Page 2,202«..1020..2,2012,2022,2032,204..2,2102,220..»

New method makes stem cells in about 30 minutes, scientists report

Posted: January 30, 2014 at 7:49 pm

In a feat that experts say is a significant advance for regenerative medicine, scientists have discovered a surprisingly simple method for creating personalized stem cells that doesnt involve human embryos or tinkering with DNA.

Two studies published Wednesday in the journal Nature describe a novel procedure for reprogramming the blood cells of newborn mice by soaking the cells in a mildly acidic solution for 30 minutes. This near-fatal shock caused the cells to become pluripotent, or capable of growing into any type of cell in the body.

When the reprogrammed cells were tagged and injected into a developing mouse, they multiplied and grew into heart, bone, brain and other organs, the scientists found.

It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell, said lead study author Haruko Obokata, a biochemistry researcher at the RIKEN research institute in Japan. Very surprising.

The simplicity of the technique, which Obokata and her colleagues dubbed stimulus triggered acquisition of pluripotency, or STAP, caught many experts off-guard.

So you mistreat cells under the right conditions and they assume a different state of differentiation? Its remarkable, said Rudolf Jaenisch, a pioneering stem cell researcher at MIT who was not involved in the study. Lets see whether it works in human cells, and theres no reason why it shouldnt.

Obokata said that researchers had already begun experiments on human cells, but offered no details.

VIDEO: A beating heart, grown from STAP stem cells

Due to their Zelig-like ability to form any number of specialized cells, pluripotent stem cells are considered the basic building blocks of biology. Scientists are working on ways to use them to repair severed spinal cords, replace diseased organs, and treat conditions as varied as diabetes, blindness and muscular dystrophy.

By using stem cells spawned from the patients own cells, replacement tissues would stand less of a chance of being attacked by the patients own immune system, researchers say. That would spare patients the need to undergo a lifetime regimen of dangerous, immune-suppressing drugs.

Go here to see the original:
New method makes stem cells in about 30 minutes, scientists report

Posted in Regenerative Medicine | Comments Off on New method makes stem cells in about 30 minutes, scientists report

Row over controversial stem-cell procedure flares up again

Posted: January 30, 2014 at 7:46 pm

Nicolo' Minerbi / LUZphoto / eyevine

Mauro Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, is the Italian government's nominee to chair a committee on the controversial Stamina Foundation.

Top scientists in Italy have called on the health minister Beatrice Lorenzin to reconsider the composition of the new scientific advisory committee she has proposed to assess a controversial stem-cell therapy offered by the Stamina Foundation.

Their move follows a renewed media frenzy around the affair, prompted by statements made to the press and television by the committees proposed president, Mauro Ferrari, shortly after he was nominated on 28 December.

The Stamina therapy, which has not been scientifically proven to be effective in a clinical trial, involves extracting mesenchymal stem cells from bone marrow of a patient, manipulating them and then reinjecting them into the same patients blood or spinal fluid. Stamina, based in Brescia, has already treated more than 80 patients for a wide range of serious diseases.

Stamina's practices have been widely criticized by experts both in Italy and outside, and the first government-appointed scientific committee to rule on Stamina prepared a detailed report describing the Stamina protocol as without a scientific basis, ineffective and dangerous. However, a regional court declared that committee unlawfully biased on 4 December. But after that committee's report was leaked to the press on 20 December (see 'Leaked files slam stem-cell therapy'), many families of patients who claim to have been damaged by the therapy announced that they had brought charges for damages against Stamina and its president Davide Vannoni. Both have denied any wrongdoing.

In response to the court findings, minister Lorenzin nominated Ferrari to chair a new committee. Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, told journalists that he was neither for nor against the Stamina method.

However on the 22 January episode of a widely viewed television show, Le iene, Ferrari said he thought Stamina offered Italy the opportunity to take a world lead in bringing experimental therapies into the clinic. He also referred to Stamina as the first important case for regenerative medicine here in Italy, a statement that has incensed some Italian researchers.

Michele de Luca, a stem-cell biologist from the University of Modena and Reggio Emilia says that Ferrari's assertions were an insult to the many scientists in Italy working on translating stem-cell research into new clinical applications. In particular, De Luca's own group was the first in the world to cure a form of blindness with a stem-cell therapy they developed, he points out.

In a letter dated 26 January, which was seen by Nature, four influential clinical scientists say that they were extremely worried by Ferrari's televised statements. The signatories were Silvio Garattini, head of the Mario Negri Institute for Pharmacological Research in Milan; Giuseppe Remuzzi, head of the Mario Negri Institute in Bergamo; Gianluca Vago, rector of the University of Milan; and Alberto Zangrillo, vice-rector for clinical activities at the University Vita-Salute San Raffaele in Milan.

