Page 2,613«..1020..2,6122,6132,6142,615..2,6202,630..»

Hormone-Producing Thyroid Grown from Embryonic Stem Cells

Posted: October 11, 2012 at 9:17 pm

The achievement is the latest success in the relatively new field of regenerative medicine

By Dan Jones and Nature magazine

WE CAN REBUILD HIM: Regenerative successes in mice are adding up. Image: Nature News

Showcasing more than fifty of the most provocative, original, and significant online essays from 2011, The Best Science Writing Online 2012 will change the way...

Read More

From Nature magazine

A series of achievements have stoked excitement about the potential of regenerative medicine, which aims to tackle diseases by replacing or regenerating damaged cells, tissues and organs. A paper in Nature today reports another step towards this goal: the generation of working thyroid cells from stem cells.

Sabine Costagliola, a molecular embryologist at the Free University of Brussels, and her team study the development of the thyroid gland, which regulates how the body uses energy and affects sensitivity to other hormones. Their research shows that thyroid function can be re-established even after the gland has been destroyed at least in mice. If the same technique could be applied to humans, it would help the roughly 1 in 3,000 babies born with deficient thyroid activity, or hypothyroidism, which can result in stunted physical and mental development.

The thyroid is the latest in a growing list of body parts that can now be fixed in mice, with the potential to treat diseases from diabetes to Parkinsons (see 'We can rebuild him'). Progress has been very rapid over the past decade, says Charles ffrench-Constant, director of the MRC Centre for Regenerative Medicine at the University of Edinburgh, UK. In recent years weve seen a number of very important studies in which mouse stem cells have been converted to a desired cell type that has then been shown to be functional in vivo, and to confer benefits in mouse models of human diseases.

Key ingredient Costagliola and her colleagues first genetically engineered embryonic stem cells to express two proteins NKX2-1 and PAX8 that are expressed together only in the thyroid. When these cells were grown in Petri dishes in the presence of thyroid-stimulating hormone, they turned into thyroid cells.

Read more here:
Hormone-Producing Thyroid Grown from Embryonic Stem Cells

Posted in Stem Cell Videos | Comments Off on Hormone-Producing Thyroid Grown from Embryonic Stem Cells

Stem Cells Safely Implanted in Brains of Boys with Neurological Disorder | 80beats

Posted: October 11, 2012 at 9:17 pm

An oligodendrocytethe type of cell that manufactures myelin.

At first, the infants seem to be progressing normally. But it soon turns out they may have vision or hearing problems, and when the time comes to lift their heads, the milestone comes and goes. It often gets worse from there. Children with the rare PelizaeusMerzbacher disease, like others who lack the usual insulating sheaths on their neurons, have trouble controlling their muscles, and often develop serious neurological and motor problems early in life. There is no cure for the genetic disorder. Nor is there a standardized treatment.

PMD, as its called, and related diseases are some of the leading candidates for potential treatment with stem cells. The idea is that if stem cells that produce the missing insulator, the fatty substance called myelin, can be successfully implanted in the brains of patients, perhaps they will pitch in what the patients native cells cannot.

This week saw two incremental but encouraging advances toward such treatments, both published inScience Translational Medicine.In one study, mice without the ability to make myelin were implanted with human neural stem cells that, within weeks, developed into myelin-making cells 60-70% of the time and produced the substance in the brain. In the other study, four young boys with early onset PMD underwent an experimental treatment: the same type of stem cells were implanted into their brains, and, after 9 months of drugs to surpress the childrens immune systems so the cells could take hold, MRI exams, psychological tests, and motor tests are consistent with more myelin having formed.

Since there was no control group in the human study, the scientists have no way of knowing whether the new myelin formation is actually due to the implanted cells (for that, they would need a group of boys who received every step of the treatment except getting the cells, to compare). And there are, of course, only four subjects. But the fact that there have been no major side effectsespecially tumors, which not unheard-of after stem cell treatmentsis in and of itself heartening. It indicates that future studies using these cells can tentatively proceed. Image courtesy of Methoxyroxy / Wikimedia Commons

Read the original post:
Stem Cells Safely Implanted in Brains of Boys with Neurological Disorder | 80beats

Posted in Stem Cell Videos | Comments Off on Stem Cells Safely Implanted in Brains of Boys with Neurological Disorder | 80beats

Stem Cells Show Early Promise for Rare Brain Disorder

Posted: October 11, 2012 at 9:17 pm

By Emily Underwood, ScienceNOW

Four young boys with a rare, fatal brain condition have made it through a dangerous ordeal. Scientists have safely transplanted human neural stem cells into their brains. Twelve months after the surgeries, the boys have more myelin a fatty insulating protein that coats nerve fibers and speeds up electric signals between neurons and show improved brain function, a new study in Science Translational Medicine reports. The preliminary trial paves the way for future research into potential stem cell treatments for the disorder, which overlaps with more common diseases such as Parkinsons disease and multiple sclerosis.

