Page 2,232«..1020..2,2312,2322,2332,234..2,2402,250..»

UCLA stem cell scientists first to track joint cartilage development in humans

Posted: December 13, 2013 at 6:43 pm

PUBLIC RELEASE DATE:

12-Dec-2013

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.

Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.

Articular cartilage, a highly specialized tissue formed from cells called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces the areas where bone connects with other bones in a joint.

Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.

While scientists have studied the ability of different cell types to generate articular cartilage, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.

For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic stem cells, which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.

Read the original here:
UCLA stem cell scientists first to track joint cartilage development in humans

Posted in Cell Medicine | Comments Off on UCLA stem cell scientists first to track joint cartilage development in humans

San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.

Posted: December 13, 2013 at 6:42 pm

Poway, California (PRWEB) December 13, 2013

Noni is a ten-year-old released Canine Companion for Independence dog who just achieved her Master Agility Champion status after the pain from arthritis tried to slow her down. Nonis owner, Dr. Kim Dembinski, a veterinarian at Paradise Veterinary Hospital in San Diego turned to stem cell therapy by Vet-Stem, Inc. and fellow colleague Dr. Jennipher Harris to help Noni.

When Dr. Dembinski noticed weakness and discomfort in her aging agility dog she was proactive in keeping Noni happy and comfortable, The main thought was that she gives so much between therapy work, being my best friend, and as the clinic mascot that giving her relief from pain and her being more comfortable was the least I could do for her.

Nonis stem cell therapy involved a small fat sample collection, which was brought to Vet-Stems lab in Poway, California. There, highly trained lab technicians processed Nonis fat tissue to isolate the stem cells into doses that could be injected into the arthritic joints that were causing her pain. Normally the tissue is shipped overnight to Vet-Stem and the cells are shipped overnight back to the veterinarian making doses available within 48 hours, but because Paradise Veterinary Hospital is located near Vet-Stem Nonis stem cell doses were available for injection the same day the fat sample was collected.

Noni did very well post procedure; she regained muscle strength and flexibility, Dr. Dembinski reported, Noni did four weeks of rehab then went right back to competing in agility. Six months after the procedure she earned her MACH (Master Agility Champion), AKC (American Kennel Club) title. Because of her stem cell therapy she is still comfortable and playing agility!

Dr. Dembinski is a general practitioner for pets including dogs, cats, small mammals, birds and exotics. She is currently owner and primary veterinarian at Paradise Veterinary Hospital and sits on the board of the San Diego County Veterinary Medical Association. Caring for animals is not just a job for Dr. Dembinski, it is a passion. In her free time she and Noni compete in dog agility trials with AKC, North American Dog Agility Council and Canine Performance Events.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Originally posted here:
San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.

Posted in Cell Therapy | Comments Off on San Diego Canine Overcomes Pain to Achieve Championship with the Help of Paradise Veterinary Hospital and Vet-Stem, Inc.

Jacco van Rheenen Wins STEM CELLS Young Investigator Award

Posted: December 12, 2013 at 11:45 pm

Durham, NC (PRWEB) December 10, 2013

Jacco van Rheenen, Ph.D., of the Hubrecht Institute in The Netherlands has been named the winner of the 8th Annual STEM CELLS Young Investigator Award for his investigation on how healthy and tumorigenic tissues are derived from and maintained by cancer stem cells, how tumor cells disseminate from primary tumors and how these disseminated tumor cells grow out in distant organs.

The STEM CELLS Young Investigator Award honors a young scientist who is a principal author of a significant research paper published in STEM CELLS. Dr. van Rheenen was selected as this years winner for his paper, Brief Report: Intravital Imaging of Cancer Stem Cell Plasticity in Mammary Tumors.

This prize does not only inspire me to keep doing this type of research, but it inspires and acknowledges all the people in my lab who worked very hard on this project, said Dr. van Rheenen.

Dr. van Rheenen and his team developed and utilized the latest imaging techniques to visualize the adaptive properties of the few cells within the large population of non-metastasizing and differentiated cells that might maintain the heterogeneous tumor and metastasize.

