Page 2,201«..1020..2,2002,2012,2022,203..2,2102,220..»

Mouse blood cells revert to stem cells in acid – Video

Posted: January 31, 2014 at 12:40 pm


Mouse blood cells revert to stem cells in acid
After half an hour in mild acid, a mouse #39;s white blood cells can convert to a new type of stem cell known as STAP cells. Cells undergoing conversion turn on ...

By: Science News

Read more:
Mouse blood cells revert to stem cells in acid - Video

Posted in Stem Cell Videos | Comments Off on Mouse blood cells revert to stem cells in acid – Video

Using Droplet Digital PCR to Study Stem Cell Genomes at Stanford University – Video

Posted: January 31, 2014 at 12:40 pm


Using Droplet Digital PCR to Study Stem Cell Genomes at Stanford University
For more info, visit http://www.bio-rad.com/yt6/QX200-DropletDigitalPCR. Since its introduction two years ago, Droplet Digital PCR (ddPCR) technology has tr...

By: BioRadLifeScience

Continued here:
Using Droplet Digital PCR to Study Stem Cell Genomes at Stanford University - Video

Posted in Stem Cell Research | Comments Off on Using Droplet Digital PCR to Study Stem Cell Genomes at Stanford University – Video

Work With A Quality Doctor At The Mississippi Stem Cell Treatment Center – Video

Posted: January 31, 2014 at 12:40 pm


Work With A Quality Doctor At The Mississippi Stem Cell Treatment Center
Every doctor at the Mississippi Stem Cell Treatment Center is dedicated to stem cell research and advancement. Visit us at 1153 Ocean Springs Rd., Ocean Spri...

By: Mississippi Stem Cell Treatment Center

Originally posted here:
Work With A Quality Doctor At The Mississippi Stem Cell Treatment Center - Video

Posted in Stem Cell Research | Comments Off on Work With A Quality Doctor At The Mississippi Stem Cell Treatment Center – Video

Stem Cell Therapy: Plantar Fasciitis – Video

Posted: January 31, 2014 at 8:40 am


Stem Cell Therapy: Plantar Fasciitis
Understand whether the source of your pain might be Plantar Fasciitis, and how biologic regenerative treatments can repair this critical connecting tissue in your foot. For more information,...

By: StemCell ARTS

Go here to see the original:
Stem Cell Therapy: Plantar Fasciitis - Video

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy: Plantar Fasciitis – Video

Stem Cell Research & Therapy

Posted: January 31, 2014 at 8:40 am

Stem Cell Research & Therapy is the major forum for translational research into stem cell therapies. An international peer-reviewed journal, it publishes high quality open access research articles with a special emphasis on basic, translational and clinical research into stem cell therapeutics and regenerative therapies, including animal models and clinical trials. The journal also provides reviews, viewpoints, commentaries and reports.

There has been an error retrieving the data. Please try again.

Paranasal sinus source of MPCs

Mesenchymal progenitor cells (MPCs) from the ethmoid sinus mucosa have multilineage differentiation potential, high proliferative ability, and an increased capacity for secretion of immunomodulatory cytokines.

Matrix remodeling effects therapeutic potential

There are significant changes in the properties of the extracellular matrix following remodeling after myocardial infarction; characterization of the matrix could increase the efficiency and efficacy of cell therapy treatment.

MHC-mismatched MSCs are immunogenic

All potential donor mesenchymal stromal cells (MSCs) should be immunophenotyped and screened for major histocompatibility complex (MHC) class II expression to prevent inciting an immune reaction.

PSC-derived cardiomyocyte production

Steve Oh and colleagues review progress in the development of platforms for the large scale differentiation of cardiomyocytes from human pluripotent stem cells (PSCs) as part of the cardiovascular regeneration series.

