Page 2,196«..1020..2,1952,1962,1972,198..2,2102,220..»

Stem cell technology and osteoarthritis… winning the war! – Video

Posted: February 3, 2014 at 10:40 pm


Stem cell technology and osteoarthritis... winning the war!
http://tinyurl.com/st0pagingn0w "We #39;ve explored the mysteries of the universe. However, there is another mystery closer to home. When an earthworm is cut in ...

By: Miranda Noiree

Read more here:
Stem cell technology and osteoarthritis... winning the war! - Video

Posted in Stem Cell Videos | Comments Off on Stem cell technology and osteoarthritis… winning the war! – Video

Hertz Fellow Kyle Loh – Video

Posted: February 3, 2014 at 10:40 pm


Hertz Fellow Kyle Loh
Kyle has undertaken four years of stem cell research at five separate laboratories at the Harvard Stem Cell Institute, the Genome Institute of Singapore, and...

By: Hertz Foundation

Visit link:
Hertz Fellow Kyle Loh - Video

Posted in Stem Cell Research | Comments Off on Hertz Fellow Kyle Loh – Video

Stem Cell Research Acid Solution Blood Cells Embryonic Stem Cells – Video

Posted: February 3, 2014 at 10:40 pm


Stem Cell Research Acid Solution Blood Cells Embryonic Stem Cells
Stem Cell Research Acid Solution Blood Cells Embryonic Stem Cells.

By: News Footage

The rest is here:
Stem Cell Research Acid Solution Blood Cells Embryonic Stem Cells - Video

Posted in Stem Cell Research | Comments Off on Stem Cell Research Acid Solution Blood Cells Embryonic Stem Cells – Video

EDITORIAL: Stem-cell discovery addresses ethical issues

Posted: February 3, 2014 at 3:49 pm

Few medical discoveries have held the great promise of stem cells to regenerate nerves, organs and tissue damaged by disease, heredity or injury. Basically, the stem cells could replicate any other cell in the body, offering immense hope that were still anxiously waiting to be realized of curing Alzheimers, making damaged spinal cords whole, treating kidney, liver and lung disease and making damaged hearts whole.

Already subscribe to the Evansville Courier & Press or The Gleaner? Unlimited access to CourierPress.com, TheGleaner.com and the Courier & Press smartphone and tablet apps is included with your subscription. All you need to do is ACTIVATE now!

Activate Now

Want to keep reading? We now offer Premium and Digital Subscriptions. Subscribe now and select how you want to keep up-to-date on local news, reader comments, photos, videos, blogs and more.

Subscribe Now

2014 Evansville Courier & Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

See more here:
EDITORIAL: Stem-cell discovery addresses ethical issues

Posted in Stem Cells | Comments Off on EDITORIAL: Stem-cell discovery addresses ethical issues

Chemical stem cell signature predicts treatment response for acute myeloid leukemia

Posted: February 3, 2014 at 3:49 pm

PUBLIC RELEASE DATE:

3-Feb-2014

Contact: Kim Newman sciencenews@einstein.yu.edu 718-430-3101 Albert Einstein College of Medicine

February 3, 2014 (Bronx, NY) Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found a chemical "signature" in blood-forming stem cells that predicts whether patients with acute myeloid leukemia (AML) will respond to chemotherapy.

The findings are based on data from nearly 700 AML patients. If validated in clinical trials, the signature would help physicians better identify which AML patients would benefit from chemotherapy and which patients have a prognosis so grave that they may be candidates for more aggressive treatments such as bone-marrow transplantation. The paper was published today in the online edition of the Journal of Clinical Investigation.

Sparing Patients from Debilitating Side Effects

According to the American Cancer Society, AML accounts for nearly one-third of all new leukemia cases each year. In 2013, more than 10,000 patients died of AML.

"AML is a disease in which fewer than 30 percent of patients are cured," said co-senior author Ulrich Steidl, M.D., Ph.D., associate professor of cell biology and of medicine and the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research at Einstein and associate chair for translational research in oncology at Montefiore. "Ideally, we would like to increase that cure rate. But in the meantime, it would help if we could identify who won't benefit from standard treatment, so we can spare them the debilitating effects of chemotherapy and get them into clinical trials for experimental therapies that might be more effective."

Analyzing Methylation Patterns

The Einstein study focused on so-called epigenetic "marks" chemical changes in DNA that turn genes on or off. The researchers focused on one common epigenetic process known as methylation, in which methyl (CH3) groups attach in various patterns to the genes of human cells. Researchers have known that aberrations in the methylation of hematopoietic, or blood-forming, stem cells (HSCs) can prevent them from differentiating into mature blood cells, leading to AML.

