Page 2,106«..1020..2,1052,1062,1072,108..2,1202,130..»

BBC News Researchers try to develop 3D printing of body parts – Video

Posted: May 30, 2014 at 10:44 pm


BBC News Researchers try to develop 3D printing of body parts
Researchers at the University Medical Centre Utrecht are experimenting using stem cells in 3D bio-printing. It is hoped one day the technology could make it possible to print replacement body...

By: Eric Turner

View original post here:
BBC News Researchers try to develop 3D printing of body parts - Video

Posted in Stem Cell Videos | Comments Off on BBC News Researchers try to develop 3D printing of body parts – Video

Stem Cells and the Steps of Life – Video

Posted: May 30, 2014 at 10:44 pm


Stem Cells and the Steps of Life

By: William Hong

View post:
Stem Cells and the Steps of Life - Video

Posted in Stem Cell Videos | Comments Off on Stem Cells and the Steps of Life – Video

Harvard Stem Cell Institute Public Forum: Religious Perspectives on Stem Cell Research – Video

Posted: May 30, 2014 at 10:43 pm


Harvard Stem Cell Institute Public Forum: Religious Perspectives on Stem Cell Research
On March 14, 2007, Philip Clayton, Visiting Professor of Science and Religion at Harvard Divinity School, moderated a panel discussion featuring Eric Cohen, ...

By: Harvard Divinity School

Link:
Harvard Stem Cell Institute Public Forum: Religious Perspectives on Stem Cell Research - Video

Posted in Stem Cell Research | Comments Off on Harvard Stem Cell Institute Public Forum: Religious Perspectives on Stem Cell Research – Video

For the first time in the lab, researchers see stem cells take key step toward development

Posted: May 30, 2014 at 9:52 pm

PUBLIC RELEASE DATE:

30-May-2014

Contact: Liz Ahlberg eahlberg@illinois.edu 217-244-1073 University of Illinois at Urbana-Champaign

CHAMPAIGN, Ill. The gap between stem cell research and regenerative medicine just became a lot narrower, thanks to a new technique that coaxes stem cells, with potential to become any tissue type, to take the first step to specialization. It is the first time this critical step has been demonstrated in a laboratory.

University of Illinois researchers, in collaboration with scientists at Notre Dame University and the Huazhong University of Science and Technology in China, published their results in the journal Nature Communications.

"Everybody knows that for an embryo to form, somehow a single cell has a way to self-organize into multiple cells, but the in vivo microenvironment is not well understood," said study leader Ning Wang, a professor of mechanical science and engineering at the U. of I. "We want to know how they develop into organized structures and organs. It doesn't happen by random chance. There are biological rules that we don't yet understand."

During fetal development, all the specialized tissues and organs of the body form out of a small ball of stem cells. First, the ball of generalized cells separates into three different cell lines, called germ layers, which will become different systems of the body. This crucial first step has eluded researchers in the lab. No one has yet been able to induce the cells to form the three distinct germ layers, in the correct order endoderm on the inside, mesoderm in the middle and ectoderm on the outside. This represents a major hurdle in the application of stem cells to regenerative medicine, since researchers need to understand how tissues develop before they can reliably recreate the process.

"It's very hard to generate tissues or organs, and the reason is that we don't know how they form in vivo," Wang said. "The problem, fundamentally, is that the biological process is not clear. What is the biological environment that controls this, so they can become more organized and specialized?"

Wang's team demonstrated that not only is it possible for mouse embryonic stem cells to form three distinct germ layers in the lab, but also that achieving the separation requires a careful combination of correct timing, chemical factors and mechanical environment. The team uses cell lines that fluoresce in different colors when they become part of a germ layer, which allows the researchers to monitor the process dynamically.

The researchers deposited the stem cells in a very soft gel matrix, attempting to recreate the properties of the womb. They found that several mechanical forces played a role in how the cells organized and differentiated the stiffness of the gel, the forces each cell exerts on its neighbors, and the matrix of proteins that the cells themselves deposit as a scaffolding to give the developing embryo structure.

Read more from the original source:
For the first time in the lab, researchers see stem cells take key step toward development

Posted in Cell Medicine | Comments Off on For the first time in the lab, researchers see stem cells take key step toward development

Human rights court rules that evidence must support compassionate therapy

Posted: May 30, 2014 at 9:51 pm

Patients do not have an automatic right to a compassionate therapy for which there is no scientific evidence of efficacy, according to a landmark ruling of the European Court of Human Rights in Strasbourg.

The 28 May ruling referred to the case of Nivio Durisotto, whose daughter suffers a degenerative brain disease. He wished her to be treated with a controversial stem cell-based therapy offered by the Stamina Foundation, based in Brescia, Italy.