See more here:
Stem Cell Research & Therapy

Posted in Stem Cell Therapy | Comments Off on Stem Cell Research & Therapy

Stem cell agency's grants to UCLA help set stage for revolutionary medicine

Posted: January 31, 2014 at 8:40 am

PUBLIC RELEASE DATE:

29-Jan-2014

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research were today awarded grants totaling more than $3.5 million by California's stem cell agency for their ongoing efforts to advance revolutionary stem cell science in medicine.

Recipients of the awards from the California Institute of Renerative Medicine (CIRM) included Lili Yang ($614,400), who researches how stem cells become rare immune cells; Denis Evseenko ($1,146,468), who is studying the biological niche in which stem cells grow into cartilage; Thomas Otis and Bennet Novitch ($1,148,758), who are using new techniques to study communication between nerve and muscle cells in spinal muscular atrophy; and Samantha Butler ($598,367), who is investigating the molecular elements that drive stem cells to become the neurons in charge of our sense of touch.

"These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science," said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center. "Every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort."

The awards are part of CIRM's Basic Biology V grant program, which fosters cutting-edge research on significant unresolved issues in human stem cell biology, with a focus on unravelling the key mechanisms that determine how stem cells decide which cells they will become. By learning how such mechanisms work, scientists can develop therapies that drive stem cells to regenerate or replace damaged or diseased tissue.

Lili Yang: Tracking special immune cells

The various cells that make up human blood all arise from hematopoietic stem cells. These include special white blood cells called T cells, the "foot soldiers" of the immune system that attack bacteria, viruses and other disease-causing invaders. Among these T cells is a smaller group, a kind of "special forces" unit known as invariant natural killer T cells, or iNKT cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated and are believed to be important to the immune system's regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood generally accounting for less than 1 percent of blood cells but can differ greatly in numbers among individuals. Very little is known about how blood stem cells produce iNKT cells.

See the rest here:
Stem cell agency's grants to UCLA help set stage for revolutionary medicine

Posted in Stem Cell Therapy | Comments Off on Stem cell agency's grants to UCLA help set stage for revolutionary medicine

New Method of Creating Stem Cells is a "Game Changer"

Posted: January 30, 2014 at 7:50 pm

STAP cells, glowing green, have been integrated into the mouse fetuss body tissues. Credit: Haruko Obokata

Researchers have observed that plants, when stressed, can reprogram their cells into stem cells, capable of differentiating into many different cell types. Now, it appears mammals can perform the same trick. Japanese scientists say they have successfully reverted blood cells back to their embryonic state after dipping them in a stress-inducing bath of acid.

The team accomplished the feat using blood cells from mouse spleens, but are now trying to replicate it using human blood cells. Independent researchers are praising the discovery for both its simplicity and its potential to usher in new therapies and cloning techniques.

Scientists currently deploy one of two methods to obtain stem cells: extract them from human embryos, or reprogram adult cells into a stem-cell state (called induced pluripotent stem cells, or iPS cells). However, both methods have their drawbacks. Taking cells from an embryo destroys it in the process, and creating iPS cells requires a complicated choreography of genetic modifications.

The new method called STAP, for stimulus-triggered acquisition of pluripotency appears to be far easier. Chris Mason, a professor of regenerative medicine at University College of London, didnt mask his excitement for the BBC:

I thought my God thats a game changer! Its a very exciting, but surprise, finding If this works in people as well as it does in mice, it looks faster, cheaper and possibly safer than other cell reprogramming technologies personalized reprogrammed cell therapies may now be viable.

Haruko Obokata, the studys lead author, conceived of the idea after she noticed blood cells behaved peculiarly after squeezing them through a capillary tube. The cells would shrink to a size resembling stem cells. Intrigued, she replicated the technique by exposing blood cells to different types of stress. Three stressors perforating the cell membrane, exposure to an acidic solution, and physical squeezing caused the cells to behave like stem cells.

However, it was only the first step. Scientists needed to demonstrate that the transformed cells were truly pluripotent or capable of morphing into any type of cell.