Continued here:
Chemical stem cell signature predicts treatment response for acute myeloid leukemia

Posted in Stem Cells | Comments Off on Chemical stem cell signature predicts treatment response for acute myeloid leukemia

Progress in stem cell biology: This could change everything about the practice of medicine

Posted: February 3, 2014 at 3:45 pm

Editors note: What follows is a guest post. Michael Zhang is an MD-PhD student studying at the University of Louisville School of Medicine. He is one of my go-to experts on matters of cell biology and stem cells. (His bio is below.)

As you may have heard, this week brought striking news in the field of stem cell biology. Researchers from Boston and Japan published two papers in the prestigious journal Nature in which they describe new and easy ways to transform mouse cells back into stem cells. (NPR coverage here.) Make no mistake, this is not mundane science news. This is big.

I follow cell biology because I believe it is the branch of science that will bring the next major advance in modern medicine. Rather than implant a pacemaker, future doctors may inject a solution of sinus node stem cells, and voila, the heart beats normally. Rather than watch a patient with a scarred heart die of heart failure or suffer from medication side effects, future doctors may inject stem cells that replace the non-contracting scar. And the same could happen for kidneys, pancreas, spinal nerves, etc.

When I heard the news, I emailed Michael the link with the following subject line: This is pretty cool, right? He wrote back. What he taught me is worth sharing.

***

Michael Zhang MD-PhD candidate Univ of Louisville

By Michael Zhang:

Japanese and American cell biologists have recently reported dramatic new findings that are likely to upend biological dogma.

For much of the past century, the prevailing consensus held that once animal cells move past the earliest embryonic stages, they are irreversibly committed to specialized roles in the adult brain cells, heart cells, lung cells etc. In the past decade, two Nobel-winning biologists each separately demonstrated that committed specialist cells (aka differentiated cells) could be reprogrammed back to a primordial, embryonic state (aka pluripotent stem cell) that could then morph into any new type of specialized cell.

Now, Professor Obokata and her colleagues describe new methods to induce this reprogramming of specialized cells to (pluripotent) stem cells. Whereas previous methods involved draconian procedures the transfer of entire nuclei between cells, or the transfer of multiple genes Obokatas group found that simply squeezing a terminally differentiated cell, or immersing it in an acidic solution, could induce reprogramming to an embryonic stem cell state.

Read this article:
Progress in stem cell biology: This could change everything about the practice of medicine

Posted in Cell Medicine | Comments Off on Progress in stem cell biology: This could change everything about the practice of medicine

First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit

Posted: February 3, 2014 at 3:45 pm

Durham, NC (PRWEB) February 03, 2014

Previous studies have shown that multiple stem cell implantations might assist adults suffering from complete spinal cord injuries (SCI). Now a groundbreaking study released today in STEM CELLS Translational Medicine shows for the first time that children with SCI might benefit, too.

Marcin Majka, Ph.D., and Danuta Jarocha, Ph.D., led the study at Jagiellonian University College of Medicine in Krakow, Poland. "Although it was conducted on a small number of patients carrying a different injury level and type, preliminary results demonstrate the possibility of attaining neurological, motor and sensation and quality-of-life improvement in children with a chronic complete spinal cord injury through multiple bone marrow derived cell (BMNC) implantations. Intravenous implantations of these cells seem to prevent and/or help the healing of pressure ulcers," Dr. Majka said.

The study involved five children, ranging in age from 3 to 7, all of whom were patients at University Childrens Hospital in Krakow. Each had suffered a spinal cord injury at least six months prior to the start of the stem cell program and was showing no signs of improvement from standard treatments. The patients collectively underwent 19 implantation procedures with BM-derived cells, with every treatment cycle followed by an intensive four weeks of rehabilitation.

The children were evaluated over a one to six year period for sensation and motor improvement, muscle stiffness and bladder function. Any improvement in their quality of life was also noted, based on estimated functional recovery. Additionally, the development of neuropathic pain, secondary infections, urinary tract infections or pressure ulcers was tracked.

"Two of the five children receiving the highest number of transplantations demonstrated neurological and quality-of-life improvements," Dr. Jarocha said. "They included a girl who, before the stem cell implantations, had to be tube fed and needed a ventilator to breathe. She is now able to eat and breathe on her own."

