Page 2,339«..1020..2,3382,3392,3402,341..2,3502,360..»

ASCI Two Worlds of Stem Cell Therapy Animation – Video

Posted: June 18, 2013 at 8:41 pm


ASCI Two Worlds of Stem Cell Therapy Animation
Asian Stem Cell Institute (ASCI) Two Worlds of Stem Cell Therapy Animation Autologous Stem cell Treatments, mobilized peripheral blood, bone marrow and adipo...

By: stemcellregeneration

See the article here:
ASCI Two Worlds of Stem Cell Therapy Animation - Video

Posted in Stem Cell Therapy | Comments Off on ASCI Two Worlds of Stem Cell Therapy Animation – Video

Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota …

Posted: June 18, 2013 at 8:41 pm

Sarasota, Florida (PRWEB) June 18, 2013

After almost 20 years of performing regenerative treatments in the field of non surgical orthopedics, Wellington Chen, M.D., will begin conducting clinical trials for many degenerative diseases using adipose-derived stem cell therapy in Sarasota, Florida. The independent review board of the International cell medicine society is responsible for overseeing these trials.

Advanced Rejuvenation will treat patients suffering from chronic obstructive pulmonary disease (COPD) and osteoarthritis following the IRB-approved protocols. Advanced Rejuvenation will be using adult autologous stem cells, harvested from the patients own adipose (fat) tissue or bone marrow if fat is not available. Because patients are receiving their own cells, there is no risk of rejection. As of 2007, over 9,000 studies have shown the safety using these cell lines.

Autologous stem cell therapy are your bodies repair men. They are circulated throughout your body and as soon as there is a need for them, chemical messages trigger them to migrate to the area and do their magic. They are both immune modulating and also regenerative which makes them a great therapeutic agent for osteoarthritis and COPD. Numerous studies have shown them to have the capacity to grow new cartilage, muscle, ligaments, glands and even organs. We believe stem cell treatments will become the future of care for most orthopedic problems avoiding the need for surgery. With COPD, when stem cells are run into the blood stream through an IV they will mostly pass through the lungs. We are excited to be apart of these research studies.

Advanced Rejuvenation trained under scientist Kristin Comella, CEO of Stemlogix. She was recently named in the Wall Street Journal as one of the 50 most influential people on stem cell research. Advanced Rejuvenation will implement Stemlogixs patented extraction process, allowing for an exceptionally high yield and viability of stem cells from fat.

During the in-office and same day procedure, a mini liposuction is performed. A half of a cup of fat in harvested from around the abdominal region which produces approximately 8 million stem cells. The stem cells are isolated put back into the patients joints or with COPD via an IV infusion. Local anesthesia is all that is needed and pain medication can be prescribed but is rarely necessary.

Advanced Rejuvenation has treated various orthopedic conditions for 4 years using fat transfer and now offers these treatments to patients ranging from NFL players to retired golfers. If you would like more information, e-mail Advanced Rejuveantion at AskDrGecko(at)Gmail(dot)com or call our office.

About Advanced Rejuvenation

Advanced Rejuvenation is a multi specialty practice in Sarasota, Florida, specializing in regenerative treatments such as Stem Cell Treatments, Prolotherapy, Ozone Therapy, Naturopathic, Acupuncture, Chiropractic Functional Neurology, Osteopathy, Functional Medicine, Active Isolated Stretching (AIS)

Contact: Advanced Rejuvenation Phone: (941) 330-8553 E-mail: AskDrGecko(at)Gmail(dot)com Website: http://www.SarasotaStemCell.com Office address: 2033 Wood Street #210 Sarasota, Florida 34237

Continue reading here:
Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota ...

Posted in Stem Cell Therapy | Comments Off on Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota …

How to Use Stem Cells to Repair Hip Joints – Video

Posted: June 18, 2013 at 5:45 pm


How to Use Stem Cells to Repair Hip Joints
Dr. Alex Martin discusses the use of stem cell therapy to repair damaged hip joints. For more info, please call (323) 285-5300 or email info@metromd.net or v...