To test that, scientists used mice bred to carry a gene that causes a protein in pluripotent cells to glow neon green. They injected the newly created stem cells into mouse embryos and the developing pups glowed all over, indicating that the embryos had successfully incorporated the stem cells into every tissue in their body. The team published their findings Wednesday in Nature.

Stressing blood cells harnesses a natural process, and could streamline the creation of stem cells. Jeff Karp, an associate professor at Brigham & Womens Hospital in Boston, told CNN the new method could produce stem cells up to 10 times faster than current methods.

Follow this link:
New Method of Creating Stem Cells is a "Game Changer"

Posted in Stem Cells | Comments Off on New Method of Creating Stem Cells is a "Game Changer"

Acid bath turns cells from any tissue into stem cells

Posted: January 30, 2014 at 7:50 pm

The development of human embryonic stem cells, which have the ability to form any cell in the body, may enable us to repair tissues damaged by injury or disease. Initially, these cells could only be obtained through methods that some deemed ethically unacceptable, but researchers eventually developed a combination of genes that could reprogram most cells into an embryonic-like state. That worked great for studies, but wasn't going to work for medical uses, since one of the genes involved has been associated with cancer.

Researchers have since been focusing on whittling down the requirements needed for getting a cell to behave like a stem cell. Now, researchers have figured out a radically simplified process: expose the cells to acidic conditions, then put them in conditions that stem cells grow well in. After a week, it's possible to direct these cells into a state that's even more flexible than embryonic stem cells.

The catalyst for this work is rather unusual. The researchers were motivated by something that works in plants: expose individual plant cells to acidic conditions, grow them in hormones that normally direct plant development, and you can get a whole plant back out. But we're talking about plants here, which evolved with multicellularity and with specialized tissues in a lineage that's completely separate from that of animals. So there's absolutely no reason to suspect that animal cells would react in a similar way to acid treatmentand a number of reasons to expect they wouldn't.

And yet the researchers went ahead and tried anyway. And, amazingly, it worked.

The treatments weren't especially harshonly a half-hour in a pH of 5.45.8. Afterward, the cells were placed in the same culture medium that stem cells are grown in. Many of the cells died, and the ones that were left didn't proliferate like stem cells do. But, over the course of a week, the surviving cells began to activate the genes that are normally expressed by stem cells. This was initially tried with precursors to blood cells, but it turned out to work with a huge variety of tissues: brain, skin, muscle, fat, bone marrow, lung, and liver (all of them obtained from micethis hasn't been tried with human cells yet).

While these cells didn't divide like stem cells, they did behave like them. Injecting them into embryos showed that they were incorporated into every tissue in the body, meaning they had the potential to form any cell. That suggests they are a distinct class of cell from the other ones we're aware of (the researchers call them STAP cells).

But, if they don't grow in culture, it's hard to use or study them. So, the authors tried various combinations of hormones and growth factors that stem cells like. One combination got some of the STAP cells to grow, after which they behaved very much like embryonic stem cells. But a second combination of growth factors got the cells to contribute to non-embryonic tissues, like the placenta, as well. So, in this sense, they seem to be even more flexible than embryonic stem cells, and seem more akin to one of the first cells formed after fertilization.

The people behind this development have done a tremendous amount of work, so much that it was spread across two papers. Still, like many good results, it raises lots of other questions. Many cells in our bodies get exposed to acidic conditions every daywhy do those manage to stably maintain their identity? A related question is what goes on at a molecular level inside the cell after acid treatment. Understanding that will help us learn more about the stem cell fate itself.

And then there are the practical questions. How close are these STAP cells to an actual embryonic cell, in terms of the state of its DNA and gene expression? And, if there are differences, are they significant enough to prevent these cells from being used in safe and efficient medical treatments?

January 30, 2014. DOI: 10.1038/nature12968, 10.1038/nature12969 (About DOIs).