There are still many questions about how breast cancers evolve over time and how cancer stem cells may be involved. The outstanding study by Dr. van Rheenens laboratory demonstrates unequivocally, for the first time, that a small fraction of breast cancer stem cells are responsible for clonal expansion to not only generate the differentiated tumor but also to replicate themselves. The use of the confetti colors to perform the lineage tracing in this study is truly elegant, and I congratulate our Young Investigator Award winner on this important accomplishment, said Jan A. Nolta, Ph.D., Editor of STEM CELLS.

### ________________________________________

Full Citation: Zomer, A., Ellenbroek, S. I. J., Ritsma, L., Beerling, E., Vrisekoop, N. and Van Rheenen, J. (2013), Brief Report: Intravital Imaging of Cancer Stem Cell Plasticity in Mammary Tumors. STEM CELLS, 31: 602606. doi: 10.1002/stem.1296

Paper URL: http://onlinelibrary.wiley.com/doi/10.1002/stem.1296/abstract#fn3

About the Author: Jacco van Rheenen was originally trained in a variety of imaging techniques during his PhD with Dr. Kees Jalink at the Netherlands Cancer Institute. He was among the first to optimize imaging and develop software to quantitatively measure FRET on confocal microscopes. During his PhD in the lab of Dr. Jalink and as postdoc in the lab of Dr. Sonnenberg (Netherlands Cancer Institute) he used several microscopy techniques to study lipid signaling in tumor cells. In order to broader his scales, he obtained a KWF fellowship to do a postdoc in the United States in the lab of Dr. John Condeelis. There he extended his imaging experience by imaging mammary tumors intravitally including two-photon microscopy and became an expert in the field of intravital FRET imaging. In 2008 he was appointed as group leader at the Hubrecht Institute, where he utilizes his imaging techniques to visualize processes that are required for the metastasis of mammary tumor cells in living animals. In 2009, he was awared a VIDI grant and a research grant from the Dutch Cancer Society.

Read more from the original source:
Jacco van Rheenen Wins STEM CELLS Young Investigator Award

Posted in Stem Cells | Comments Off on Jacco van Rheenen Wins STEM CELLS Young Investigator Award

Stem cells for Parkinson's getting ready for clinic

Posted: December 12, 2013 at 11:45 pm

A groundbreaking attempt to heal eight Parkinson's patients with their own cells could move from research to the clinic next year.

For eight Parkinson's patients seeking treatment with a new form of stem cell therapy, 2014 promises to be a milestone. If all goes well, next year the FDA will give approval to begin clinical trials. And if the patients can raise enough money, the scientists and doctors working with them will have the money to proceed.

Jeanne Loring, a stem cell scientist at The Scripps Research Institute, discusses the status of a project to treat Parkinson's patients with their own cells, turned into the kind of brain cells destroyed in Parkinson's. The project is a collaboration with Scripps Health and the Parkinson's Association of San Diego.

Scientists at The Scripps Research Institute led by Jeanne Loring have taken skin cells from all patients and grown them into artificial embryonic stem cells, called induced pluripotent stem cells. They then converted the cells into dopamine-making neurons, the kind destroyed in Parkinson's disease.

Loring discussed the project's progress on Friday morning at the 2013 World Stem Cell Summit in San Diego.

If animal studies now under way and other requirements are met, doctors at Scripps Health will perform a clinical trial. They will grow neurons until they are just short of maturity, then transplant them into the brains of the respective patients. The cells are expected to complete maturation in the brain, forming appropriate connections with their new neighbors, and begin making dopamine.

Earlier attempts to treat Parkinson's with a stem cell-like therapy mostly failed because of difficulties in quality control of the source, neural cells from aborted fetuses, Loring said. But some patients gained lasting improvement, a tantalizing hint that the trials were on the right track.

In January, a "pre-pre-IND meeting" is planned with the FDA, Loring said.

Also speaking were Ed Fitzpatrick, one of the eight patients, and Kyoto University researcher Jun Takahashi, who is independently trying the same approach in Japan.

