh D. Nguyen, George B. Semeniuk III, Dilruba Haque and Louis VanderMolen.

Originally posted here:
Keck Medicine pushing into O.C. with oncology network acquisition

Posted in Cell Medicine | Comments Off on Keck Medicine pushing into O.C. with oncology network acquisition

Page 2,076«..1020..2,0752,0762,0772,078..2,0902,100..»