Buitrago-Delgado, E., Nordin, K., Rao, A., Geary, L. & LaBonne, C. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science 348, 13321335 (2015).
Article CAS PubMed PubMed Central Google Scholar
Le Douarin, N. & Kalcheim, C. The Neural Crest 2nd edn (Cambridge Univ. Press, 1999).
Schock, E. N., York, J. R. & LaBonne, C. The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest.Semin. Cell Dev. Biol. 138, 3644 (2023).
Article CAS PubMed Google Scholar
York, J. R. & McCauley, D. W. The origin and evolution of vertebrate neural crest cells. Open Biol. 10, 190285 (2020).
Article CAS PubMed PubMed Central Google Scholar
Green, S. A., Simes-Costa, M. & Bronner, M. Evolution of vertebrates as viewed from the crest. Nature 520, 474482 (2015).
Article CAS PubMed PubMed Central Google Scholar
Lignell, A., Kerosuo, L., Streichan, S. J., Cai, L. & Bronner, M. E. Identification of a neural crest stem cell niche by Spatial Genomic Analysis. Nat. Commun. 8, 1830 (2017).
Article PubMed PubMed Central Google Scholar
Nordin, K. & Labonne, C. Sox5 is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Dev. Cell 31, 374382 (2014).
Article CAS PubMed PubMed Central Google Scholar
Scerbo, P. et al. Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS ONE 7, e36855 (2012).
Article CAS PubMed PubMed Central Google Scholar
Scerbo, P. & Monsoro-Burq, A. H. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Sci. Adv. 6, eaaz1469 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rao, A. & LaBonne, C. Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest. Development 145, dev163386 (2018).
Article PubMed PubMed Central Google Scholar
Geary, L. & LaBonne, C. FGF mediated MAPK and PI3K/Akt signals make distinct contributions to pluripotency and the establishment of neural crest. eLife 7, e33845 (2018).
Article PubMed PubMed Central Google Scholar
Zalc, A. et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science 371, eabb4776 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pajanoja, C. et al. Maintenance of pluripotency-like signature in the entire ectoderm leads to neural crest stem cell potential. Nat. Commun. 14, dev165941 (2023).
Article Google Scholar
Sauka-Spengler, T., Meulemans, D. M., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405420 (2007).
Article CAS PubMed Google Scholar
Martik, M. L. et al. Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature 574, 675678 (2019).
Article CAS PubMed PubMed Central Google Scholar
Takeuchi, M., Takahashi, M., Okabe, M. & Aizawa, S. Germ layer patterning in bichir and lamprey: an insight into its evolution in vertebrates. Dev. Biol. 332, 90102 (2009).
Article CAS PubMed Google Scholar
Cattell, M. V., Garnett, A. T., Klymkowsky, M. W. & Medeiros, D. M. A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol. Dev. 14, 104115 (2012).
Article CAS PubMed Google Scholar
Hockman, D. et al. A genome-wide assessment of the ancestral neural crest gene regulatory network. Nat. Commun. 10, 4689 (2019).
Article PubMed PubMed Central Google Scholar
Shi, G. & Jin, Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 1, 39 (2010).
Article CAS PubMed PubMed Central Google Scholar
Thomson, M. et al. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875889 (2011).
Article CAS PubMed PubMed Central Google Scholar
Radzisheuskaya, A. et al. A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat. Cell Biol. 15, 579590 (2013).
Article CAS PubMed PubMed Central Google Scholar
Kim, D.-K., Cha, Y., Ahn, H.-J., Kim, G. & Park, K.-S. Lefty1 and lefty2 control the balance between self-renewal and pluripotent differentiation of mouse embryonic stem cells. Stem Cells Dev. 23, 457466 (2014).
Article CAS PubMed Google Scholar
Tosic, J. et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 21, 15181531 (2019).
Article CAS PubMed Google Scholar
Acampora, D., Di Giovannantonio, L. G. & Simeone, A. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 140, 4355 (2013).
Article CAS PubMed Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533538 (2006).
