Page 2,116«..1020..2,1152,1162,1172,118..2,1302,140..»

Stem Cells Make Heart Disease-on-a-Chip

Posted: May 15, 2014 at 12:51 am

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine because it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.

The work, published in May 2014 in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

A release from Harvard explains that using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients. The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease. The release quotes Parker as saying, "You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract. "The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROSa normal byproduct of cellular metabolism released by mitochondriawhich had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder. "We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle." His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.

"We tried to thread multiple needles at once and it certainly paid off," Parker said. "I feel that the technology that we've got arms industry and university-based researchers with the tools they need to go after this disease." Both Parker and Pu, who first talked about collaborating at a 2012 Stockholm conference, credit their partnership and scientific consilience for the success of this research. Parker asserted that the 'organs-on-chips' technology that has been a flagship of his lab only worked so fast and well because of the high quality of Pu's patient-derived cardiac cells. "When we first got those cells down on the chip, Megan, one of the joint first authors, texted me 'this is working,'" he recalled. "We thought we'd have a much harder fight." "When I'm asked what's unique about being at Harvard, I always bring up this story," Pu said. "The diverse set of people and cutting-edge technology available at Harvard certainly made this study possible." The researchers also involved in this work include: Joint first authors Gang Wang, MD, of Boston Children's Hospital, and Megan McCain, PhD, who earned her degree at the Harvard School of Engineering and Applied Sciences and is now an assistant professor at the University of Southern California. Amy Roberts, MD, of Boston Children's Hospital, and Richard Kelley, MD, PhD, at the Kennedy Krieger Institute provided patient data and samples, and Frdric Vaz, PhD, and his team at the Academic Medical Center in the Netherlands conducted additional analyses. Technical protocols were shared by Kenneth Chien, MD, PhD, at the Karolinska Institutet.

Kevin Kit Parker, PhD, is the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, a Core Faculty member of the Wyss Institute for Biologically Inspired Engineering, and a Principal Faculty member of the Harvard Stem Cell Institute. William Pu, MD, is an Associate Professor at Harvard Medical School, a member of the Department of Cardiology at Boston Children's Hospital, and an Affiliated Faculty member of the Harvard Stem Cell Institute. George Church, PhD, is a Professor of Genetics at Harvard Medical School and a Core Faculty member of the Wyss Institute of Biologically Inspired Engineering. The work was supported by the Barth Syndrome Foundation, Boston Children's Hospital, the National Institutes of Health, and charitable donations from Edward Marram, Karen Carpenter, and Gail Federici Smith.

Follow this link:
Stem Cells Make Heart Disease-on-a-Chip

Posted in Stem Cells | Comments Off on Stem Cells Make Heart Disease-on-a-Chip

Rutgers' Human Genetics Institute Wins $19 Million Federal Contract

Posted: May 15, 2014 at 12:50 am

Contact Information

Available for logged-in reporters only

Newswise NEW BRUNSWICK, N.J. The National Institute on Drug Abuse (NIDA) has awarded a five-year contract worth up to $19 million to RUCDR Infinite Biologics, a unit of Rutgers Human Genetics Institute of New Jersey. The worlds largest university-based biorepository, RUCDR Infinite Biologics is located on Rutgers Busch Campus in Piscataway.

Under the new contract, RUCDR will expand and enhance the services it provides through its NIDA Center for Genetic Studies, which it has supported for the past 15 years. The Center provides genomic services to NIDA-funded researchers.

Because the Rutgers operation has been continuously acquiring new equipment and systems, and refining the techniques its staff employs, the genomic testing and analysis for NIDA studies will be significantly more sophisticated than in previous years, according to Jay Tischfield, CEO and founder of RUCDR Infinite Biologics and the Duncan and Nancy Macmillan Distinguished Professor of Genetics at Rutgers.

Under this new contract with NIDA, we will be utilizing innovative technologies to support research, such as microarray typing and high-throughput sequencing for genomic and epigenomic analyses, Tischfield said. We also will support NIDA projects that employ induced pluripotent stem cells to facilitate the molecular and cellular study of brain development and addiction processes.