This is very exciting, says Douglas Fields, a neuroscientist at the National Institutes of Health in Bethesda, Maryland, who was not involved in the work. From these early studies one sees the promise of cell transplant therapy in overcoming disease and relieving suffering.

Without myelin, electrical impulses traveling along nerve fibers in the brain cant travel from neuron to neuron says Nalin Gupta, lead author of the study and a neurosurgeon at the University of California, San Francisco (UCSF). Signals in the brain become scattered and disorganized, he says, comparing them to a pile of lumber. You wouldnt expect lumber to assemble itself into a house, he notes, yet neurons in a newborn babys brain perform a similar feat with the help of myelin-producing cells called oligodendrocytes. Most infants are born with very little myelin and develop it over time. In children with early-onset Pelizaeus-Merzbacher disease, he says, a genetic mutation prevents oligodendrocytes from producing myelin, causing electrical signals to die out before they reach their destinations. This results in serious developmental setbacks, such as the inability to talk, walk, or breathe independently, and ultimately causes premature death.

Although researchers have long dreamed of implanting human neural stem cells to generate healthy oligodendrocytes and replace myelin, it has taken years of research in animals to develop a stem cell that can do the job, says Stephen Huhn, vice president of Newark, California-based StemCells Inc., the biotechnology company that created the cells used in the study and that funded the research. However, he says, a separate study by researchers at Oregon Health & Science University, Portland, found that the StemCell Inc. cells specialized into oligodendrocytes 60 percent to 70 percent of the time in mice, producing myelin and improved survival rates in myelin-deficient animals. So the team was able to test the cells safety and efficacy in the boys.

Led by Gupta, the researchers drilled four small holes in each childs skull and then used a fine needle to insert millions of stem cells into white matter deep in their frontal lobes. The scientists administered a drug that suppressed the boys immune systems for 9 months to keep them from rejecting the cells and checked their progress with magnetic resonance imaging and a variety of psychological and motor tests. After a year, each of the boys showed brain changes consistent with increased myelination and no serious side effects such as tumors, says David Rowitch, one of the neuroscientists on the UCSF team. In addition, three of the four boys showed modest improvements in their development. For example, the 5-year-old boy the oldest child in the study had begun for the first time to feed himself and walk with minimal assistance.

Although these signs are encouraging, Gupta and Rowitch say, a cure for Pelizaeus-Merzbacher disease is not near. Animal studies strongly support the idea that the stem cells are producing myelin-making oligodendrocytes in the boys, but its possible that the myelination didnt result from the transplant but from a bout of normal growth. Rowitch adds that although such behavioral improvements are unusual for the disease, they could be a fluke. Huhn acknowledges that the study is small and has no control, but hes is still excited. We are for the first time seeing a biological effect of a neural stem cells transplantation into the brain [in humans]. The most important thing, he says, is that the transplants appear safe. This gives the researchers a green light to pursue larger, controlled studies, he says.

It isnt the flashiest thing, but demonstrating that its feasible to transplant these stem cells into childrens brains without negative consequences at least so far is extremely hopeful, says Timothy Kennedy, a neuroscientist at McGill University in Montreal, Canada.

Although hes concerned that myelination seen in mouse models might not scale up to a disease as severe as Pelizaeus-Merzbacher in humans, Ian Duncan, a neuroscientist at the University of Wisconsin, Madison, describes the study as setting a precedent for translating animal research in stem cells to humans. If you could improve quality of life by targeting key areas of the brain with these cells, he says, that would be a huge advance.

See more here:
Stem Cells Show Early Promise for Rare Brain Disorder

Posted in Stem Cell Videos | Comments Off on Stem Cells Show Early Promise for Rare Brain Disorder

Blue Spa and Lifeline® Stem Cell Skin Care Pair up to Promote a Beauty Breakthrough and Scientific Approach to Anti …

Posted: October 11, 2012 at 9:17 pm

Skin care meets science for stem cell education and product introduction to the only human and non-embryonic stem cell skincare line of its kind on October 25th, 2012.