The study also demonstrated no long-term side effects from the BMNCs, leading the researchers to conclude that single and multiple BMNCs implantations were safe for pediatric patients as well as adults.

Interestingly, when the scientists compared their study with those done on adults, the results did not suggest an advantage of the younger age. "This is somehow unexpected since the younger age should provide better ability to regenerate. Since the present study was done on a small number of patients, a larger study using the same methodology for pediatric and adult patients allowing a direct comparison should be performed to confirm or contradict the observation. Larger studies with patients segregated according to the type and level of the injury with the same infusion intervals should be performed to obtain more consistent data, too," Dr. Majka added.

"While this studys sample is small, it is the first to report the safety and feasibility of using bone marrow derived cells to treat pediatric patients with complete spinal cord injury," said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. "The treatment resulted in a degree of neurological and quality-of-life improvement in the study participants."

The full article, "Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury," can be accessed at http://www.stemcellstm.com.

Read more:
First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit

Posted in Cell Medicine | Comments Off on First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit

therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, – Video

Posted: February 3, 2014 at 3:45 pm


therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai,
improvement seen in just 5 days after stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, india. Stem Cell Therapy done date 31 Dec 201...

By: Neurogen Brain and Spine Institute

See the original post:
therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, - Video

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, – Video

therapy treatment for spinal cord injury by dr alok sharma, mumbai, india – Video

Posted: February 3, 2014 at 3:45 pm


therapy treatment for spinal cord injury by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for spinal cord injury by dr alok sharma, mumbai, india. Stem Cell Therapy done date 7 Jan ...

By: Neurogen Brain and Spine Institute

Here is the original post:
therapy treatment for spinal cord injury by dr alok sharma, mumbai, india - Video

Posted in Cell Therapy | Comments Off on therapy treatment for spinal cord injury by dr alok sharma, mumbai, india – Video

Salk Institute and Stanford University to Lead New $40 Million Stem Cell Genomics Center

Posted: February 3, 2014 at 3:45 pm

Contact Information

Available for logged-in reporters only

Newswise LA JOLLAThe Salk Institute for Biological Studies will join Stanford University in leading a new Center of Excellence in Stem Cell Genomics, created through a $40 million award by California's stem cell agency, the California Institute for Regenerative Medicine.

The center will bring together experts and investigators from seven different major California institutions to focus on bridging the fields of genomics the study of the complete genetic make-up of a cell or organism with cutting-edge stem cell research.

The goal is to use these tools to gain a deeper understanding of the disease processes in cancer, diabetes, endocrine disorders, heart disease and mental health, and ultimately to find safer and more effective ways of using stem cells in medical research and therapy.

"The center will provide a platform for collaboration, allowing California's stem cell scientists and genomics researchers to bridge these two fields," says Joseph Ecker, a Salk professor and Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator. "The Center will generate critical genomics data that will be shared with scientists throughout California and the rest of the world."

Ecker, holder of the Salk International Council Chair in Genetics, is co-director of the new center along with Michael Snyder, a professor and chair of genetics at Stanford.

Salk and Stanford will lead the center, and U.C. San Diego, Ludwig Institute for Cancer Research, the Scripps Research Institute, the J. Craig Venter Institute and Illumina Inc., all in San Diego, will collaborate on the project, in addition to U.C. Santa Cruz, which will also run the data coordination and management component.

"This Center of Excellence in Stem Cell Genomics shows why we are considered one of the global leaders in stem cell research," says Alan Trounson, president of the stem cell agency. "Bringing together this team to do this kind of work means we will be better able to understand how stem cells change as they grow and become different kinds of cells. That deeper knowledge, that you can only get through a genomic analysis of the cells, will help us develop better ways of using these cells to come up with new treatments for deadly diseases."

In addition to outside collaborations, the center will pursue some fundamental questions and goals of its own, including collecting and characterizing induced pluripotent stem cell lines from patients with familial cardiomyopathy; applying single-cell genomic techniques to better understand cellular subpopulations within diseased and healthy brain and pancreatic tissues; and developing novel computational tools to analyze networks underlying stem cell genome function.

See the original post here:
Salk Institute and Stanford University to Lead New $40 Million Stem Cell Genomics Center

Posted in Cell Therapy | Comments Off on Salk Institute and Stanford University to Lead New $40 Million Stem Cell Genomics Center

Page 2,196«..1020..2,1952,1962,1972,198..2,2102,220..»