The NIDA Center for Genetic Studies is a scientific resource for informing the human molecular genetics of drug addiction. The center stores clinical and diagnostic data, pedigree information and biomaterials (including DNA, plasma, cryopreserved lymphocytes and/or cell lines) from human subjects participating in studies that form the NIDA Genetics Consortium.

The contract includes receiving data along with blood samples or other biospecimens from funded grants and/or contracts supporting research on the genetics of addiction and addiction vulnerability; processing these data and materials to create databases, serum, DNA, RNA and cell lines; distributing all data and materials in the NIDA Human Genetics Initiative to qualified investigators; and maintaining storage of data and biomaterials.

RUCDR has a similar agreement with the National Institute of Mental Health to support the NIMH Center for Collaborative Genomics Research on Mental Disorders, which provides services to NIMH-funded scientists studying mental disorders. A $44.5 million, five-year cooperative agreement renewal was awarded in 2013.

About RUCDR Infinite Biologics RUCDR Infinite Biologics offers a complete and integrated selection of biological sample processing, analysis and biorepository services to government agencies, academic institutions, foundations and biotechnology and pharmaceutical companies within the global scientific community. RUCDR Infinite Biologics provides DNA, RNA and cell lines with clinical data to hundreds of research laboratories for studies on mental health and developmental disorders, drug and alcohol abuse, diabetes and digestive, liver and kidney diseases. RUCDR completed an $11.8 million expansion and renovation of its facilities last year. Read more at http://www.rucdr.org.

Link:
Rutgers' Human Genetics Institute Wins $19 Million Federal Contract

Posted in Molecular Genetics | Comments Off on Rutgers' Human Genetics Institute Wins $19 Million Federal Contract

Enzyme helps stem cells improve recovery from limb injuries

Posted: May 15, 2014 at 12:44 am

While it seems like restoring blood flow to an injured leg would be a good thing, it can actually cause additional damage that hinders recovery, researchers say.

Ischemia reperfusion injury affects nearly two million Americans annually with a wide variety of scenarios that temporarily impede blood flow -- from traumatic limb injuries, to heart attacks, to donor organs, said Dr. Babak Baban, immunologist at the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

Restoring blood flow actually heightens inflammation and cell death rather than recovery for many of these patients.

"Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down," said Dr. Jack Yu, Chief of MCG's Section of Plastic and Reconstructive Surgery. "All kinds of bad things start happening."

Baban and Yu are collaborators on a study published in the journal PLOS ONE that shows one way stem cell therapy appears to intervene is with the help of an enzyme also used by a fetus to escape rejection by the mother's immune system.

Earlier studies indicate stem cells may improve recovery both by enabling new blood vessel growth and by turning down the now-severe inflammation, Baban said. The new study shows that indoleomine 2,3 dioxygenase, or IDO, widely known to dampen the immune response and create tolerance, plays an important role in regulating inflammation in that scenario. Stems cells and numerous other cell types are known to express IDO.

In fact, IDO boosted stem cell efficacy by about a third in their studies in animal models comparing the therapy in normal mice versus mice missing IDO. The researchers documented decreased expression of inflammatory markers, swelling and cell death, which correlate with a shorter, improved recovery.

That could be just what the doctor ordered for these patients, said Baban, the study's corresponding author. "We don't want to turn off the immune system, we want to turn it back to normal," he said.

Problems start with even a short period of inadequate blood and nutrients resulting in the rapid accumulation of destructive acidic metabolites, free radicals, and damage to cell structures, Yu said. Cell power plants, called mitochondria, which should be producing the energy source ATP, are among the early casualties, quickly becoming fat, leaky, and dysfunctional.

"The mitochondria are sick; they are very, very sick," Yu said. When blood flow is restored, it can put huge additional stress on sick powerhouses.

Read more:
Enzyme helps stem cells improve recovery from limb injuries

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Enzyme helps stem cells improve recovery from limb injuries

Non Surgical Stem Cells Transplantation for Hair Loss – Part 1 – Doctors Talk – Video

Posted: May 14, 2014 at 4:43 am


Non Surgical Stem Cells Transplantation for Hair Loss - Part 1 - Doctors Talk
Doctors Talk is an exclusive program by CVR Health TV in which a specialist will discuss about different health problems and suggest remedies. Today #39;s Doctor Talk features VLCC Dermatologist...

