Page 2,101«..1020..2,1002,1012,1022,103..2,1102,120..»

Stem cells hold keys to body's plan

Posted: June 6, 2014 at 1:57 pm

Jun 05, 2014 Microscope And Digital Camera. Credit: Richard Wheeler/ Wikipedia CC BY-SA 3.0

Case Western Reserve researchers have discovered landmarks within pluripotent stem cells that guide how they develop to serve different purposes within the body. This breakthrough offers promise that scientists eventually will be able to direct stem cells in ways that prevent disease or repair damage from injury or illness. The study and its results appear in the June 5 edition of the journal Cell Stem Cell.

Pluripotent stem cells are so named because they can evolve into any of the cell types that exist within the body. Their immense potential captured the attention of two accomplished faculty with complementary areas of expertise.

"We had a unique opportunity to bring together two interdisciplinary groups," said co-senior author Paul Tesar, PhD, Assistant Professor of Genetics and Genome Sciences at CWRU School of Medicine and the Dr. Donald and Ruth Weber Goodman Professor.

"We have exploited the Tesar lab's expertise in stem cell biology and my lab's expertise in genomics to uncover a new class of genetic switches, which we call seed enhancers," said co-senior author Peter Scacheri, PhD, Associate Professor of Genetics and Genome Sciences at CWRU School of Medicine. "Seed enhancers give us new clues to how cells morph from one cell type to another during development."

The breakthrough came from studying two closely related stem cell types that represent the earliest phases of developmentembryonic stem cells and epiblast stem cells, first described in research by Tesar in 2007. "These two stem cell types give us unprecedented access to the earliest stages of mammalian development," said Daniel Factor, graduate student in the Tesar lab and co-first author of the study.

Olivia Corradin, graduate student in the Scacheri lab and co-first author, agrees. "Stem cells are touted for their promise to make replacement tissues for regenerative medicine," she said. "But first, we have to understand precisely how these cells function to create diverse tissues."

Enhancers are sections of DNA that control the expression of nearby genes. By comparing these two closely related types of pluripotent stem cells (embryonic and epiblast), Corradin and Factor identified a new class of enhancers, which they refer to as seed enhancers. Unlike most enhancers, which are only active in specific times or places in the body, seed enhancers play roles from before birth to adulthood.

They are present, but dormant, in the early mouse embryonic stem cell population. In the more developed mouse epiblast stem cell population, they become the primary enhancers of their associated genes. As the cells mature into functional adult tissues, the seed enhancers grow into super enhancers. Super enhancers are large regions that contain many enhancers and control the most important genes in each cell type.

"These seed enhancers have wide-ranging potential to impact the understanding of development and disease," said Stanton Gerson, MD, Asa & Patricia Shiverick and Jane Shiverick (Tripp) Professor of Hematological Oncology and Director of the National Center for Regenerative Medicine at Case Western Reserve University. "In the stem cell field, this understanding should rapidly enhance the ability to generate clinically useful cell types for stem cell-based regenerative medicine."

Originally posted here:
Stem cells hold keys to body's plan

Posted in Nano medicine | Comments Off on Stem cells hold keys to body's plan

Stem Cell Therapy Market by Treatment Mode & Therapeutic Applications – 2020 – Video

Posted: June 6, 2014 at 1:52 pm


Stem Cell Therapy Market by Treatment Mode Therapeutic Applications - 2020
[196 Slides Report] Stem Cell Therapy Market report categories the Global market by Therapeutic Applications (CNS, CVS, Musculoskeletal, Wound Healing, GIT, Eye, Immune System), Treatment...

By: James Evans

Visit link:
Stem Cell Therapy Market by Treatment Mode & Therapeutic Applications - 2020 - Video

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy Market by Treatment Mode & Therapeutic Applications – 2020 – Video

Stem Cells Treat Multiple Sclerosis in Mice

Posted: June 6, 2014 at 9:54 am

Human embryonic stem cells the bodys powerful master cells might be useful for treating multiple sclerosis, researchers reported Thursday.

A team has used cells taken from frozen human embryos and transformed them into a type of cell that scientists have hoped might help treat patients with MS, a debilitating nerve disease.

Mice with an induced version of MS that paralyzed them were able to walk freely after the treatment, the teams at Advanced Cell Technology and ImStem Biotechnology in Farmington, Connecticut, reported.