Los Angeles, CA (PRWEB) October 08, 2012

Lifeline Skin Care products feature a unique combination of stem cell extracts, vitamins A, B, E, and antioxidants that work synergistically to create new healthy cells. To date, Lifeline is the only skin care line based on human non-embryonic stem cells, which give skin cells the ability to continually proliferate. The result is firmer, smoother, younger and healthier looking skin. Lifeline Skin Care is based on a patented method for ethically extracting growth factors and peptides from young, human stem cells through the use of non-fertilized eggs and never embryos. Stem cell extracts help to increase skins overall thickness, making skin less vulnerable to premature aging.

Independent clinical studies have proven 73% firmer, tighter skin, 93% improved skin hydration, 63% improved skin tone and brightness, and 67% improved appearance of lines and wrinkles with topical use. With benefits boasting similar to those of collagen injections, Lifeline Skin Care offers a collection of formulas for day and night use. Both the Defensive Day Moisturizer Serum SPF 15 and Recovery Night Moisture Serum feature unique combinations of stem cell extract, vitamins A, B, E, and antioxidants.

Stimulating the skins ability to repair itself, these products along with Blue Spa professional procedures and treatments, make a win-win combination for beauty enthusiasts wanting to achieve optimal skincare results. Owner of Blue Spa, Ronda Nofal, recently stated, We are very pleased to be the first Medi Spa in Los Angeles to offer Lifeline@ Skin Care technology to clients. The science and technology behind this product line is far beyond anything else on the market and the results speak for themselves. Our staff has been using these products for the last two months and they have noticed theyre the perfect compliment to any of our facial laser services: IPL (FotoFacial), Laser Genesis, and Titan Skin Tightening. The skin reacts beautifully when paired with dermal fillers, Vitalize Peels, and Micro-dermabrasion as well.

Members of the press and media are invited for early entry on Thursday, October 25th, 2012 between 1-4 pm for Q& A with Lifeline Skin Care expert, Linda Nelson. Additional hours have been arranged for Friday, October 26th, 2012 from 10 am-12 pm. Please directly contact Blue Spa and Lifeline Skin Cares publicity team at Jade Umbrella, to schedule interviews.

About Blue Spa: Opened in October 1999 and former home to the infamous La Reina Theater, Blue Medi Spa is modern luxury spa combining beauty, science, service, and style. Staying ahead of beauty trends and the most effective treatments, highly trained specialists have the knowledge and a decade of experience in lasers (IPL/ Titan/ Laser Genesis/ Zerona), anti-aging skin cocktails, weight loss, non-invasive body contouring, and one-step-ahead aesthetic options. Where feeling blue, never felt better

Website: http://www.bluespa.com.

About Lifeline Skin Care: Developed in 2010 by the International Stem Cell Corporation (http://www.internationalstemcell.com/), while researching cures for diabetes and Parkinsons Disease, a team of biotech scientists discovered a powerful compound for regenerating skin cells. Lifeline Skin Cares goal is to help improve the look and feel of you skin by combining the latest discoveries in the fields of stem cell biology, nanotechnology and skin cream formulation technology to create the highest quality, scientifically tested, and most effective anti-aging products. Revenue helps to fund further research into finding cures and treatments for Diabetes, Parkinsons, Liver, Eye, and other neurological diseases.

Website: http://www.lifelineskincare.com

The rest is here:
Blue Spa and Lifeline® Stem Cell Skin Care Pair up to Promote a Beauty Breakthrough and Scientific Approach to Anti ...

Posted in Stem Cell Treatments | Comments Off on Blue Spa and Lifeline® Stem Cell Skin Care Pair up to Promote a Beauty Breakthrough and Scientific Approach to Anti …

RBCC: Nobel Prize Could Bring Big Investments in Stem Cell Research

Posted: October 11, 2012 at 9:17 pm

NOKOMIS, Fla.--(BUSINESS WIRE)--

The awarding of the Nobel Prize this week to two scientists who have revolutionized stem cell research could lead to an influx of investment capital into the industry, said Rainbow Coral Corp. (RBCC) CEO Patrick Brown on Wednesday.

Japans Shinya Yamanaka and Britain's John Gurdon were jointly awarded the medicine prize for proving that adult cells can be regressed back into stem cells, creating cells known as induced pluripotent stem cells (iPS) that allow for stem-cell research that doesnt necessitate the destruction of a fetus.

The tremendous recognition of this groundbreaking research that the Nobel Prize brings could spark a host of medical breakthroughs, investment interest and business developments in the stem cell field, Brown said. Its a very exciting time to be part of a young company striving to grow alongside this explosive industry.