By: CVR Health TV

Read the rest here:
Non Surgical Stem Cells Transplantation for Hair Loss - Part 1 - Doctors Talk - Video

Posted in Stem Cell Videos | Comments Off on Non Surgical Stem Cells Transplantation for Hair Loss – Part 1 – Doctors Talk – Video

'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Posted: May 13, 2014 at 10:51 pm

Image Caption: Researchers use modified RNA transfection to correct genetic dysfunction in heart stem cells derived from Barth syndrome patients. The series of images show how inserting modified RNA into diseased cells causes the cells to produce functioning versions of the TAZ protein (first image: in green) that correctly localize in the mitochondria (second image: in red). When the images are merged to demonstrate this localization, green overlaps with red, giving the third image a yellow color. Credit: Gang Wang and William Pu/Boston Children's Hospital

[ Watch The Video: Cardiac Tissue Contractile Strength Differences Shown Using Heart-On-A-Chip ]

Harvard University

Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine, as it is working proof that a chunk of tissue containing a patients specific genetic disorder can be replicated in the laboratory.

The work, published in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Childrens Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.

Using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.

The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.

The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.

You dont really understand the meaning of a single cells genetic mutation until you build a huge chunk of organ and see how it functions or doesnt function, said Parker, who has spent over a decade working on organs-on-chips technology. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think thats a big advance.

Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didnt seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cells ability to build itself in a way that allows it to contract.

Continued here:
'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Posted in Stem Cells | Comments Off on 'Heart Disease-On-A-Chip' Made From Patient Stem Cells

Biomedical sector is big jobs prospect

Posted: May 13, 2014 at 10:50 pm

Tuesday, May 13 15:59:54

Dr John O'Dea, President of Engineers Ireland, today called on the Government and Science Foundation Ireland (SFI) to prioritise investment in the area of regenerative medicine manufacturing technology to create jobs.

The calls come ahead of the Engineers Ireland annual conference in Sligo this week.

Ireland is one of five recognised centres of medtech excellence globally, an industry which is entering a new era of regenerative medicine.

Following the recent Irish Medicines Board approval of the cell manufacturing facility at NUI Galway, Ireland also boasts one of only six regenerative medicine institutes in Europe, which is approved to manufacture stem cell therapies for human use. This resource provides the foundation for strong engineering and manufacturing employment opportunities in this emerging area.

Speaking about the future of the biomedical industry in Ireland, John O'Dea, President of Engineers Ireland, said that we need to skill up now to embrace the opportunities, and leverage the worldwide recognition we enjoy for high-quality medical device and pharmaceutical manufacturing, The medical device industry is vital to Ireland's economic growth and future. It is a heavily manufacturing-focused industry which currently employs in the region of 25,000 people and is close to export levels of E8 billion.

However we cannot become complacent as employment in the industry has remained stable over the past few years. A recent study by Johnson and Johnson suggests that the regenerative medicine market will exceed $10 billion by 2020, and Ireland has an opportunity to lead the progress in this field. Therefore we must ensure strategic focus is awarded to ensuring the right skills and facilities exist in order to be at the forefront of this game-changing advancement in medicine and medical technology.

The Engineers Ireland annual conference, entitled Collaborating to Engineer a Better Society', will also address issues such as the challenge of doing business in Ireland, delivering Ireland's resources and aligning engineering education with the skills needed by industry.

Leading international innovators in the field of medical technology, Prof Alain Cribier and engineer Mark Gelfand, will be addressing the gathering of engineers on new techniques in medicine and translating physiological mechanisms into therapeutic solutions.