But more generally, it will guide any judge facing requests from desperate patients for access to unproved therapies promoted from outside the regulated medical sector.

The judgement is yet another blow for the Stamina Foundation, whose president, Davide Vannoni, is now facing charges of fraudulently obtaining public money to support his therapy.

The Italian Medicines Agency had closed down the Stamina operations in August 2012 on safety grounds (see Leaked files slam stem-cell therapy). In March 2013, the government issued a decree allowing patients to continue Stamina treatment if they had already begun.

Then on 11 September, 2013 an expert committee appointed by the health ministry to examine the Stamina method concluded that there was no evidence to indicate that it might be efficacious (see Advisers declare Italian stem-cell therapy unscientific). The committee further warned that it could be dangerous.

With encouragement from Vannoni, some patients appealed to courts for the right to treatment with the Stamina method. Some judges ruled that the treatment should be given on compassionate grounds, while others including the judge in the Durisotto case ruled that compassionate therapy was not justified because there was no scientific evidence of efficacy.

Durisotto brought his appeal to the European Court of Human Rights on 28 September, 2013 a month after losing his case in Italy.

The European Court dismissed Durisottos claim, saying that the Italian courts ruling had pursued the legitimate aim of protecting health and was proportionate to that aim. It further said that the Italian courts decision had been properly reasoned and was not arbitrary, and that the therapeutic value of the Stamina method had, to date, not yet been proven scientifically. Because the case had been appropriately reasoned, it said, Durisottos daughter had not been discriminated against even if some other national courts had allowed the therapy for similar medical conditions.

Munich-based patent lawyer Clara Sattler de Sousa e Brito, an expert in biomedical laws, says that this clear ruling that scientific proof is necessary will help avoid the use of unproven therapies for so-called compassionate purposes in the future.

See more here:
Human rights court rules that evidence must support compassionate therapy

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Human rights court rules that evidence must support compassionate therapy

Spinal cord, HIV stem cell treatments funded

Posted: May 30, 2014 at 6:44 pm

Phil Reyes, one of the Parkinson's patients in Summit 4 Stem Cell, urges California's stem cell agency to support its research.

A potentially groundbreaking trial to treat spinal cord injuries with tissue grown from human embryonic stem cells will resume, after being funded by the California's stem cell agency.

The California Institute for Regenerative Medicine's governing committee approved without opposition a $14.3 million award to Asterias Biotherapeutics of Menlo Park. Asterias is taking over from Geron, which stopped clinical trials in November, 2011. Geron, also of Menlo Park, said it discontinued the trials for business reasons. Asterias is a subsidiary of Alameda-based BioTime.

Patients will be given transplants of neural tissue grown from the embryonic stem cells. The hope is that the cells will repair the severed connections, restoring movement and sensation below the injury site.

CIRM also unanimously approved a $5.6 million grant for another potential breakthrough: a clinical trial by Sangamo Biosciences of Richmond, Calif, to cure HIV infection with gene therapy. The trial is now in Phase II. Immune cells are taken from the patient and given a mutant form of a gene that HIV uses to get inside the cells. The mutated gene resists infection. The genetically altered cells are then given back to the patient.

Approval of both grants had been expected, as staff reports had recommended their approval. The agency met in San Diego.

In addition CIRM's Independent Citizens Oversight Committee funded $16.2 million in grants to bring three stem cell researchers to California. That vote was more contentious, with some committee members arguing that it made no sense to bring more scientists to California without a specific need. In addition, they argued that CIRM's main emphasis needs to be on funding clinical trials.

Member Jeff Sheehy said that bringing the scientists to California doesn't create more scientific capacity. However, a vote to deny funding failed, and a subsequent vote to approve funding passed.

CIRM is projected to run out of its $3 billion in bond funding by 2017, and supporters of the public agency are considering asking California voters for more money.

Also appearing at the CIRM meeting were advocates of funding a stem cell-based therapy for Parkinson's disease. The therapy, which may be approved in 2015 for a clinical trial, uses artificial embryonic stem cells called induced pluripotent stem cells grown from the patient's own skin cells. The group, Summit 4 Stem Cell, plans to ask for funding to help with the trial in the near future.

Read more here:
Spinal cord, HIV stem cell treatments funded

Posted in Stem Cell Therapy | Comments Off on Spinal cord, HIV stem cell treatments funded

Low-power laser triggers stem cells to repair teeth

Posted: May 30, 2014 at 6:44 pm

Ranking among the X-Men probably isn't all that it's cracked up to be, but who wouldn't want their uncanny ability to regenerate lost bone or tissue? New research into tooth repair and stem cell biology, from a cross-institution team led by David Mooney of Harvard's Wyss Institute, may bring such regeneration one step closer to reality or at the very least, give us hope that we can throw away those nasty dentures.