Wire service AFP reported this week that Yamanaka will likely get up to 30 billion yen ($383 million) for his stem cell research over the next decade. RBCC is currently working to help speed up the research of Yamanaka and others into potential cures for deadly diseases by commercializing the use of a groundbreaking new technology in select markets around the world. The company has engaged Regenetech in discussions regarding the potential acquisition of a license to perform cell expansion using that companys Rotary Cell Culture SystemTM.

RBCC plans to offer the new technology to help kickstart billions of dollars worth of research in an industry currently dominated by Amgen, Inc. (AMGN), Celgene Corporation (CELG), Genzyme Corp. (NASDAQ:GENZ) and Gilead Sciences Inc. (GILD).

For more information on Rainbow BioSciences, please visit http://www.rainbowbiosciences.com/investors.html.

About Rainbow BioSciences

Rainbow BioSciences, LLC, is a wholly owned subsidiary of Rainbow Coral Corp. (OTCBB:RBCC). The company continually seeks out new partnerships with biotechnology developers to deliver profitable new medical technologies and innovations. For more information on our growth-oriented business initiatives, please visit our website at [http://www.RainbowBioSciences.com]. For investment information and performance data on the company, please visit http://www.RainbowBioSciences.com/investors.html.

Notice Regarding Forward-Looking Statements

The rest is here:
RBCC: Nobel Prize Could Bring Big Investments in Stem Cell Research

Posted in Stem Cell Research | Comments Off on RBCC: Nobel Prize Could Bring Big Investments in Stem Cell Research

Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

Posted: October 11, 2012 at 9:17 pm

Public release date: 11-Oct-2012 [ | E-mail | Share ]

Contact: David McKeon dmckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (October 11, 2012) For the second day, The New York Stem Cell Foundation (NYSCF) Seventh Annual Translational Stem Cell Research Conference hosts the world's most preeminent stem cell scientists to present their findings on how advances in stem cell science lead to better treatments and cures for disease and injury. The conference is held at The Rockefeller University in Manhattan on October 10-11.

Today, in disease-specific sessions, scientists will share their latest finds in moving stem cell research to treatments in the following areas: cancer and blood disease; diabetes and autoimmunity; heart and muscles; neurodegeneration and spinal cord injury.

In Cancer and Blood Disease, Elaine Fuchs, PhD, The Rockefeller University, will share findings on identification of skin cancer stem cells, which have implications in understanding other cancers as well as stem cells. Joanne Kurtzberg, MD, Duke University, will discuss her work developing therapies for disease with autologous cord blood transplants. Ravi Majeti, PhD, Stanford University, will describe his recent insights into acute myeloid leukemia and how stem cell technologies can lead to new cancer treatments.

Dieter Egli, PhD, The New York Stem Cell Foundation (NYSCF), will open the session on Diabetes and Autoimmunity by detailing his group's development of stem cell-derived models of pancreatic beta cells for the study of diabetes. Yuval Dor, PhD, Hebrew University, Israel, will discuss experiments with pancreatic beta cells with the goal to understand the regenerative potential of these cells. Matthias von Herrath, MD, Novo Nordisk, will delve into another aspect of Type 1 diabetes, the problem of autoimmunity. He will close the session by sharing insights into the need for an immune modulated therapy to diabetes.

Before the afternoon sessions, Shahin Rafii, MD, Weill Medical College of Cornell University will deliver the first of two keynote addresses of the conference. He will describe his recent successes in deriving vascular cells from amniotic cells.

In the afternoon session on Heart and Muscle Diseases, Amy Wagers, PhD, Harvard University, will focus on advances in treatments and explain how studies into the mechanisms of tissue stem cell renewal may have relevant therapeutic implications. Gordon Keller, PhD, McEwen Centre for Regenerative Medicine, Canada, will describe modeling cardiac cell development from human pluripotent cells for use in toxicology and electrophysiology studies. Helen Blau, PhD, Stanford University, will describe her research to improve stem cell culture in the direction of stem cell fate and for drug screens.

In Neurodegeneration and Spinal Cord Injury, Paola Arlotta, PhD, Harvard University and a NYSCF-Robertson Stem Cell Investigator, will address the application of stem cells to understanding and possibly treating these debilitating diseases and conditions, and will describe investigations to direct reprogramming of neurons into different neuronal lineages. Lorenz Studer, MD, Memorial Sloan-Kettering Cancer Center, will discuss the potential stem cell technology holds in the treatment of Parkinson's disease. Despite past failures in the replacement of lost dopamine neurons, Dr. Studer will describe his novel protocols for the generation of these neurons for eventual use in clinical trials.