More here:
Row over controversial stem-cell procedure flares up again

Posted in Cell Therapy | Comments Off on Row over controversial stem-cell procedure flares up again

Cell cycle speed is key to making aging cells young again

Posted: January 30, 2014 at 7:45 pm

PUBLIC RELEASE DATE:

30-Jan-2014

Contact: Bill Hathaway william.hathaway@yale.edu 203-432-1322 Yale University

A fundamental axiom of biology used to be that cell fate is a one-way street once a cell commits to becoming muscle, skin, or blood it always remains muscle, skin, or blood cell. That belief was upended in the past decade when a Japanese scientist introduced four simple factors into skin cells and returned them to an embryonic-like state, capable of becoming almost any cell type in the body.

Hopeful of revolutionary medical therapies using a patient's own cells, scientists rushed to capitalize on the discovery by 2012 Nobel Laureate Shinya Yamanaka. However, the process has remained slow and inefficient, and scientists have had a difficult time discovering a genetic explanation of why this should be.

In the Jan. 30 issue of the journal Cell, Yale School of Medicine researchers identified a major obstacle to converting cells back to their youthful state the speed of the cell cycle, or the time required for a cell to divide.

When the cell cycle accelerates to a certain speed, the barriers that keep a cell's fate on one path diminish. In such a state, cells are easily persuaded to change their identity and become pluripotent, or capable of becoming multiple cell types

"One analogy may be that when temperature increases to sufficient degrees, even a very hard piece of steel can be malleable so that you can give it a new shape easily," said Shangqin Guo, assistant professor of cell biology at the Yale Stem Cell Center and lead author of the paper. "Once cells are cycling extremely fast, they do not seem to face the same barriers to becoming pluripotent."

Guo's team studied blood-forming cells, which when dividing undergo specific changes in their cell cycle to produce new blood cells. Blood-forming progenitor cells normally produce only new blood cells. However, the introduction of Yamanaka factors sometimes but not always help these blood-forming cells become other types of cells. The new report finds that after this treatment blood-forming cells tend to become pluripotent when the cell cycle is completed in eight hours or less, an unusual speed for adult cells. Cells that cycle more slowly remain blood cells.

"This discovery changes the way people think about how to change cell fate and reveals that a basic 'house-keeping' function of a cell, such as its cell cycle length, can actually have a major impact on switching the fate of a cell," said Haifan Lin, director of the Yale Stem Cell Center.

Excerpt from:
Cell cycle speed is key to making aging cells young again

Posted in Cell Medicine | Comments Off on Cell cycle speed is key to making aging cells young again

New breakthrough in stem cell research

Posted: January 30, 2014 at 7:45 pm

(CNN) We run too hard, we fall down, we're sick - all of this puts stress on the cells in our bodies. But in what's being called a breakthrough in regenerative medicine, researchers have found a way to make stem cells by purposely putting mature cells under stress.

Two new studies published Wednesday in the journal Nature describe a method of taking mature cells from mice and turning them into embryonic-like stem cells, which can be coaxed into becoming any other kind of cell possible. One method effectively boils down to this: Put the cells in an acidic environment.

"I think the process we've described mimics Mother Nature," said Dr. Charles Vacanti, director of the laboratory for Tissue Engineering and Regenerative Medicine at Brigham & Women's Hospital in Boston and senior author on one of the studies. "It's a natural process that cells normally respond to."

Both studies represent a new step in the thriving science of stem cell research, which seeks to develop therapies to repair bodily damage and cure disease by being able to insert cells that can grow into whatever tissues or organs are needed. If you take an organ that's functioning at 10 percent of normal and bring it up to 25 percent functionality, that could greatly reduce the likelihood of fatality in that particular disease, Vacanti said.

This method by Vacanti and his colleagues "is truly the simplest, cheapest, fastest method ever achieved for reprogramming [cells]," said Jeff Karp, associate professor of medicine at the Brigham & Women's Hospital and principal faculty member at the Harvard Stem Cell Institute. He was not involved in the study.

Before the technique described in Nature, the leading candidates for creating stem cells artificially were those derived from embryos and stem cells from adult cells that require the insertion of DNA to become reprogrammable.

Stem cells are created the natural way every time an egg that is fertilized begins to divide. During the first four to five days of cell division, so-called pluripotent stem cells develop. They have the ability to turn into any cell in the body. Removing stem cells from the embryo destroys it, which is why this type of research is controversial.

Researchers have also developed a method of producing embryonic-like stem cells by taking a skin cell from a patient, for example, and adding a few bits of foreign DNA to reprogram the skin cell to become like an embryo and produce pluripotent cells, too. However, these cells are usually used for research because researchers do not want to give patients cells with extra DNA.

