Page 2,134«..1020..2,1332,1342,1352,136..2,1402,150..»

Irish cell therapy firm in E6m research

Posted: April 23, 2014 at 8:41 am

Tuesday, April 22 11:57:06

Orbsen Therapeutics, a spin-out from NUI Galway's Regenerative Medicine Institute (REMEDI), is to partner with the University of Birmingham in a E6 million EU FP7 funded MERLIN project to fight liver disease.

The EU FP7-funded project known by the acronym "MERLIN" (MEsynchymal stem cells to Reduce Liver INflammation) is led by Professor Phil Newsome, Clinical Director of the Birmingham University Stem Cell Centre. MERLIN will advance Orbsen's proprietary cell therapy to a Phase 2a clinical trial in patients with inflammatory liver disease. This MERLIN project will evaluate the Orbsen cell therapy in 4 different research laboratories across Europe and the project will culminate in a Phase 2a clinical trial of the therapy in the crippling inflammatory liver disease, Primary Sclerosing Cholangitis.

This is Orbsen's fourth success in attracting FP7 funding (the EU's Seventh Framework Programme for Research), making them one of Ireland's most successful private companies in this funding programme and now connects Orbsen to 23 global collaborators. Other successful cell therapy projects for Orbsen include PURSTEM (completed), REDDSTAR (ongoing) and DeCIDE (ongoing).

Orbsen Therapeutics Ltd. is a privately-held company founded in 2006 as a spin-out from Ireland's Regenerative Medicine Institute (REMEDI) in NUI Galway. As part of the PurStem EU FP7 program, Orbsen developed proprietary technologies that enable the prospective purification of highly defined and therapeutic (stromal) cells from several human tissues, including bone marrow, adipose tissue and umbilical cord.

Orbsen's CEO Brian Molloy said, "Orbsen has secured substantial amounts of research funding in the last 18 months which will further validate our product and bring us through to a "first in man" clinical trial in 2015/16. Our model has always focused on putting the 'science first' and we have successfully used that approach to develop a technology that could potentially position us and indeed Ireland at the leading edge of European Cell Therapy development."

Mr Molloy continued, "As a spin-out from the NUI Galway based REMEDI Institute we have focused the majority of our collaborations with an Irish research team. Our success in the MERLIN project now demonstrates that we are capable of playing a key role in collaborations led by researchers across Europe."

The total research budget for the MERLIN project is close to E6 Million of which E1 Million will go directly to Orbsen Therapeutics over the 4-year period of the project.

Read the original:
Irish cell therapy firm in E6m research

Posted in Stem Cell Therapy | Comments Off on Irish cell therapy firm in E6m research

Stem Cells in Anti-Aging Medicine: Workshop Preview – Video

Posted: April 22, 2014 at 4:40 pm


Stem Cells in Anti-Aging Medicine: Workshop Preview

By: A4MEvents

Read the original:
Stem Cells in Anti-Aging Medicine: Workshop Preview - Video

Posted in Stem Cell Videos | Comments Off on Stem Cells in Anti-Aging Medicine: Workshop Preview – Video

Madison's Before & After Stem Cell Therapy – Video

Posted: April 22, 2014 at 2:42 am


Madison #39;s Before After Stem Cell Therapy
Had step cell therapy procedure on 4/14/14 and we were seeing noticeable results only 4 short days later.

By: Jaie Locke

Continued here:
Madison's Before & After Stem Cell Therapy - Video

Posted in Stem Cell Therapy | Comments Off on Madison's Before & After Stem Cell Therapy – Video

Cloning advance means human tissues could be regrown, even in old age

Posted: April 22, 2014 at 12:45 am

The advance could lead to tissue-transplant operations for a range of debilitating disorders, such as Parkinson's disease, multiple sclerosis, heart disease and spinal cord injuries.

Last year, a team created stem cells from the skin cells of babies, but it was unclear whether it would work in adults.