Ed Fitzpatrick, one of eight Parkinson's patients in a program to be treated with his own cells, grown into the kind of brain cells destroyed in Parkinson's.

See the original post here:
Stem cells for Parkinson's getting ready for clinic

Posted in Stem Cells | Comments Off on Stem cells for Parkinson's getting ready for clinic

California’s Stem-Cell Quest Races Time as Money Dwindles

Posted: December 12, 2013 at 11:42 pm

Californias government-run stem-cell research agency, on course to spend $3 billion in taxpayer money to find treatments for some of the worlds most intractable diseases, is pushing to accelerate human testing before its financing runs out.

For the California Institute for Regenerative Medicine, time is growing short to fund research that demonstrates the potential of stem cells to help treat everything from cancer to heart disease to spinal cord injuries.

The agency, created by voters in 2004, has given out more than half of its $3 billion from state bonds and must spend the rest by 2017. The largest U.S. funding source for stem-cell research outside the federal government, its under pressure to show results to attract new money from pharmaceutical companies, venture capitalists or even more municipal bonds.

We need to figure out how to keep them going, said Jonathan Thomas, a founding partner of Saybrook Capital LLC in Los Angeles, and chairman of the institutes board, which meets today. We could do public-private partnerships, venture philanthropy, a ballot box.

Embryonic stem cells have the potential to change into any type of cell in the body. They are among the first cells created in embryos after conception. Scientists hope they may replace damaged or missing tissue in the brain, heart and immune system.

California voters approved the bonds after President George W. Bush banned the use of federal funds for research on embryonic stem cells. Since then, other types of stem cells have been shown to act like embryonic cells, relieving some of the debate over the ethics of destroying human embryos to use the cells.

The agencys funding decisions have included a grant of $20 million to a team led by Irv Weissman at the Stanford University School of Medicine, seeking a cure for cancer.

Weissmans team is working on an antibody manufactured with stem cells that allows a cancer patients own immune system to destroy a tumor, instead of relying on toxic radiation or chemotherapy. The antibody counteracts a protein called CD47, which creates what scientists call a dont eat me shield around the cancer. Once that cloak is removed, the patients immune system recognizes the cancer and attacks the tumor, shrinking or eliminating it.

Tests on humans are to begin early next year. The antibody has already worked in mice against breast, colon, ovarian, prostate, brain, bladder and liver cancer.

Two other research projects funded by the California agency are in human trials now -- one targeting HIV, the virus that causes AIDS, and another that regrows cardiac tissue in heart-attack victims.

Original post:
California’s Stem-Cell Quest Races Time as Money Dwindles

Posted in Cell Therapy | Comments Off on California’s Stem-Cell Quest Races Time as Money Dwindles

Step closer to muscle regeneration

Posted: December 12, 2013 at 11:42 pm

Dec. 11, 2013 Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic tissue.

PhD Student Bianca Borchin and Associate Professor Tiziano Barberi from the Australian Regenerative Medicine Institute (ARMI) at Monash University have developed a method to generate skeletal muscle cells, paving the way for future applications in regenerative medicine.

Scientists, for the first time, have found a way to isolate muscle precursor cells from pluripotent stem cells using a purification technique that allows them to differentiate further into muscle cells, providing a platform to test new drugs on human tissue in the lab. Pluripotent stem cells have the ability to become any cell in the human body including, skin, blood, brain matter and skeletal muscles that control movement.

Once the stem cells have begun to differentiate, the challenge for researchers is to control the process and produce only the desired, specific cells. By successfully controlling this process, scientists could provide a variety of specialised cells for replacement in the treatment of a variety of degenerative diseases such as Muscular Dystrophy and Parkinson's disease.

"There is an urgent need to find a source of muscle cells that could be used to replace the defective muscle fibers in degenerative disease. Pluripotent stem cells could be the source of these muscle cells," Professor Barberi said.

"Beyond obtaining muscle from pluripotent stem cells, we also found a way to isolate the muscle precursor cells we generated, which is a prerequisite for their use in regenerative medicine.