By: MetroMD

See the article here:
How to Use Stem Cells to Repair Hip Joints - Video

Posted in Stem Cell Videos | Comments Off on How to Use Stem Cells to Repair Hip Joints – Video

ASCI – TWO WORLDS OF STEM CELLS – Video

Posted: June 18, 2013 at 5:45 pm


ASCI - TWO WORLDS OF STEM CELLS
ASCI - Asian Stem Cell Institute - http://www.stem-cell-regeneration.com/

By: VIDUMO Team

View post:
ASCI - TWO WORLDS OF STEM CELLS - Video

Posted in Stem Cell Videos | Comments Off on ASCI – TWO WORLDS OF STEM CELLS – Video

Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota …

Posted: June 18, 2013 at 10:42 am

Sarasota, Florida (PRWEB) June 18, 2013

After almost 20 years of performing regenerative treatments in the field of non surgical orthopedics, Wellington Chen, M.D., will begin conducting clinical trials for many degenerative diseases using adipose-derived stem cell therapy in Sarasota, Florida. The independent review board of the International cell medicine society is responsible for overseeing these trials.

Advanced Rejuvenation will treat patients suffering from chronic obstructive pulmonary disease (COPD) and osteoarthritis following the IRB-approved protocols. Advanced Rejuvenation will be using adult autologous stem cells, harvested from the patients own adipose (fat) tissue or bone marrow if fat is not available. Because patients are receiving their own cells, there is no risk of rejection. As of 2007, over 9,000 studies have shown the safety using these cell lines.

Autologous stem cell therapy are your bodies repair men. They are circulated throughout your body and as soon as there is a need for them, chemical messages trigger them to migrate to the area and do their magic. They are both immune modulating and also regenerative which makes them a great therapeutic agent for osteoarthritis and COPD. Numerous studies have shown them to have the capacity to grow new cartilage, muscle, ligaments, glands and even organs. We believe stem cell treatments will become the future of care for most orthopedic problems avoiding the need for surgery. With COPD, when stem cells are run into the blood stream through an IV they will mostly pass through the lungs. We are excited to be apart of these research studies.

Advanced Rejuvenation trained under scientist Kristin Comella, CEO of Stemlogix. She was recently named in the Wall Street Journal as one of the 50 most influential people on stem cell research. Advanced Rejuvenation will implement Stemlogixs patented extraction process, allowing for an exceptionally high yield and viability of stem cells from fat.

During the in-office and same day procedure, a mini liposuction is performed. A half of a cup of fat in harvested from around the abdominal region which produces approximately 8 million stem cells. The stem cells are isolated put back into the patients joints or with COPD via an IV infusion. Local anesthesia is all that is needed and pain medication can be prescribed but is rarely necessary.

Advanced Rejuvenation has treated various orthopedic conditions for 4 years using fat transfer and now offers these treatments to patients ranging from NFL players to retired golfers. If you would like more information, e-mail Advanced Rejuveantion at AskDrGecko(at)Gmail(dot)com or call our office.

About Advanced Rejuvenation

Advanced Rejuvenation is a multi specialty practice in Sarasota, Florida, specializing in regenerative treatments such as Stem Cell Treatments, Prolotherapy, Ozone Therapy, Naturopathic, Acupuncture, Chiropractic Functional Neurology, Osteopathy, Functional Medicine, Active Isolated Stretching (AIS)

Contact: Advanced Rejuvenation Phone: (941) 330-8553 E-mail: AskDrGecko(at)Gmail(dot)com Website: http://www.SarasotaStemCell.com Office address: 2033 Wood Street #210 Sarasota, Florida 34237

Excerpt from:
Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota ...

Posted in Stem Cell Therapy | Comments Off on Wellington Chen, M.D. of Advanced Rejuvenation Introduces Stem Cell Therapy For OsteoArthritis & COPD in Sarasota …

Exposure to low doses of BPA linked to increased risk of prostate cancer in human stem cells

Posted: June 17, 2013 at 4:47 pm

June 17, 2013 Exposing developing tissue to low levels of the plastic bisphenol A, commonly known as BPA, is linked to a greater incidence of prostate cancer in tissue grown from human prostate stem cells, a new study finds. The results were presented Monday, June 17, at The Endocrine Society's 95th Annual Meeting in San Francisco.

BPA is a synthetic estrogen that is used to add flexibility to many common products, including food cans and containers, compact discs, eyeglasses, and even baby bottles. It is universally prevalent, and tests indicate that almost everyone has measurable levels of the chemical in their bodies.

The chemical has received a great deal of media attention in recent years because of its potential to increase the risk of disease. The concern about BPA in the human body is that it is an endocrine-disrupting chemical, which means that it alters the body's hormonal balance by replicating the activity of a naturally occurring hormone. In this case, BPA replicates the activity of estrogen. Of greatest concern are BPA's effects on developing fetuses and infants because endocrine-disrupting chemicals are thought to predispose developing cells to later disease.