However, a team of scientists from the Research Institute for Stem Cell Research at CHA Health Systems in Los Angeles and the University of Seoul said they had achieved the same result with two men, one aged 35, the other the 75-year-old. "The proportion of diseases you can treat with lab-made tissue increases with age. So if you can't do this with adult cells it is of limited value," said Robert Lanza, co-author of the research, which was published in the journal Cell Stem Cell.

The technique works by removing the nucleus from an unfertilised egg and replacing it with the nucleus of a skin cell. An electric shock causes the cells to divide until they form a "blastocyst", a small ball of a few hundred cells.

In IVF, a blastocyst is implanted into the womb, but with the new technique the cells would be harvested to create other organs or tissues.

The breakthrough is likely to reignite the debate about the ethics of creating human embryos for medical purposes and the possible use of the same technique to produce cloned babies - which is illegal in Britain.

Although the embryos created may not produce a human clone even if implanted in a womb, the prospect is now closer. However, scientists have tried for years to clone monkeys and have yet to succeed.

Dr Lanza admitted that without strong regulations, the early embryos produced in therapeutic cloning "could also be used for human reproductive cloning, although this would be unsafe and grossly unethical". However, he said it was important for the future of regenerative medicine that research into therapeutic cloning should continue.

Shoukhrat Mitalipov, a reproductive biologist from Oregon Health and Science University, who developed the technique last year, said: "The advance here is showing that [nuclear transfer] looks like it will work with people of all ages.

"I'm happy to hear that our experiment was verified and shown to be genuine."

Read more:
Cloning advance means human tissues could be regrown, even in old age

Posted in Stem Cells | Comments Off on Cloning advance means human tissues could be regrown, even in old age

A protein required for integrity of induced pluripotent stem cells

Posted: April 22, 2014 at 12:45 am

Cell reprogramming converts specialised cells such as nerve cells or skin cells towards an embryonic stem cell state. This reversal in the evolutionary development of cells also requires a reversal in the biology of telomeres, the structures that protect the ends of chromosomes; whilst under normal conditions telomeres shorten over time, during cell reprogramming they follow the opposite strategy and increase in length.

A study published today in the journal Stem Cell Reports, from the Cell Publishing Group, reveals that the SIRT1 protein is needed to lengthen and maintain telomeres during cell reprogramming. SIRT1 also guarantees the integrity of the genome of stem cells that come out of the cell reprogramming process; these cells are known as iPS cells (induced Pluripotent Stem cells).

The study has been carried out by the Spanish National Cancer Research Centre's Telomeres and Telomerase Group, in collaboration with the CNIO's Transgenic Mice Core Unit.

Since the Japanese scientist Shinya Yamanaka first obtained iPS cells from adult tissue in 2006, regenerative medicine has become one of the most exciting and rapidly developing fields in biomedicine. There is a very ambitious aim, given the ability to differentiate iPS cells into any type of cell; this would allow for the regeneration of organs damaged by diseases such as Alzheimer, diabetes or cardiovascular diseases.

The nature of iPS cells however is causing intense debate. The latest research shows that chromosome aberrations and DNA damage can accumulate in these cells. "The problem is that we don't know if these cells are really safe," says Mara Luigia De Bonis, a postdoctoral researcher of the Telomeres and Telomerase Group who has done a large part of the work.

In 2009, the same CNIO laboratory discovered that telomeres increase in length during cell reprogramming (Marion et al., Cell Stem Cell, 2009); this increase is important as it allows stem cells to acquire the immortality that characterises them.

One year later, it was demonstrated that the levels of SIRT1 -- a protein belonging to the sirtuin family and that is involved in the maintenance of telomeres, genomic stability and DNA damage response -- are increased in embryonic stem cells. The question CNIO researchers asked was: is SIRT1 involved in cell reprogramming?

SAFER STEM CELLS

Employing mouse models and cell cultures as research tools in which SIRT1 had been removed, the team has discovered that this protein is necessary for reprogramming to occur correctly and safely."We observed cell reprogramming in the absence of SIRT1, but over time the produced iPS cells lengthen telomeres less efficiently and suffer from chromosome aberrations and DNA damage," says De Bonis. "SIRT1 helps iPS cells to remain healthy," she concludes.