The new method does not involve the destruction of embryos or inserting new genetic material into cells, Vacanti said. It also avoids the problem of rejection: The body may reject stem cells that came from other people, but this method uses an individual's own mature cells.

"It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell," said Haruko Obokata of the Riken Center for Developmental Biology in Japan in a news conference this week.

Read more from the original source:
New breakthrough in stem cell research

Posted in Cell Medicine | Comments Off on New breakthrough in stem cell research

Stanford stem cell genomics center funded

Posted: January 30, 2014 at 7:44 pm

California's stem cell agency granted $40 million Wednesday to study how the use of stem cells for therapy is affected by variations in the human genome.

The Center of Excellence for Stem Cell Genomics will be located at Stanford University. Competing proposals, including one by DNA sequencing giant Illumina and The Scripps Research Institute in San Diego, were rejected by the California Institution for Regenerative Medicine.

Backers of the San Diego proposal said CIRM staff reviews of the proposals contained errors, such as including financial considerations when scientific merit was supposed to be the sole consideration. Stanford's proposal was highest-rated in the reviews.

The Stanford proposal earned praise from reviewers for the breadth of its research initiatives, from basic research to disease applications, along with the deep expertise of its scientists. Reviewers also liked the affiliated data management center, which will be located at UC Santa Cruz.

A number of San Diego research institutions will collaborate with Stanford's center. While the center itself will be placed at Stanford, the Salk Institute will participate as a joint principal investigator. The Scripps Research Institute and Illumina will also contribute, along with UC San Diego,and the J. Craig Venter Institute.

The Stanford proposal treats Illumina like a contractor, which doesnt make the best use of its abilities, said Scripps Research stem cell scientist Jeanne Loring, who attended the meeting. She submitted letters to the board from herself and Illumina explaining the project's benefits.

I was trying to tap into Illuminas intellectual power, which is often overlooked because they make most of their money by selling instruments and providing services, Loring said. But the people Id be working with are the ones who invented these technologies.

Illumina would benefit as a business by creating new markets, Loring said. For example, a test that tells whether stem cells have potentially dangerous mutations would be highly sought after.

Illumina pledged in a letter to CIRM that any products it sells under the agreement would be accessible, both in price and support.

Loring said she hopes the Scripps/Illumina proposal can still be funded, but there is no obvious alternative.

Go here to see the original:
Stanford stem cell genomics center funded

Posted in Cell Therapy | Comments Off on Stanford stem cell genomics center funded

Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

Posted: January 30, 2014 at 7:44 pm

Contact Information

Available for logged-in reporters only

Newswise Scientists from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have received new awards from the California Institute of Regenerative Medicine (CIRM), the state stem cell research agency, that will forward revolutionary stem cell science in medicine.

Recipients included Dr. Lili Yang, assistant professor of microbiology, immunology and molecular genetics who received $614,400 for her project to develop a novel system for studying how stem cells become rare immune cells; Dr. Denis Evseenko, assistant professor of orthopedic surgery, who received $1,146,468 for his project to identify the elements of the biological niche in which stem cells grow most efficiently into articular cartilage cells; Dr. Thomas Otis, professor and chair of neurobiology and Dr. Ben Novitch, assistant professor of neurobiology, who received $1,148,758 for their project using new light-based optigenetic techniques to study the communication between nerve and muscle cells in spinal muscular atrophy, an inherited degenerative neuromuscular disease in children; and Dr. Samantha Butler, assistant professor of neurobiology, received $598,367 for her project on discovering which molecular elements drive stem cells to become the neurons, or nerve cells, in charge of our sense of touch.

These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science, said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center, and every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort.

The awards were part of CIRMs Basic Biology V grant program, carrying on the initiative to foster cutting-edge research on significant unresolved issues in human stem cell biology. The emphasis of this research is on unravelling the secrets of key mechanisms that determine how stem cells, which can become any cell in the body, differentiate, or decide which cell they become. By learning how these mechanisms work, scientists can then create therapies that drive the stem cells to regenerate or replace damaged or diseased tissue.

Using A New Method to Track Special Immune Cells All the different cells that make up the blood come from hematopoietic or blood stem cells. These include special white blood cells called T cells, which serve as the foot soldiers of the immune system, attacking bacteria, viruses and other invaders that cause diseases.

Among the T cells is a smaller group of cells called invariant natural killer T (iNKT) cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated, a small special forces unit among the foot soldiers, and are believed to be important to immune system regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood, usually less than 1 percent of all the blood cells, and can differ greatly in numbers between individuals. Very little is known about how the blood stem cells produce iNKT cells.

Dr. Lili Yangs project will develop a novel model system to genetically program human blood stem cells to become iNKT cells. Dr. Yang and her colleagues will track the differentiation of human blood stem cells into iNKT cells providing a pathway to answer many critical questions about iNKT cell development.