In this study, investigators used human prostate stem cells from organ donors to grow prostate tissue in a mouse model. They found that early BPA exposure significantly increased the risk of both prostate cancer and a precancerous condition known as prostate epithelial neoplasia, or PIN. The incidence rates for PIN and prostate cancer were:

12 percent of non-BPA exposed tissue

33-45 percent of tissue exposed to BPA

"These results suggest that stem cells are direct BPA targets which may explain the long-lasting effects of this chemical throughout the body," said study lead author Gail S. Prins, Ph.D., professor of physiology and urology at the University of Illinois at Chicago. "They provide the first direct in vivo evidence that developmental exposure to environmentally relevant levels of BPA increases human prostate cancer risk."

Investigators were able to observe the effects of BPA on living prostate tissue by isolating prostate stem cells from young men, then combining these cells with undifferentiated cells called mesenchyme, which, for this study, derived from rat tissue. They then grafted this combined tissue to the kidneys of mice where the tissue developed into human prostate tissue. To simulate human BPA exposure, the investigators fed BPA at levels found in humans to the study mice for the first two weeks of the prostate-tissue formation.

One month after the tissue graft, when the prostate tissue had matured, the investigators administered estrogen and testosterone at elevated levels to the study mice to promote prostate disease.

The National Institutes of Health's National Institute of Environmental Health Sciences funded the study.

See original here:
Exposure to low doses of BPA linked to increased risk of prostate cancer in human stem cells

Posted in Stem Cells | Comments Off on Exposure to low doses of BPA linked to increased risk of prostate cancer in human stem cells

NYSCF and Columbia researchers demonstrate use of stem cells to analyze causes, treatment of diabetes

Posted: June 17, 2013 at 4:47 pm

Public release date: 17-Jun-2013 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (June 17, 2013) A team from the New York Stem Cell Foundation (NYSCF) Research Institute and the Naomi Berrie Diabetes Center of Columbia University has generated patient-specific beta cells, or insulin-producing cells, that accurately reflect the features of maturity-onset diabetes of the young (MODY).

The researchers used skin cells of MODY patients to produce induced pluripotent stem (iPS) cells, from which they then made beta cells. Transplanted into a mouse, the stem cell-derived beta cells secreted insulin in a manner similar to that of the beta cells of MODY patients. Repair of the gene mutation restored insulin secretion to levels seen in cells obtained from healthy subjects. The findings were reported today in the Journal of Clinical Investigation.

Previous studies have demonstrated the ability of human embryonic stem cells and iPS cells to become beta cells that secrete insulin in response to glucose or other molecules. But the question remained as to whether stem cell-derived beta cells could accurately model genetic forms of diabetes and be used to develop and test potential therapies.

"We focused on MODY, a form of diabetes that affects approximately one in 10,000 people. While patients and other models have yielded important clinical insights into this disease, we were particularly interested in its molecular aspectshow specific genes can affect responses to glucose by the beta cell," said co-senior author Dieter Egli, PhD, Senior Research Fellow at NYSCF, who was named a NYSCFRobertson Stem Cell Investigator in 2012.

MODY is a genetically inherited form of diabetes. The most common form of MODY, type 2, results in a loss-of-function mutation in one copy of the gene that codes for the sugar-processing enzyme glucokinase (GCK). With type 2 MODY, higher glucose levels are required for GCK to metabolize glucose, leading to chronic, mildly elevated blood sugar levels and increased risk of vascular complications.

MODY patients are frequently misdiagnosed with type 1 or 2 diabetes. Proper diagnosis can not only change the patient's course of treatment but affect family members, who were previously unaware that they, too, might have this genetic disorder.

NYSCF scientists took skin cells from two Berrie Center type 2 MODY patients and "reprogrammed"or revertedthem to an embryonic-like state to become iPS cells. To examine the effect of the GCK genetic mutation, they also created two genetically manipulated iPS cell lines for comparison: one fully functional (two correct copies of the GCK gene) and one with complete loss of function (two faulty copies of the GCK gene). They then generated beta cell precursors from the fully functional and loss-of-function iPS cell lines and transplanted the cells for further maturation into immune-compromised mice.

"Our ability to create insulin-producing cells from skin cells, and then to manipulate the GCK gene in these cells using recently developed molecular methods, made it possible to definitively test several critical aspects of the utility of stem cells for the study of human disease," said Haiqing Hua, PhD, lead author on the paper, a postdoctoral fellow in the Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center at Columbia University and the New York Stem Cell Foundation Research Institute.