The researchers employed a low-power laser to trigger human dental stem cells to form dentin, a hard bone-like tissue that is one of four major components of teeth (the others being enamel, pulp, and cementum). This kind of low-level light therapy has previously been used to remove or stimulate hair growth and to rejuvenate skin cells, but the mechanisms were not well understood, results varied, and evidence of its efficacy was largely anecdotal.

The new work is the first to document the molecular mechanism involved, thus laying the foundations for controlled treatment protocols in not only restorative dentistry but also avenues like bone regeneration and wound healing. "The scientific community is actively exploring a host of approaches to using stem cells for tissue regeneration efforts," said Wyss Institute Founding Director Don Ingber. "Dave [Mooney] and his team have added an innovative, noninvasive, and remarkably simple but powerful tool to the toolbox."

To test the team's hypothesis, Praveen Arany, an assistant clinical investigator at the National Institutes of Health, drilled holes in the molars of rats and mice, then treated them with low-dose lasers and temporary caps. Around 12 weeks later, tests confirmed that the laser treatments triggered enhanced dentin formation.

Performing dentistry on rat teeth takes extreme precision and is actually harder than the same procedure on human teeth (Image: ames Weaver, Harvard's Wyss Institute)

Further experiments were conducted on microbial cultures in the laboratory, where they found that a regulatory cell protein called transforming growth factor beta-1 (TGF-1) was activated in a chemical domino effect that in turn caused the stem cells to form dentin. The good news there is that TGF-1 is more or less ubiquitous, with key roles in many biological processes such as immune response, wound healing, development, and malignancies.

This means we could one day see the technique used to do far more than help repair teeth. But first it needs to clear planned human clinical trials, so for now you'll have to make do with dentures, canes and all manner of other prosthetics while the likes of Wolverine prance around with self-healing bodies.

A paper on the research was recently published in the journal Science Translational Medicine.

Source: Wyss Institute at Harvard

Read this article:
Low-power laser triggers stem cells to repair teeth

Posted in Stem Cell Therapy | Comments Off on Low-power laser triggers stem cells to repair teeth

Researchers Use Light To Coax Stem Cells To Repair Teeth

Posted: May 29, 2014 at 8:02 pm

A Harvard-led team is the first to demonstrate the ability to use low-power light to trigger stem cells inside the body to regenerate tissue, an advance they reported in Science Translational Medicine. The research, led by Wyss Institute Core Faculty member David Mooney, Ph.D., lays the foundation for a host of clinical applications in restorative dentistry and regenerative medicine more broadly, such as wound healing, bone regeneration, and more.

The team used a low-power laser to trigger human dental stem cells to form dentin, the hard tissue that is similar to bone and makes up the bulk of teeth. What's more, they outlined the precise molecular mechanism involved, and demonstrated its prowess using multiple laboratory and animal models.

A number of biologically active molecules, such as regulatory proteins called growth factors, can trigger stem cells to differentiate into different cell types. Current regeneration efforts require scientists to isolate stem cells from the body, manipulate them in a laboratory, and return them to the bodyefforts that face a host of regulatory and technical hurdles to their clinical translation. But Mooney's approach is different and, he hopes, easier to get into the hands of practicing clinicians.

"Our treatment modality does not introduce anything new to the body, and lasers are routinely used in medicine and dentistry, so the barriers to clinical translation are low," said Mooney, who is also the Robert P. Pinkas Family Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS). "It would be a substantial advance in the field if we can regenerate teeth rather than replace them."

The team first turned to lead author and dentist Praveen Arany, D.D.S., Ph.D., who is now an Assistant Clinical Investigator at the National Institutes of Health (NIH). At the time of the research, he was a Harvard graduate student and then postdoctoral fellow affiliated with SEAS and the Wyss Institute.

Arany took rodents to the laboratory version of a dentist's office to drill holes in their molars, treat the tooth pulp that contains adult dental stem cells with low-dose laser treatments, applied temporary caps, and kept the animals comfortable and healthy. After about 12 weeks, high-resolution x-ray imaging and microscopy confirmed that the laser treatments triggered the enhanced dentin formation.

"It was definitely my first time doing rodent dentistry," said Arany, who faced several technical challenges in performing oral surgery on such a small scale. The dentin was strikingly similar in composition to normal dentin, but did have slightly different morphological organization. Moreover, the typical reparative dentin bridge seen in human teeth was not as readily apparent in the minute rodent teeth, owing to the technical challenges with the procedure.

"This is one of those rare cases where it would be easier to do this work on a human," Mooney said.