The authors describe how this protective effect on iPS cells is, in part, mediated by the cMYC regulator. SIRT1 slows the degradationof cMYC, which results in an increase in telomerase (the enzyme that increases telomere length) in cells.

More here:
A protein required for integrity of induced pluripotent stem cells

Posted in Stem Cells | Comments Off on A protein required for integrity of induced pluripotent stem cells

Single Cell Type Found To Cause Most Invasive Bladder Cancers: Study

Posted: April 22, 2014 at 12:41 am

Lawrence LeBlond for redOrbit.com Your Universe Online

Invasive bladder cancer (IBC), a malignant disease that currently affects more than 375,000 people worldwide, has been found to be caused by a single type of cell in the lining of the bladder, according to researchers with the Stanford University School of Medicine.

The researchers say this is the first study to pinpoint the normal cell type that can give rise to IBC. It is also the first study to show that most bladder cancers and their precancerous lesions arise from just one cell, which could also explain why many bladder cancers recur after therapy.

Weve learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining, Philip Beachy, PhD, professor of biochemistry and of developmental biology, said in a statement. All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression.

Beachy and colleagues found that while cancer stem cells and the precancerous lesions they form express an important signaling protein known as sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

This could be a game changer in terms of therapeutic and diagnostic approaches, said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. Until now, its not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if its due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring.

Bladder cancer is the fourth most common cancer in men and the ninth in women. There are two main types of bladder cancer: one that invades the muscle around the bladder and then metastasizes to other organs, and another that remains confined to the bladder lining. Unlike noninvasive cancers, most invasive bladder cancers are untreatable. Those that can be treated are expensive and difficult to cure, and with a high likelihood of recurrences, ongoing monitoring is required.

To determine what genes or cell types are at play in the formation of bladder cancer, the study team used a mouse model that closely mimicked what happens in humans. Usually, researchers rely on prior knowledge or guesses as to what genes are involved and often genetically alter cell types in animals to induce overexpression of a gene known to be involved in tumorigenesis or to block the expression of a gene that inhibits cancer development.

LINK TO SMOKING

Previous work by Beachy and his colleagues suggested that basal cells play a role in bladder cancer. However, the new study offered an unbiased approach.

See the original post:
Single Cell Type Found To Cause Most Invasive Bladder Cancers: Study

Posted in Cell Medicine | Comments Off on Single Cell Type Found To Cause Most Invasive Bladder Cancers: Study

stem cell therapy treatment for Global Developmental Delay with Severe Mental Retardation – Video

Posted: April 22, 2014 at 12:41 am


stem cell therapy treatment for Global Developmental Delay with Severe Mental Retardation
improvement seen in just 3 months after stem cell therapy treatment for Global Developmental Delay with Severe Mental Retardation by dr alok sharma, mumbai, ...

By: Neurogen Brain and Spine Institute

See the original post here:
stem cell therapy treatment for Global Developmental Delay with Severe Mental Retardation - Video

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on stem cell therapy treatment for Global Developmental Delay with Severe Mental Retardation – Video

stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok – Video

Posted: April 22, 2014 at 12:41 am


stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok
improvement seen in just 3 months after stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok sharma, mumbai, ind...

By: Neurogen Brain and Spine Institute

More here:
stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok - Video

Posted in Stem Cell Therapy | Comments Off on stem cell therapy treatment for cerebral palsy with mental retardation with low vision by dr alok – Video

Top Phoenix Foot and Ankle Specialist, Valley Foot Surgeons, Now Offering Stem Cell Procedures for Healing Diabetic …

Posted: April 22, 2014 at 12:41 am

Phoenix, Arizona (PRWEB) April 21, 2014

The top foot and ankle specialists in Arizona at Valley Foot Surgeons are now offering stem cell treatments for diabetic wounds. The treatments may propel these difficult wounds to heal in a much shorter time frame than they would without regenerative medicine therapy. The stem cell doctor is a four-time Phoenix Magazine Top Doc Winner; call (480) 994-5977 for more information and scheduling.