The cells appeared to travel to the damaged tissues in the mice, toning down the mistaken immune system response that strips the fatty protective layer off of nerve calls. Its that damage that causes symptoms ranging from tremors and loss of balance to blurry vision and paralysis.

These embryonic stem cells were carefully nurtured to make them form a type of immature cell called a mesenchymal stem cell. These cells worked better to treat the mice than naturally developed mesenchymal stem cells taken directly from bone marrow, the team wrote in the journal Stem Cell Reports, published by the International Society for Stem Cell Research.

The top mouse is paralyzed, while the mouse on the bottom was treated with human embryonic stem cells and is able to run around.

The company released a video to show the benefits. Untreated mice were suffering. They are paralyzed. They on their backs. They are dragging their limbs. They are in really sad shape, ACTs chief scientific officer, Dr. Bob Lanza, told NBC News.

Treated animals, they are walking and jumping around just like normal mice.

Lanza says human trials are many months away, but he thinks it will not be necessary to use controversial cloning technology to make perfectly matched human embryonic stem cells to treat patients.

We can use an off-the-shelf source and itll work for everyone, he said. So you can use them and not worry about rejection.

Read this article:
Stem Cells Treat Multiple Sclerosis in Mice

Posted in Stem Cells | Comments Off on Stem Cells Treat Multiple Sclerosis in Mice

Future heat stroke treatment found in dental pulp stem cells

Posted: June 6, 2014 at 9:54 am

PUBLIC RELEASE DATE:

5-Jun-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (June 5, 2014) Scientists in Taiwan have found that intravenous injections of stem cells derived from human exfoliated deciduous tooth pulp (SHED) have a protective effect against brain damage from heat stroke in mice. Their finding was safe and effective and so may be a candidate for successfully treating human patients by preventing the neurological damage caused by heat stroke.

The study is published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT1100Tseng.

"Heat stroke deaths are increasing worldwide and heat stroke-induced brain injury is the third largest cause of mortality after cardiovascular disease and traumatic brain injury," said study lead author Dr. Ying-Chu Lin of the Kaohsiung Medical University School of Dentistry, Kaohsiung City, Taiwan. "Heat stroke is characterized by hyperthermia, systemic inflammatory response, multiple organ failure and brain dysfunction."

To investigate the beneficial and potentially therapeutic effects afforded by the protective activities of self-renewing stem cells derived from human exfoliated deciduous teeth, the scientists transplanted SHED into mice that had suffered experimental heat stroke.

According to the research team, these cells have "significantly higher proliferation rates" than stem cells from bone marrow and have the added advantages of being easy to harvest and express several growth factors, including vascular endothelial growth factor (VEGF), and they can promote the migration and differentiation of neuronal progenitor cells (NPCs).

"We observed that the intravenous administration of SHED immediately post-heat stroke exhibited several therapeutic benefits," said Dr. Lin. "These included the inhibition of neurological deficits and a reduction in oxidative damage to the brain. We suspect that the protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress and an increase in hypothalamo-pituitary-adrenocortical axis activity following the heat stroke injury."

There are currently some drawbacks to the experimental therapy, said the researchers. First, there is a limited supply of SHED. Also, SHED transplantation has been associated with cancer and immune rejection.

Read more from the original source:
Future heat stroke treatment found in dental pulp stem cells

Posted in Stem Cells | Comments Off on Future heat stroke treatment found in dental pulp stem cells

Stem Cell therapy – pioneering treatment for muscular dystrophy – Video

Posted: June 6, 2014 at 9:43 am


Stem Cell therapy - pioneering treatment for muscular dystrophy
Neuromuscular specialist Professor Jenny Morgan presents on the new advances in stem cell research for muscular dystrophy, at Muscular Dystrophy Campaign eve...

By: Muscular Dystrophy Campaign

Read the rest here:
Stem Cell therapy - pioneering treatment for muscular dystrophy - Video

Posted in Stem Cell Therapy | Comments Off on Stem Cell therapy – pioneering treatment for muscular dystrophy – Video

McLean Hospital researchers see promise in transplanted fetal stem cells for Parkinson's

Posted: June 5, 2014 at 4:58 pm

PUBLIC RELEASE DATE:

5-Jun-2014

Contact: Jenna Brown jbrown66@partners.org 617-855-2110 McLean Hospital

BELMONT, MA -- Researchers at Harvard-affiliated McLean Hospital have found that fetal dopamine cells transplanted into the brains of patients with Parkinson's disease were able to remain healthy and functional for up to 14 years, a finding that could lead to new and better therapies for the illness.