Follow this link:
NYSCF and Columbia researchers demonstrate use of stem cells to analyze causes, treatment of diabetes

Posted in Stem Cells | Comments Off on NYSCF and Columbia researchers demonstrate use of stem cells to analyze causes, treatment of diabetes

Researchers Demonstrate Use of Stem Cells to Analyze Causes and Treatment of Diabetes

Posted: June 17, 2013 at 4:47 pm

NYSCF AND COLUMBIA RESEARCHERS DEMONSTRATE USE OF STEM CELLS TO ANALYZE CAUSES AND TREATMENT OF DIABETES

Using patient-specific stem cells to correct deficient insulin-producing cells

Newswise NEW YORK, NY (June 17, 2013) A team from the New York Stem Cell Foundation (NYSCF) Research Institute and the Naomi Berrie Diabetes Center of Columbia University has generated patient-specific beta cells, or insulin-producing cells, that accurately reflect the features of maturity-onset diabetes of the young (MODY).

The researchers used skin cells of MODY patients to produce induced pluripotent stem (iPS) cells, from which they then made beta cells. Transplanted into a mouse, the stem cell-derived beta cells secreted insulin in a manner similar to that of the beta cells of MODY patients. Repair of the gene mutation restored insulin secretion to levels seen in cells obtained from healthy subjects. The findings were reported today in the Journal of Clinical Investigation.

Previous studies have demonstrated the ability of human embryonic stem cells and iPS cells to become beta cells that secrete insulin in response to glucose or other molecules. But the question remained as to whether stem cell-derived beta cells could accurately model genetic forms of diabetes and be used to develop and test potential therapies.

We focused on MODY, a form of diabetes that affects approximately one in 10,000 people. While patients and other models have yielded important clinical insights into this disease, we were particularly interested in its molecular aspectshow specific genes can affect responses to glucose by the beta cell, said co-senior author Dieter Egli, PhD, Senior Research Fellow at NYSCF, who was named a NYSCFRobertson Stem Cell Investigator in 2012.

MODY is a genetically inherited form of diabetes. The most common form of MODY, type 2, results in a loss-of-function mutation in one copy of the gene that codes for the sugar-processing enzyme glucokinase (GCK). With type 2 MODY, higher glucose levels are required for GCK to metabolize glucose, leading to chronic, mildly elevated blood sugar levels and increased risk of vascular complications.

MODY patients are frequently misdiagnosed with type 1 or 2 diabetes. Proper diagnosis can not only change the patients course of treatment but affect family members, who were previously unaware that they, too, might have this genetic disorder.

NYSCF scientists took skin cells from two Berrie Center type 2 MODY patients and reprogrammedor revertedthem to an embryonic-like state to become iPS cells. To examine the effect of the GCK genetic mutation, they also created two genetically manipulated iPS cell lines for comparison: one fully functional (two correct copies of the GCK gene) and one with complete loss of function (two faulty copies of the GCK gene). They then generated beta cell precursors from the fully functional and loss-of-function iPS cell lines and transplanted the cells for further maturation into immune-compromised mice.

Our ability to create insulin-producing cells from skin cells, and then to manipulate the GCK gene in these cells using recently developed molecular methods, made it possible to definitively test several critical aspects of the utility of stem cells for the study of human disease, said Haiqing Hua, PhD, lead author on the paper, a postdoctoral fellow in the Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center at Columbia University and the New York Stem Cell Foundation Research Institute.

Read more:
Researchers Demonstrate Use of Stem Cells to Analyze Causes and Treatment of Diabetes

Posted in Stem Cells | Comments Off on Researchers Demonstrate Use of Stem Cells to Analyze Causes and Treatment of Diabetes

Clinical Grade RetroNectin® Reagent Available To Support Gene Therapy Clinical Research

Posted: June 17, 2013 at 4:46 pm

MOUNTAIN VIEW, Calif., June 17, 2013 /PRNewswire/ --In an effort to aid progress in gene therapy clinical research, representatives of Clontech laboratories, Inc. and its parent company Takara Bio Inc. announce the availability of clinical grade RetroNectin reagent for direct supply to biomedical researchers.

RetroNectin reagent is designed to enable efficient retroviral transduction of genes into hematopoietic stem cells as well as lymphocytes and other blood cells. The RetroNectin method has been recognized as a standard gene transduction method in ex vivo gene therapy around the world. In addition, RetroNectin reagent has another remarkable feature that can also be useful for cell therapies: during the expansion culture of human T lymphocytes, RetroNectin reagent helps to increase proportion of nave T cells. This RetroNectin induced T cell method has already become available as a cancer therapy in three Japanese clinics under technical support from Takara Bio.