See more here:
Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

Stem cells and the transformative power of hope: Bernard Siegel at TEDxDelrayBeach – Video

Posted: January 30, 2014 at 12:40 am


Stem cells and the transformative power of hope: Bernard Siegel at TEDxDelrayBeach
Bernie was a courtroom attorney, and a cancer and Hurricane Andrew survivor. For fun, he owned a minor league basketball team and became commissioner of a pr...

By: TEDxTalks

Read more from the original source:
Stem cells and the transformative power of hope: Bernard Siegel at TEDxDelrayBeach - Video

Posted in Stem Cell Research | Comments Off on Stem cells and the transformative power of hope: Bernard Siegel at TEDxDelrayBeach – Video

Scientists make pure precursor liver and pancreas cells from stem cells

Posted: January 29, 2014 at 9:43 pm

Current ratings for: Scientists make pure precursor liver and pancreas cells from stem cells

Public / Patient:

0 (0 votes)

Health Professionals:

5 (1 vote)

A new study published in the journal Cell Stem Cell, describes how scientists have developed a way of producing highly sought populations of a pure tissue-specific cell from human pluripotent stem cells.

Human pluripotent stem cells (hPSCs) are precursor cells than can produce over 200 distinct cell types in the human body. They hold great promise for regenerative medicine and drug screening. The idea is to be able to generate a range of pure tissue types by manipulating these precursor cells.

However, it is proving very challenging to obtain large numbers of pure, untainted, tissue-specific cells from hPSCs. Part of the problem is how to ensure they receive highly specific signals, that do not coax them down paths that lead to a range of other tissue types.

Now, a team led by the Genome Institute of Singapore (GIS) in the Agency for Science, Technology and Research (A*STAR) has developed a new way of coaxing hPSCs to produce highly pure populations of endoderm, a valuable cell type that gives rise to organs like the liver and pancreas, bringing closer the day when stem cells can be used in clinical settings.

One of the study leaders is Dr. Bing Lim, senior group leader and associate director of Cancer Stem Cell Biology at the GIS. He and his colleagues developed a highly systematic and novel screening method.

See more here:
Scientists make pure precursor liver and pancreas cells from stem cells

Posted in Cell Medicine | Comments Off on Scientists make pure precursor liver and pancreas cells from stem cells

Stem Cell Therapy – A New Way to Eternal Life? – Video

Posted: January 29, 2014 at 9:40 pm


Stem Cell Therapy - A New Way to Eternal Life?

By: Klentze

View post:
Stem Cell Therapy - A New Way to Eternal Life? - Video

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy – A New Way to Eternal Life? – Video

Groundbreaking: Embryonic Stem Cells Made With Acid

Posted: January 29, 2014 at 3:51 pm

This is big.

Scientists have found a way to create embryonic stem cells without using an embryo or without introducing genetic material. The discovery could revolutionize medicine by giving doctors a way to repair diseased and damaged tissue think heart disease, blindness, skin burns with organs and tissue grown from the patients own cells.

Cloning Creates Human Embryonic Stem Cells

The researchers, led by Haruko Obokata from the Riken Center for Developmental Biology in Kobe, Japan, found that by when they applied various stresses to white blood cells, such as bathing them in acid or putting them in a low-oxygen environment, nearly bringing them to the brink of death, some of the cells lost their blood identity and reverted to a state equivalent to an embryonic stem cell.

They call these cells STAP, for stimulus-triggered acquisition of pluripotency.

When the scientists transferred the STAP cells to a special growth-promoting solution, they began to multiply and look like embryonic stem cells, which can grow into any type of cell skin, bone, organ depending on the environment into which they were placed.

And when the cells were injected into mice embryos, they contributed to the overall tissue of the baby mice, something that researchers didnt think would be possible.

Not only is the approach faster and far cheaper than current methods, but it eliminates the controversy surrounding embryonic stem cell research, which requires the destruction of an embryo, raising ethical concerns. The new approach also avoids the genetic risks associated with the alternative to the embryonic method, called induced pluripotent stem (iPS) cells. That technique requires the introduction of genetic material into a cell, and has lead to tumor growth in some cases.

Stem Cell Treatment Cures Blindness

Inspiration for the research came from techniques already used in labs and in gardening, where a change in the physical environment can alter a cells identity. In the lab, for example, frog skin cells can be switched to brain cells if exposed to a solution with a low pH. And botanists can grow a new plant by creating a plant callus, a node of plant cells created from a physical injury to an existing plant.

Read the original here:
Groundbreaking: Embryonic Stem Cells Made With Acid

Posted in Stem Cells | Comments Off on Groundbreaking: Embryonic Stem Cells Made With Acid

Page 2,202«..1020..2,2012,2022,2032,204..2,2102,220..»