The discovery, reported in the June 5, 2014 issue of the journal Cell Reports, could pave the way for researchers to begin transplanting dopamine neurons taken from stem cells grown in laboratories, a way to get treatments to many more patients in an easier fashion.

"We have shown in this paper that the transplanted cells connect and live well and do all the required functions of nerve cells for a very long time," said Ole Isacson, MD (DR MED SCI), director of the Neuroregeneration Research Institute at McLean and a professor of neurology and neuroscience at Harvard Medical School.

The researchers looked at the brains of five patients who got fetal cell transplants over a period of 14 years and found that their dopamine transporters (DAT), proteins that pump the neurotransmitter dopamine, and mitochondria, the power plants of cells, were still healthy at the time the patients died, in each case of causes other than Parkinson's.

The fact that these cells had remained healthy indicated that the transplants had been successful and that the transplanted cells had not been corrupted as some researchers had suggested they likely had been in other studies, said Dr. Isacson, lead author of the paper.

"These findings are critically important for the rational development of stem cell-based dopamine neuronal replacement therapies for Parkinson's," the paper concluded.

So far, about 25 patients worldwide have been treated with this particular method of transplanting fetal dopamine cells over a period of two decades and most saw their symptoms improve markedly, he said.

Follow this link:
McLean Hospital researchers see promise in transplanted fetal stem cells for Parkinson's

Posted in Stem Cells | Comments Off on McLean Hospital researchers see promise in transplanted fetal stem cells for Parkinson's

New stem cells may help in battling multiple sclerosis

Posted: June 5, 2014 at 4:58 pm

The great promise of stem cells may finally be getting close for multiple sclerosis patients.

Stem cells, which have the power to transform into other types of cells, have been much anticipated for more than a decade as a way to treat or even cure diseases like MS, Parkinson's, blindness and spinal cord injuries. But it's taken time to turn that promise into a workable reality.

Two new studies, both published in the journal Stem Cell Reports, suggest that researchers are getting close.

"We haven't landed on the moon yet, but we've tested the rockets," said Jeanne Loring, author of one of the studies and a professor and director of the Center for Regenerative Medicine at The Scripps Research Institute in La Jolla, Calif.

Her study found that a certain type of stem cell, injected once into the spinal cords of mice with an MS-like condition, could dramatically improve the animals for at least six months.

The mice's immune systems almost immediately rejected and destroyed the cells, known as human embryonic stem cell-derived neural precursor cells. But the cells seemed to trigger a long-lasting benefit, dampening inflammation to slow the disease's progression, and repairing the damaged sheathing around nerve cells that is the hallmark of MS, according to Thomas Lane, a neural immunologist at the University of Utah who helped lead the research.

The other study, led by Robert Lanza, chief scientific officer of Advanced Cell Technology, a Massachusetts-based biotech, showed that mice with an MS-like disease could be restored to near normal by injecting them with a different type of stem cell. When injected, these cells ?? mesenchymal stem cells derived from human embryonic stem cells ?? were able to home in on damaged cells in the nervous system, even crossing the blood-brain barrier, Lanza said.

They not only reduced the symptoms of the disease, but prevented more damage to nerve cells, he said.

The two studies together "speak to the changing role of stem cells and their potential as treatment strategies for MS," said Tim Coetzee with the National Multiple Sclerosis Society, an advocacy group. The idea of using stem cells in MS has been around for a while, but these two studies overcome some of the challenges of finding a therapy that can be consistent and effective for many people.

"They set the stage quite impressively for potential work in humans," he said, with clinical trials likely within the next few years.

Link:
New stem cells may help in battling multiple sclerosis

Posted in Stem Cells | Comments Off on New stem cells may help in battling multiple sclerosis

Stem cells found to play restorative role when affecting brain signaling process

Posted: June 5, 2014 at 4:58 pm

PUBLIC RELEASE DATE:

5-Jun-2014

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (June 5, 2014) A study by a Korean team of neuroscientists has concluded that when mesenchymal stem cells (MSCs; multipotent structural stem cells capable of differentiation into a variety of cell types) are transplanted into the brains of mice modeled with Alzheimer's disease (AD), the cells stimulate neural cell growth and repair in the hippocampus, a key brain area damaged by AD. The finding could lead to improved AD therapies.