The one and a half day event will also feature contributions from: Martin Curley, Vice President, Intel Corporation; Jerry Grant, Head of Asset Management, Irish Water; Dr James Browne, President, NUI Galway, George Mullan, CEO, SIS Pitches, Tommy Fanning, Senior Vice President and Manager, Engineering, Industrial and Clean Technologies Division, IDA Ireland; Emma McKendrick, CEO, PUNCH Consulting Engineers, Dr John Killeen, chairman, Marine Institute; Sean Casey, managing director, Bord Gis Networks The conference will be opened by the President of Engineers Ireland, Dr John O'Dea, CEO and founder of Crospon, one of Ireland's leading indigenous medical-device companies.

Go here to see the original:
Biomedical sector is big jobs prospect

Posted in Regenerative Medicine | Comments Off on Biomedical sector is big jobs prospect

Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium

Posted: May 13, 2014 at 10:42 pm

Contact Information

Available for logged-in reporters only

Newswise May 13, 2014 (BRONX, NY) Healthy stem cells work to restore or repair the bodys tissues, but cancer stem cells have a more nefarious mission: to spawn malignant tumors. Cancer stem cells were discovered a decade ago, but their origins and identity remain largely unknown.

Today, the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research at Albert Einstein College of Medicine of Yeshiva University hosted its second Stem Cell Symposium, focusing on cancer stem cells. Leading scientists from the U.S., Canada and Belgium discussed the latest advances in the field and highlighted the challenges of translating this knowledge into targeted cancer treatments.

These exceptional scientists are pioneers in the field and have made enormous contributions to our understanding of the biology of stem cells and cancer, said Paul Frenette, M.D., director and chair of Einsteins Stem Cell Institute and professor of medicine and of cell biology. Hopefully this symposium will spark productive dialogues and collaborations among the researchers who attend.

The presenters were:

Cancer Stem Cells and Malignant Progression, Robert A. Weinberg, Ph.D., Daniel K. Daniel K. Ludwig Professor for Cancer Research Director, Ludwig Center of the Massachusetts Institute of Technology; Member, Whitehead Institute for Biomedical Research Towards Unification of Cancer Stem Cell and Clonal Evolution Models of Intratumoral Heterogeneity, John Dick, Ph.D., Canada Research Chair in Stem Cell Biology and senior scientist, Princess Margaret Cancer Center, University Health Network; professor of molecular genetics, University of Toronto Normal and Neoplastic Stem Cells, Irving L. Weissman, M.D., Director, Institute for Stem Cell Biology and Regenerative Medicine and Director, Stanford Ludwig Center for Cancer Stem Cell Research and Medicine; Professor of Pathology and Developmental Biology, Stanford University School of Medicine Cell Fate Decisions During Tumor Formation, Leonard I. Zon, M.D., Grousbeck Professor of Pediatric Medicine, Director, Stem Cell Research Program, Howard Hughes Medical Institute/Boston Children's Hospital, Harvard Medical School Skin Stem Cells in Silence, Action and Cancer, Elaine Fuchs, Ph.D., Rebecca C. Lancefield Professor, Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute/The Rockefeller University Mechanism Regulating Stemness in Skin Cancer, Cdric Blanpain, M.D., Ph.D., professor of stem cell and developmental biology, WELBIO, Interdisciplinary Research Institute, Universit Libre de Bruxelles Mouse Models of Malignant GBM: Cancer Stem Cells and Beyond, Luis F. Parada, Ph.D., professor and chairman, Diana K and Richard C. Strauss Distinguished Chair in Developmental Biology; Director, Kent Waldrep Foundation Center for Basic Neuroscience Research; Southwestern Ball Distinguished Chair in Nerve Regeneration Research, University of Texas Southwestern Medical Center

***

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nations premier centers for research, medical education and clinical investigation. During the 2013-2014 academic year, Einstein is home to 734 M.D., 236 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 353 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2013, Einstein received more than $155 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical CenterEinsteins founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

Follow this link:
Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium

Posted in Cell Medicine | Comments Off on Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium

Stem cell research offers new hope

Posted: May 13, 2014 at 10:41 pm

May 14, 2014, 4 a.m.

STEM cell therapy is the great frontier of todays medical research.

STEM cell therapy is the great frontier of todays medical research.

While still in its infancy, stem cell technology has already moved from being a promising idea to delivering life-saving treatment for conditions such as leukaemia.