"The production of a large number of pure muscle precursor cells does not only have potential therapeutic applications, but also provides a platform for large scale screening of new drugs against muscle disease."

Using a technology known as fluorescence activated cell sorting (FACS), the researchers identified the precise combination of protein markers expressed in muscle precursor cells that enabled them to isolate those cells from the rest of the cultures.

Ms Borchin said there were existing clinical trials based on the use of specialised cells derived from pluripotent stem cells in the treatment of some degenerative diseases but deriving muscle cells from pluripotent stem cells proved to be challenging.

"These results are extremely promising because they mark a significant step towards the use of pluripotent stem cells for muscle repair," Ms Borchin said.

Read this article:
Step closer to muscle regeneration

Posted in Cell Therapy | Comments Off on Step closer to muscle regeneration

UCLA Scientists First to Track Joint Cartilage Development in Humans

Posted: December 12, 2013 at 11:41 pm

Contact Information

Available for logged-in reporters only

Newswise Stem cell researchers from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and osteoarthritis. These revolutionary therapies could reach clinical trials within three years.

Led by Dr. Denis Evseenko, assistant professor of orthopedic surgery and head of UCLAs Laboratory of Connective Tissue Regeneration, the study was published online ahead of print in Stem Cell Reports on December 12, 2013.

Articular cartilage is a highly specialized tissue formed from cells called chondrocytes that protect the bones of joints from forces associated with load bearing and impact, and allows nearly frictionless motion between the articular surfaces. Cartilage injury and lack of cartilage regeneration often lead to osteoarthritis involving degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the United States alone, making joint surface restoration a major priority in modern medicine.

Different cell types have been studied with respect to their ability to generate articular cartilage. However, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.

By bridging developmental biology and tissue engineering, Evseenkos discoveries represent a critical missing link providing scientists with checkpoints to tell if the cartilage cells (called chondrocytes) are developing correctly.

We began with three questions about cartilage development, Evseenko said, we wanted to know the key molecular mechanisms, the key cell populations, and the developmental stages in humans. We carefully studied how the chondrocytes developed, watching not only their genes, but other biological markers that will allow us to apply the system for the improvement of current stem cell-based therapeutic approaches.

This research was also the first attempt to generate all the key landmarks that allow generation of clinically relevant cell types for cartilage regeneration with the highest animal-free standards. This means that the process did not rely on any animal components, thus therapeutic products such as stem-cell serums can be produced that are safe for humans.

Evseenko added that in a living organism more than one cell type is responsible for the complete regeneration of tissue, so in addition to the studies involving generation of articular cartilage from human stem cells, he and his team are now trying different protocols using different combinations of adult progenitor cells present in the joint to regenerate cartilage until the best one is found for therapeutic use.

Read the original here:
UCLA Scientists First to Track Joint Cartilage Development in Humans

Posted in Cell Medicine | Comments Off on UCLA Scientists First to Track Joint Cartilage Development in Humans

Worcester Polytechnic Institute’s Tanja Dominko Named Slovenian Ambassador of Science for 2013

Posted: December 12, 2013 at 11:41 pm

Worcester, MA (PRWEB) December 10, 2013

Tanja Dominko, DVM, PhD, associate professor of biology and biotechnology at Worcester Polytechnic Institute (WPI), is the 2013 Slovenian Ambassador of Science, a national award given to one Slovenian native each year in recognition of outstanding achievements and global scientific impact. The award also honors Dominko's international engagement in developing programs that bring together WPI students and faculty members with Slovenian colleagues to address important biomedical challenges.

Slovenian President Borut Pahor presided at the awards ceremony on Nov. 22, 2013, in the city of Maribor, where Dominko joined nine other scientists and engineers who received national awards for a range of accomplishments. At the event, President Pahor spoke of the vital need to support scientific research and education on a global basis to help improve the human conditiona message that Dominko says resonates deeply with her personal and professional goals to discover and translate new knowledge of human physiology to help cure disease.