Next the team performed a series of culture-based experiments to unveil the precise molecular mechanism responsible for the regenerative effects of the laser treatment. It turns out that a ubiquitous regulatory cell protein called transforming growth factor beta-1 (TGF-1) played a pivotal role in triggering the dental stem cells to grow into dentin. TGF-1 exists in latent form until activated by any number of molecules.

Here is the chemical domino effect the team confirmed: In a dose-dependent manner, the laser first induced reactive oxygen species (ROS), which are chemically active molecules containing oxygen that play an important role in cellular function. The ROS activated the latent TGF-1complex which, in turn, differentiated the stem cells into dentin.

Excerpt from:
Researchers Use Light To Coax Stem Cells To Repair Teeth

Posted in Stem Cells | Comments Off on Researchers Use Light To Coax Stem Cells To Repair Teeth

Scientists Stimulate Dental Stem Cells With Laser

Posted: May 29, 2014 at 8:02 pm

May 29, 2014

Brett Smith for redOrbit.com Your Universe Online

Researchers led by a team from Harvard University have successfully used a low-power laser to stimulate stem cell differentiation within the body, according to a study published on Wednesday by Science Translational Medicine.

[ Watch the Video: What Are Stem Cells? ]

The study team used a laser to stimulate dental stem cells and cause them to form dentin the hard tissue that makes up the majority of a tooth. The study was also able to identify and describe the molecular mechanism behind the growth process.

Study author David Mooney noted that the work could eventually lead to testing of a non-invasive dental procedure.

Our treatment modality does not introduce anything new to the body, and lasers are routinely used in medicine and dentistry, so the barriers to clinical translation are low, said Mooney, a professor of bioengineering at Harvards School of Engineering and Applied Sciences (SEAS), in a recent statement. It would be a substantial advance in the field if we can regenerate teeth rather than replace them.

The study team began by drilling holes in the molars of rodents. Next, the team treated the tooth pulp containing dental stem cells with a low-power laser, applied short term caps, and kept the animals secure and in good health. After around 12 weeks, observations confirmed that the treatment regimen induced improved dentin development.

It was definitely my first time doing rodent dentistry, said study author Dr. Praveen Arany, a clinical investigator at the National Institutes of Health. The dentin was strikingly similar in composition to normal dentin, but did have slightly different morphological organization.

Moreover, the typical reparative dentin bridge seen in human teeth was not as readily apparent in the minute rodent teeth, owing to the technical challenges with the procedure, he added.

See the article here:
Scientists Stimulate Dental Stem Cells With Laser

Posted in Stem Cells | Comments Off on Scientists Stimulate Dental Stem Cells With Laser

Forget the dentist's drill, use lasers to heal teeth

Posted: May 29, 2014 at 8:02 pm

Open wide, this won't hurt a bit. That might actually be true if the dentist's drill is replaced by a promising low-powered laser that can prompt stem cells to make damaged hard tissue in teeth grow back. Such minimally invasive treatment could one day offer an easy way to repair or regrow our pearly whites.

When a tooth is chipped or damaged, dentists replace it with ceramic or some other inert material, but these deteriorate over time.

To find something better, researchers have begun to look to regenerative medicine and in particular to stem cells to promote tissue repair. Most potential stem cell therapies require the addition of growth factors or chemicals to coax dormant stem cells to differentiate into the required cell type. These chemicals would be applied either directly to the recipient's body, or to stem cells that have been removed from the body and cultured in a dish for implantation.

But such treatments have yet to make it into the doctor's clinic because the approach needs to be precisely controlled so that the stem cells don't differentiate uncontrollably.

Praveen Arany at the National Institute of Dental and Craniofacial Research in Bethesda, Maryland, and his colleagues wondered whether they could use stem cells to heal teeth, but bypass the addition of chemicals by harnessing the body's existing mechanisms.

"Everything we need is in the existing tooth structure the adult stem cells, the growth factors, and exactly the right conditions," says Arany.

So they tried laser light, because it can promote regeneration in heart, skin, lung, and nerve tissues.

To mimic an injury, Arany's team used a drill to remove a piece of dentin the hard, calcified tissue beneath a tooth's enamel that doesn't normally regrow from the tooth of a rat. They then shone a non-ionising, low-power laser on the exposed tooth structure and the soft tissue underneath it. This allowed the light to reach the dental stem cells deep inside the pulp of the tooth.

Twelve weeks after a single 5-minute treatment, new dentin had formed in the cavity. Similar dentin production was seen in mice and in cultured human dental stem cells.

It not quite the end of the dentist's intervention though, they would still need to cap the tooth to protect it, because the stem cells that produce enamel are not present in adults.

See original here:
Forget the dentist's drill, use lasers to heal teeth

Posted in Stem Cells | Comments Off on Forget the dentist's drill, use lasers to heal teeth

Page 2,106«..1020..2,1052,1062,1072,108..2,1202,130..»