With up to a third of individuals suffering from diabetes (or pre-diabetes), wounds and ulcers are becoming more common all the time in the foot and ankle area. Due to the immunocompromised state of diabetics, it can be extremely difficult for the human body to naturally heal these wounds. Sometimes, they persist for years, become infected, and may lead to an eventual need for an amputation.

At Valley Foot Surgeons, Phoenix Top Doc Richard Jacoby is now offering stem cell treatments for diabetic wounds. These treatments are performed as an outpatient and involve subcutaneous injections of amniotic derived stem cell material around the wound.

The procedure offers several benefits in addition to a hefty concentration of stem cells. The material is immunologically privileged and does not cause a rejection reaction. It is processed from an FDA regulated lab.

The amniotic derived stem cells assists with the creation of new blood vessels to help heal the wounds and also contains a significant amount of growth factors. The stem cell material also has antimicrobial properties, helping avoid infection.

Along with the stem cell procedures, Valley Foot Surgeons offers laser treatment simultaneously which further helps with the healing process. With approximately 100 stem cell procedures performed so far for diabetic wounds, the outcomes have been nothing short of incredible.

Wounds have been healing, and much faster than with conventional methods. For more information and treatment with the top foot and ankle stem cell doctor in Phoenix and Scottsdale, call (480) 420-3499.

More here:
Top Phoenix Foot and Ankle Specialist, Valley Foot Surgeons, Now Offering Stem Cell Procedures for Healing Diabetic ...

Posted in Cell Therapy | Comments Off on Top Phoenix Foot and Ankle Specialist, Valley Foot Surgeons, Now Offering Stem Cell Procedures for Healing Diabetic …

Stanford scientists identify source of most cases of invasive bladder cancer

Posted: April 21, 2014 at 12:48 am

PUBLIC RELEASE DATE:

20-Apr-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center

STANFORD, Calif. A single type of cell in the lining of the bladder is responsible for most cases of invasive bladder cancer, according to researchers at the Stanford University School of Medicine.

Their study, conducted in mice, is the first to pinpoint the normal cell type that can give rise to invasive bladder cancers. It's also the first to show that most bladder cancers and their associated precancerous lesions arise from just one cell, and explains why many human bladder cancers recur after therapy.

"We've learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining," said Philip Beachy, PhD, professor of biochemistry and of developmental biology. "All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression."

Although the cancer stem cells, and the precancerous lesions they form in the bladder lining, universally express an important signaling protein called sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

"This could be a game changer in terms of therapeutic and diagnostic approaches," said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. "Until now, it's not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if it's due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring."

Beachy is the senior author of the study, which will be published online April 20 in Nature Cell Biology. He is the Ernest and Amelia Gallo Professor in the School of Medicine and a member of the Stanford Cancer Institute and the Stanford Institute for Stem Cell Biology and Regenerative Medicine. He is also a Howard Hughes Medical Institute investigator. Kunyoo Shin, PhD, an instructor at the institute, is the lead author.

Bladder cancer is the fourth most common cancer in men and the ninth most common in women. Smoking is a significant risk factor. There are two main types of the disease: one that invades the muscle around the bladder and metastasizes to other organs, and another that remains confined to the bladder lining. Unlike the more-treatable, noninvasive cancer which comprises about 70 percent of bladder cancers the invasive form is largely incurable. It is expensive and difficult to treat, and the high likelihood of recurrence requires ongoing monitoring after treatment.

See original here:
Stanford scientists identify source of most cases of invasive bladder cancer

Posted in Cell Medicine | Comments Off on Stanford scientists identify source of most cases of invasive bladder cancer

Page 2,134«..1020..2,1332,1342,1352,136..2,1402,150..»