"When I learned that I was selected, it was a special moment," she said. "Knowing that after working in the United States for 23 years, that the people of my homeland recognized the value of what we have been doing here gave me a sweet feeling inside. What is most important, though, is the work we are continuing to do, both here at WPI and at the University of Nova Gorica in Slovenia, to help make regenerative cell therapies a reality for all people, regardless of where they live or their ability to pay for treatment."

In a written statement congratulating Dominko for her award, Dr. Boo Cerar, Slovenian Ambassador to the United States, said, "I wish to express my sincere compliments for your outstanding work in the area of stem cell research, regenerative medicine, and tissue engineering, moreover for your valuable role in promoting education and awareness about the fields, both in Slovenia and in the United States."

Dominko is globally recognized for her research in stem cell biology and regenerative medicine. Her work has spanned embryonic transfer, cloning through somatic cell nuclear transfer, and the basic science of early embryogenesis. She is currently at the forefront of the science of cellular reprograming, exploring how mature human skin cells can be coaxed to become more like stem cells able to recapitulate damaged tissues throughout the body.

"This is wonderful recognition for an important body of work and for Tanjas ongoing commitment to advance science and education," said Karen Kashmanian Oates, Peterson Family Dean of Arts and Sciences at WPI. "Through her efforts, Tanja not only honors her homeland, but brings honor to WPI and the faculty and students who work with her. Tanjas engagement of science across borders has created informal, yet essential, networks of science diplomacy. We look forward to the exciting work that will come from these collaborations."

After earning an MS in large animal reproduction and obstetrics and a doctor of veterinary medicine degree from the University of Ljubljana in Slovenia, Dominko came to the United States in 1990 to enroll in a graduate program at the University of Wisconsin-Madison. There she earned a PhD in endocrinology and reproductive physiology, working in the lab next door to Professor Jamie Thomson, who made history by isolating the first embryonic stem cells, initially from primates and then from humans.

"I have always been interested in reproductive physiology, and when I was at Madison two important things happened that shaped my career," Dominko says. "First, there were the discoveries by Jamie Thomson. Then, two of my friends, Ian Wilmut and the late Keith Campbell in the UK, successfully cloned the sheep Dolly. So I guess it was a case of being in the right place at the right time, to be connected with these people, and then to be able to move my work into the area of stem cell biology, cloning, and ultimately regenerative cellular therapies."

After a postdoctoral fellowship at Madison, and another in the lab of Gerald Schatten, PhD, at the Oregon Health Sciences University in Portland, Dominko was recruited to Worcester for a senior research position at Advanced Cell Technology Inc. She came to WPI in 2006 as an assistant research professor and CEO of a start-up company she founded called CellThera, which moved into WPIs Bioengineering Institute. In 2008 Dominko was appointed associate professor of biology and biotechnology at WPI; she received tenure in 2012.

See the article here:
Worcester Polytechnic Institute’s Tanja Dominko Named Slovenian Ambassador of Science for 2013

Posted in Cell Medicine | Comments Off on Worcester Polytechnic Institute’s Tanja Dominko Named Slovenian Ambassador of Science for 2013

Scientists first to track joint cartilage development

Posted: December 12, 2013 at 11:41 pm

Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.

Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.

Articular cartilage, a highly specialized tissue formed from cells called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces - the areas where bone connects with other bones in a joint.

Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.

While scientists have studied the ability of different cell types to generate articular cartilage, none of the current cell-based repair strategies - including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid - have generated long-lasting articular cartilage tissue in the laboratory.

For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic stem cells, which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.

By bridging developmental biology and tissue engineering, Evseenko's discoveries represent a critical "missing link," providing scientists with checkpoints to tell if the cartilage cells are developing correctly.

"We began with three questions about cartilage development," Evseenko said. "We wanted to know the key molecular mechanisms, the key cell populations and the developmental stages in humans. We carefully studied how the chondrocytes developed, watching not only their genes but other biological markers that will allow us to apply the system for the improvement of current stem cell-based therapeutic approaches."

The research was also the first to employ the highest animal-free standards in attempting to generate all the key landmarks that allow the development of cell types that could be used in treatments to regrow damaged human cartilage. Stem cells are often grown using animal-based components, which help the stem cells flourish and grow, but such components can lead to unwanted variations and contamination. Evseenko's research process did not rely on any animal components, thus allowing for the potential production of therapies, such as stem cell serums, that are safe for humans.