See the rest here:
Acid bath turns cells from any tissue into stem cells

Posted in Stem Cells | Comments Off on Acid bath turns cells from any tissue into stem cells

Ordinary cells turned into stem cells 'game-changing'

Posted: January 30, 2014 at 7:50 pm

Japanese scientists say they have developed a new process to make stem cells that is simpler and faster than current methods. Sarah Toms reports.

EMBRYONIC FORM: A mouse embryo formed with Stimulus-Triggered Acquisition of Pluripotency (STAP) cells.

BREAKTHROUGH: Stimulus-Triggered Acquisition of Pluripotency (STAP) cells.

In experiments that could open a new era in stem cell biology, scientists have found a simple way to change mature animal cells back into an embryonic-like state that allows them to generate many types of tissue.

The research, described as game-changing by experts in the field, suggests human cells could in future be reprogrammed by the same technique, offering a simpler way to replace damaged cells or grow new organs for sick and injured people.

Chris Mason, chair of regenerative medicine bioprocessing at University College London, who was not involved in the work, said its approach in mice was "the most simple, lowest-cost and quickest method" to generate so-called pluripotent cells - able to develop into many different cell types - from mature cells.

"If it works in man, this could be the game changer that ultimately makes a wide range of cell therapies available using the patient's own cells as starting material - the age of personalised medicine would have finally arrived," he said.

The experiments, reported in two papers in the journal Nature this week, involved scientists from the RIKEN Center for Developmental Biology in Japan and Brigham and Women's Hospital and Harvard Medical School in the United States.

The researchers took skin and blood cells, let them multiply, then subjected them to stress "almost to the point of death", they explained, by exposing them to various events including trauma, low oxygen levels and acidic environments.

One of these "stressful" situations was simply to bathe the cells in a weak acid solution for around 30 minutes.

Read the rest here:
Ordinary cells turned into stem cells 'game-changing'

Posted in Stem Cells | Comments Off on Ordinary cells turned into stem cells 'game-changing'

Scientists report making stem cells in about 30 minutes

Posted: January 30, 2014 at 7:49 pm

In a feat that experts say is a significant advance for regenerative medicine, scientists have discovered a surprisingly simple method for creating personalized stem cells that doesnt involve human embryos or tinkering with DNA.

Two studies published Wednesday in the journal Nature describe a novel procedure for reprogramming the blood cells of newborn mice by soaking the cells in a mildly acidic solution for 30 minutes. This near-fatal shock caused the cells to become pluripotent, or capable of growing into any type of cell in the body.

When the reprogrammed cells were tagged and injected into a developing mouse, they multiplied and grew into heart, bone, brain and other organs, the scientists found.

It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell, said lead study author Haruko Obokata, a biochemistry researcher at the RIKEN research institute in Japan. Very surprising.

The simplicity of the technique, which Obokata and her colleagues dubbed stimulus triggered acquisition of pluripotency, or STAP, caught many experts off-guard.

So you mistreat cells under the right conditions and they assume a different state of differentiation? Its remarkable, said Rudolf Jaenisch, a pioneering stem cell researcher at MIT who was not involved in the study. Lets see whether it works in human cells, and theres no reason why it shouldnt.

Obokata said that researchers had already begun experiments on human cells, but offered no details.

VIDEO: A beating heart, grown from STAP stem cells

Due to their Zelig-like ability to form any number of specialized cells, pluripotent stem cells are considered the basic building blocks of biology. Scientists are working on ways to use them to repair severed spinal cords, replace diseased organs, and treat conditions as varied as diabetes, blindness and muscular dystrophy.

By using stem cells spawned from the patients own cells, replacement tissues would stand less of a chance of being attacked by the patients own immune system, researchers say. That would spare patients the need to undergo a lifetime regimen of dangerous, immune-suppressing drugs.

Continued here:
Scientists report making stem cells in about 30 minutes

Posted in Regenerative Medicine | Comments Off on Scientists report making stem cells in about 30 minutes

Page 2,201«..1020..2,2002,2012,2022,203..2,2102,220..»