Takara Bio is the exclusive supplier of RetroNectin reagent, a recombinant human fibronectin fragment developed in 1995 by Takara Bio in collaboration with Indiana University. It has been used in 68 gene therapy clinical trials in 44 institutes and hospitals in 10 countries to date.

Previously, access to clinical-grade RetroNectin reagent required a Material Transfer Agreement (MTA) between a research institution and Takara Bio. Researchers may now submit direct orders to Clontech or local Takara Bio subsidiaries for RetroNectin (GMP), which is manufactured as a quality-assured product according to guidelines for Good Manufacturing Practice (GMP). The Drug Master File for RetroNectin (GMP) has been filed with the U.S. Food and Drug Administration. In a recent study published in Science Translational Medicine in March 2013, scientists at Memorial Sloan-Kettering Cancer Center reported an immunotherapy strategy for the treatment of five adult patients with acute lymphoblastic leukemia. Each patient's T cells were extracted, altered by introduction of DNA that would cause the cells to attack tumor cells, and infused back into the patient's bloodstream. According to researchers, all patients achieved tumor eradication and complete remission. RetroNectin reagent was used during T cell transduction.

Corresponding author Dr. Renier J. Brentjens said, "It was very clear to us even 10 years ago that the use of RetroNectin coated plates markedly, massively improved gene transfer." Dr. Brentjens continued, "The methodologies that many of us now use have been developed over a number of years. Once you have a system that works, you become very reliant and dependent on those reagents."

"RetroNectin reagent has become a standard reagent for many gene transfer protocols worldwide," said Carol Lou, General Manager of Clontech. "We are sure that such direct access to RetroNectin (GMP) without MTA execution will make this reagent available much more easily to any scientists or clinicians interested in RetroNectin clinical applications, which aligns with Takara Bio's mission of contributing to the health of mankind through gene therapy."

About Clontech Laboratories, Inc.Clontech Laboratories, Inc., a wholly-owned subsidiary of Takara Bio Inc., develops, manufactures, and distributes a wide range of life science research reagents under the Clontech and Takara brands. Key products include the Living Colors fluorescent proteins; high-performance qPCR and PCR reagents (including theTaKaRa Ex Taq,TaKaRa LA Taq, Titanium, and Advantage enzymes); RT enzymes and SMART library construction kits; the innovative In-Fusion cloning system; Tet-based inducible gene expression systems; and a range of Macherey-Nagel nucleic acid purification tools. These and other products support applications including gene discovery, regulation, and function; protein expression and purification; RNAi and stem cell studies; and plant and food research. For more information, visit http://www.clontech.com.

About Takara Bio Inc.Takara Bio Inc. is an innovative biotechnology company based in Shiga, Japan. As a world leader in biotechnology research and development, Takara Bio was the first company to market PCR technology in Japan and is also the developer of the RetroNectin reagent, which is used as a world-standard in gene therapy protocols. In addition to providing research reagents and equipment to the life science research market, Takara Bio has active research and product development activities in the fields of gene and cell-based therapy, and agricultural biotechnology; and is committed to preventing disease and improving the quality of life for all people through the use of biotechnology. Through strategic alliances with other industry leaders, the Company aims to extend its reach around the world. More information is available athttp://www.takara-bio.com.

For more information, contact:

Lorna Neilson, Ph.D. Director, Business Development Clontech Laboratories, Inc. A TakaraBio Company lorna_neilson@clontech.com (650) 919-7372

Read more from the original source:
Clinical Grade RetroNectin® Reagent Available To Support Gene Therapy Clinical Research

Posted in Gene therapy | Comments Off on Clinical Grade RetroNectin® Reagent Available To Support Gene Therapy Clinical Research

How to Use Stem Cells to Repair Knee Joints – Video

Posted: June 17, 2013 at 10:42 am


How to Use Stem Cells to Repair Knee Joints
Dr. Alex Martin discusses the use of stem cell therapy to repair damaged knee joints. For more info, please call (323) 285-5300 or email info@metromd.net or ...

By: MetroMD

Read the original:
How to Use Stem Cells to Repair Knee Joints - Video

Posted in Stem Cell Videos | Comments Off on How to Use Stem Cells to Repair Knee Joints – Video

Page 2,339«..1020..2,3382,3392,3402,341..2,3502,360..»