See the rest here:
Scientists first to track joint cartilage development

Posted in Cell Medicine | Comments Off on Scientists first to track joint cartilage development

UCLA Scientists Taking Stem Cell Research to Patients

Posted: December 12, 2013 at 11:40 pm

Contact Information

Available for logged-in reporters only

Newswise Scientists from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research are bringing stem cell science funded by the California Institute of Regenerative Medicine (CIRM), the state stem cell agency, directly to patients in two exciting new clinical trials scheduled to begin in early 2014. The recipients of the Disease Team Therapy Development III awards were Dr. Dennis Slamon and Dr. Zev Wainberg, whose phase I clinical trial will test a new drug that targets cancer stem cells and has been approved to begin enrolling patients in the US and Canada, and Dr. Donald Kohn, whose first-in-human trial is on stem cell gene therapy for sickle cell disease (SCD).

The announcement of the new awards came on December 12, 2013 at the meeting of the CIRM Independent Citizens Oversight Committee (ICOC) at the Luxe Hotel in Los Angeles. Dr. Owen Witte, Director of the UCLA Broad Stem Cell Research Center, highlighted that the The CIRM support demonstrates that our multidisciplinary Center is at the forefront of translating basic scientific research to new drug and cellular therapies that will revolutionize medicine.

Targeting solid tumor stem cells The Disease Team III grant to Dr. Dennis Slamon and Dr. Zev Wainberg and their US-Canadian collaborative team will support the first in human clinical trial scheduled to open in early 2014. The project builds on Dr. Slamons previous work partially funded by CIRM to develop a drug that targets tumor initiating cells with UCLAs Dr. Zev Wainberg, assistant professor of hematology/oncology and Dr. Tak Mak, director, Campbell Family Institute of the University Health Network in Toronto, Canada. Dr. Slamon, renowned for his research that led to the development of Herceptin, the first FDA-approved targeted therapy for breast cancer, is the director of clinical and translational research at the UCLA Jonsson Comprehensive Cancer Center, and professor, chief and executive vice chair for research in the division of hematology/oncology.

With investigational new drug approval from the Food and Drug Administration (FDA) and Health Canada, the Canadian governments therapeutic regulatory agency, this trial is an international effort to bring leading-edge stem cell science to patients.

We are delighted to receive this CIRM grant that will drive our translational research from the laboratory to the clinic, Slamon said, and allow us to test our targeted drug in a phase I clinical trial.

The trial is based on the evidence built over the last decade for what has become known as the cancer stem cell hypothesis. According to this hypothesis, cancer stem cells are the main drivers of tumor growth and are also resistant to standard cancer treatments. One view is that cancer stem cells inhabit a niche that prevents cancer drugs from reaching them. Another view is that tumors can become resistant to therapy by a process called cell fate decision, by which some tumor cells are killed by therapy and others become cancer stem cells. These cancer stem cells are believed to be capable of self-renewal and repopulation of tumor cells, resulting in the recurrence of cancer.

The target of the new drug is an enzyme in cancer stem cells and tumor cells called Polo-like kinase 4, which was selected because blocking it negatively affects cell fate decisions associated with cancer stem cell renewal and tumor cell growth, thus stopping tumor growth.

This potential anti-cancer drug is now ready to be tested in humans for the first time. Our goal is to test this novel agent in patients in order to establish safety and then to proceed quickly to rapid clinical development. We are excited to continue this academic collaboration with our Canadian colleagues to test this drug in humans for the first time, said Wainberg. Drs. Slamon, Wainberg, Mak and colleagues will also look for biological indications, called biomarkers, that researchers can use to tell if and how the drug is working.

See the rest here:
UCLA Scientists Taking Stem Cell Research to Patients

Posted in Cell Therapy | Comments Off on UCLA Scientists Taking Stem Cell Research to Patients

Page 2,232«..1020..2,2312,2322,2332,234..2,2402,250..»