Article CAS PubMed Google Scholar
Zhang, X., Zhang, J., Wang, T., Esteban, M. A. & Pei, D. Esrrb activates Oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells. J. Biol. Chem. 283, 3582535833 (2008).
Article CAS PubMed Google Scholar
Guo, G. & Smith, A. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development 137, 31853192 (2010).
Article CAS PubMed PubMed Central Google Scholar
Gassler, J. et al. Zygotic genome activation by the totipotency pioneer factor Nr5a2. Science 378, 13051315 (2022).
Article CAS PubMed Google Scholar
Blij, S., Parenti, A., Tabatabai-Yazdi, N. & Ralston, A. Cdx2 efficiently induces trophoblast stem-like cells in nave, but not primed, pluripotent stem cells. Stem Cells Dev. 24, 13521365 (2015).
Article CAS PubMed PubMed Central Google Scholar
Rousso, S. Z. et al. Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation. Dev. Dyn. 240, 796807 (2011).
Article CAS PubMed Google Scholar
Han, J. et al. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463, 10961100 (2010).
Article CAS PubMed PubMed Central Google Scholar
Russell, R. et al. A dynamic role of TBX3 in the pluripotency circuitry. Stem Cell Rep. 5, 11551170 (2015).
Article CAS Google Scholar
Tanaka, Y., Patestos, N. P., Maekawa, T. & Ishii, S. B-myb is required for inner cell mass formation at an early stage of development. J. Biol. Chem. 274, 2806728070 (1999).
Article CAS PubMed Google Scholar
Fernandez-Tresguerres, B. et al. Evolution of the mammalian embryonic pluripotency gene regulatory network. Proc. Natl Acad. Sci. USA 107, 1995519960 (2010).
Article CAS PubMed PubMed Central Google Scholar
Tanaka, S., Kunath, T., Hadjantonakis, A.-K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 20722075 (1998).
Article CAS PubMed Google Scholar
Yamaji, M. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12, 368382 (2013).
Article CAS PubMed Google Scholar
Grabole, N. et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 14, 629637 (2013).
Article CAS PubMed PubMed Central Google Scholar
Buitrago-Delgado, E., Schock, E. N., Nordin, K. & LaBonne, C. A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells. Dev. Biol. 444, 5061 (2018).
Article CAS PubMed PubMed Central Google Scholar
Monsoro-Burq, A.-H., Wang, E. & Harland, R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev. Cell 8, 167178 (2005).
Article CAS PubMed Google Scholar
Li, B., Kuriyama, S., Moreno, M. & Mayor, R. The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136, 32673278 (2009).
Article CAS PubMed PubMed Central Google Scholar
LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 24032414 (1998).
Article CAS PubMed Google Scholar
Lander, R. et al. Interactions between Twist and other core epithelialmesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat. Commun. 4, 1542 (2013).
Article PubMed Google Scholar
Mancilla, A. & Mayor, R. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction. Dev. Biol. 177, 580589 (1996).
Article CAS PubMed Google Scholar
Rogers, C. D., Saxena, A. & Bronner, M. E. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. J. Cell Biol. 203, 835847 (2013).
Article CAS PubMed PubMed Central Google Scholar
LaBonne, C. & Bronner-Fraser, M. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221, 195205 (2000).
Article CAS PubMed Google Scholar
Square, T. A. et al. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 585, 563568 (2020).
Article CAS PubMed Google Scholar
Haldin, C. E. & LaBonne, C. SoxE factors as multifunctional neural crest regulatory factors. Int. J. Biochem. Cell Biol. 42, 441444 (2010).
Article CAS PubMed Google Scholar
Tapia, N. et al. Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nat. Commun. 3, 1279 (2012).
Article PubMed Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379391 (1998).
Article CAS PubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372376 (2000).
Article CAS PubMed Google Scholar
Onichtchouk, D. Evolution and functions of Oct4 homologs in non-mammalian vertebrates. Biochim. Biophys. Acta 1859, 770779 (2016).
More here:
Shared features of blastula and neural crest stem cells evolved at the base of vertebrates - Nature.com