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT1059Oh.

Neuroscientists know that Alzheimer's disease is caused by the presence of amyloid-B (AB) "plaques" and "tangles" in the brain's network of neurons. Recently, a protein signaling pathway called "Wnt" (Wingless-type mouse mammary tumor virus (MMTV) related integration site family) which plays a role in embryonic development as well as the development of some diseases, such as cancer, has been linked to Alzheimer's disease. Researchers speculate that an interruption in the Wnt pathway signaling process caused by the AB plaque buildup may have an impact on potential brain cell renewal processes, called neurogenesis. Evidence has indicated that the Wnt signaling pathway plays an important role in the pathogenesis of AD.

This study was carried out to determine if MSCs benefitted neurogenesis in the hippocampus by "modulating" the Wnt pathway in such a way that that the MSCs are able to differentiate into neuronal progenitor cells (NPCs) that could help rebuild the affected areas of the brain.

"Recent studies have shown that MSCs express various proteins related to the Wnt pathway," said study co-author Dr. Phil Hyu Lee, Department of Neurology, Yonsei University College of Medicine in Seoul, South Korea. "It has also been determined that MSCs derived from bone marrow produce biologically active Wnt proteins that may counteract the negative influence of AB on neuronic activity."

The authors report that MSC treatment of AD in cellular and animal models significantly increased hippocampal neurogenesis and enhanced neuronal differentiation of NPCs.

"Our data suggest that the modulation of adult neurogenesis and neuronal differentiation to repair the damaged AD brain using MSCs could have a significant impact on future strategies for AD treatment," the researchers concluded.

View post:
Stem cells found to play restorative role when affecting brain signaling process

Posted in Stem Cells | Comments Off on Stem cells found to play restorative role when affecting brain signaling process

Stem Cells Successfully Transplanted And Grown In Pigs

Posted: June 5, 2014 at 4:44 pm

June 5, 2014

Nathan Hurst, University of Missouri

One of the biggest challenges for medical researchers studying the effectiveness of stem cell therapies is that transplants or grafts of cells are often rejected by the hosts. This rejection can render experiments useless, making research into potentially life-saving treatments a long and difficult process. Now, researchers at the University of Missouri have shown that a new line of genetically modified pigs will host transplanted cells without the risk of rejection.

The rejection of transplants and grafts by host bodies is a huge hurdle for medical researchers, said R. Michael Roberts, Curators Professor of Animal Science and Biochemistry and a researcher in the Bond Life Sciences Center. By establishing that these pigs will support transplants without the fear of rejection, we can move stem cell therapy research forward at a quicker pace.

In a published study, the team of researchers implanted human pluripotent stem cells in a special line of pigs developed by Randall Prather, an MU Curators Professor of reproductive physiology. Prather specifically created the pigs with immune systems that allow the pigs to accept all transplants or grafts without rejection. Once the scientists implanted the cells, the pigs did not reject the stem cells and the cells thrived. Prather says achieving this success with pigs is notable because pigs are much closer to humans than many other test animals.

Many medical researchers prefer conducting studies with pigs because they are more anatomically similar to humans than other animals, such as mice and rats, Prather said. Physically, pigs are much closer to the size and scale of humans than other animals, and they respond to health threats similarly. This means that research in pigs is more likely to have results similar to those in humans for many different tests and treatments.

Now that we know that human stem cells can thrive in these pigs, a door has been opened for new and exciting research by scientists around the world, Roberts said. Hopefully this means that we are one step closer to therapies and treatments for a number of debilitating human diseases.

Roberts and Prather published their study, Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency in the Proceedings of the National Academy of Sciences.

Source: Nathan Hurst, University of Missouri

More here:
Stem Cells Successfully Transplanted And Grown In Pigs

Posted in Stem Cell Therapy | Comments Off on Stem Cells Successfully Transplanted And Grown In Pigs

Production of Personalized Stem-Cells – Video

Posted: June 5, 2014 at 3:54 pm


Production of Personalized Stem-Cells
Seminar of Tamer nder at Ko University.

By: Ko University

Here is the original post:
Production of Personalized Stem-Cells - Video

Posted in Stem Cell Videos | Comments Off on Production of Personalized Stem-Cells – Video

Page 2,101«..1020..2,1002,1012,1022,103..2,1102,120..»