Last week about 70 people gathered at the Mid City Motel, Warrnambool, to hear about the advances from one of Australias leading researchers.

Stem cell researcher, Professor Graham Jenkin.

Professor Graham Jenkin, of the department of obstetrics and gynaecology at Monash University, is researching the use of stem cells harvested from umbilical cord blood to treat babies at risk of developing cerebral palsy as the result of oxygen deprivation during birth.

The event was hosted by the Warrnambool branch of the Inner Wheel Club as part of a national fund-raising program by the organisation.

Professor Jenkin, deputy director of The Ritchie Centre, said treating infants deprived of oxygen with cord blood stem cells was showing promising results in preventing the brain damage that leads to cerebral palsy.

We are looking at treating infants within a 24-hour window after birth, Professor Jenkin said. We would be aiming for treatment after about six hours if possible, which is about as soon as the stem cells can be harvested.

The rest is here:
Stem cell research offers new hope

Posted in Stem Cell Therapy | Comments Off on Stem cell research offers new hope

Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …

Posted: May 12, 2014 at 9:53 pm

Beverly Hills, California (PRWEB) May 12, 2014

The top Beverly Hills pain management doctors at BZ Pain are now offering stem cell procedures for those with joint arthritis and pain. The outpatient regenerative medicine procedures are typically able to relieve pain and help patients avoid the need for joint replacement surgery of the shoulder, hip, knee and ankle. Call (310) 626-1526 for more information and scheduling.

Over a million joint replacement procedures are performed each year in America. These procedures should be considered an absolute last resort, since the implants are not meant to last forever. There are potential complications with joint replacement.

Therefore, stem cell procedures are an excellent option. They often help repair and regenerate damaged tissue, which is very different than what occurs with steroid injections. The stem cell procedures include options derived from amniotic fluid, fat tissue, or one's bone marrow.

Initial studies are showing the benefits of stem cell procedures for degenerative arthritis. With exceptionally low risk, there is a significant upside with the stem cell pain management therapies.

Dr. Zarrini at BZ Pain is a Double Board Certified Los Angeles pain management doctor, and is able to provide both medical and interventional therapies. The procedures do not involve any fetal tissue or embryonic stem cells. The procedures may help degenerative disease symptoms in the shoulder, hip, knee and ankle to name a few joints.

For those interested in stem cell therapy Los Angeles and Beverly Hills trusts, call BZ Pain today at (310) 626-1526.

Read the original:
Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain ...

Posted in Cell Medicine | Comments Off on Top Beverly Hills Pain Management Doctors at BZ Pain Now Offering Stem Cell Procedures for Joint Arthritis for Pain …

Cord Banking, Cell Therapy Helps Treat Deadly Diseases

Posted: May 12, 2014 at 10:46 am

SPRINGFIELD, Mo. -- A child with a life threatening disease is heart wrenching for parents. Suddenly they are faced with no easy way to get a match for stem cells that could save their child.

With cell therapy, there is a way to do that but it starts in the delivery room.

Delanie Rinne's fourth child, Ezekial, was born earlier this year and even though he'll get older; proof of that day is being stored at Core23 BioBank in Springfield.

"We decided to look into banking the cord blood because we know that this is probably our last biological child," says Rinne.

Core23 stores your child's blood, plasma or tissue from the umbilical cord to help treat 81 different diseases.

"If I had a child that has Leukemia and I was pregnant then that would be a treatment option."

Emily and Michael Perry opened the private cord bank as another option for parents.

"We see that cell therapy is surpassing bone marrow, we truly believe that it is the medicine of the future."

"Cell therapy is taking a healthy, viable cell and putting it into somebody's body to treat a disease or a condition."

The process starts in the delivery room and ends in a hydrogen tank in their lab.

Originally posted here:
Cord Banking, Cell Therapy Helps Treat Deadly Diseases

Posted in Cell Therapy | Comments Off on Cord Banking, Cell Therapy Helps Treat Deadly Diseases

Page 2,116«..1020..2,1152,1162,1172,118..2,1302,140..»