Rudolf Jaenisch, MD, The Whitehead Institute, will deliver the second keynote address of the day. Building on Shinya Yamanaka's paradigm-changing work in induced pluripotent stem (iPS) cell reprogramming, Dr. Jaenisch will discuss new methods to counter the generally low successful output of these cells. He will also summarize how targeted genome editing may help unleash the potential of iPS cells and embryonic stem cells for both the study of and therapy for disease.

Read more:
Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

Posted in Stem Cell Research | Comments Off on Scientists discuss stem cell discoveries at New York Stem Cell Foundation Conference

Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough

Posted: October 11, 2012 at 2:20 pm

NEW YORK, NY--(Marketwire - Oct 11, 2012) - Immunovative, Inc. ("IMUN" or the "Company") ( OTCBB : IMUN ) has today announced that Immunovative Therapies, Ltd. ("ITL") has been granted a U.S. Patent entitled "METHOD FOR ALLOGENEIC CELL THERAPY," which was issued September 25, 2012, under Patent No. 8,273,377. Foreign versions of this patent are pending around the world. This patent covers the proprietary method that utilizes immune cells from a normal donor to elicit an anti-tumor mechanism that mimics the Graft vs. Tumor (GVT) effect of non-myeloablative allogeneic stem cell transplants ("Mini-Transplant") without the toxicity of Graft vs. Host Disease (GVHD). Harnessing the power of the immune system to treat cancer and infectious disease has long been the goal of physicians and scientists. Unfortunately, cancer vaccines and cell immunotherapy methods have had difficulties in translating the promise of immune control into effect treatments. The most effective anti-cancer mechanism ever discovered is the GVT immune response that occurs after Mini-Transplant procedures. This mechanism can completely destroy chemotherapy-resistant metastatic cancers. Unfortunately, the clinical use of the GVT effect is severely limited due to extreme toxicity of an intimately related GVHD effect. Mini-Transplants are thus only widely used in advanced cases of leukemia, even though the GVT effect has been shown capable of killing many types of solid tumors. The separation of the beneficial GVT effect from the devastating GVHD toxicity has long been the goal of stem cell transplant scientists and is the subject of extensive research around the world.

ITL is believed to be the first to develop an immunotherapy drug product (AlloStim) which enables the harnessing of the power of the GVT mechanism without GVHD side effects. ITL calls the mechanism which enables immune-mediated tumor destruction without GVHD toxicity the "Mirror Effect." The "Mirror Effect" mechanism represents a major breakthrough for treatment of cancer and infectious disease. Early human clinical trials have produced evidence of this technology's capability to stimulate the immune systems of heavily pre-treated metastatic cancer patients to kill widely disseminated metastatic cancers. A potentially pivotal, double-blind, placebo-controlled Phase II/III clinical trial in metastatic breast cancer is being prepared to document these effects in a controlled setting and determine if the immune-mediated tumor debulking provides patients with a survival advantage. This issued US Patent covers the use of intentionally mismatched, activated immune cells for treatment of cancer and infectious diseases. The patent discloses the concepts and methods related to ITL's proprietary "Mirror Effect" technology and describes its lead immunotherapy drug candidate "AlloStim." This patent also describes how AlloStim eliminates the need for a matched tissue donor and chemotherapy pre-conditioning for patients that require a bone marrow or stem cell transplant.

The newly issued patent is part of an intellectual property portfolio from ITL that includes 11 issued patents and numerous patent applications, to which IMUN has exclusive rights in the US and the rest of the world. The licensed patents cover compositions, methods of production, formulation, distribution and uses for treatment of all types of cancer and infectious diseases.

Seth M. Shaw, CEO of IMUN, stated: "The separation of the beneficial GVT effect from the devastating GVHD toxicity has been called the 'Holy Grail' of transplant research. ITL is the first to accomplish this significant scientific milestone. We are confident that ITL's extensive Intellectual Property ("IP") portfolio will provide our products with long-term market exclusivity. This patent is an important component of our growing IP estate, as the allowed claim language is very broad. We are now the exclusive allogeneic cell therapy company in the world. Our strong patent portfolio will now allow us to pursue opportunities for partnering and sub-licensing by indication and territory around the world."

Dr. Michael Har-Noy, CEO, founder of ITL and inventor of the "Mirror Effect" technology stated: "Our patent portfolio is a valuable asset as it not only protects our AlloStim and AlloVax product candidates, but also provides protection of the unique mechanism of action that enables these products to have such powerful potential to debulk treatment-resistant metastatic disease. We are continuing to invest in research activities to improve our current product candidates and develop new products and further expand our patent portfolio. With protection of the novel mechanism of action, ITL and IMUN have the basis for development of a new industry based on powerful, non-toxic immunotherapy products that can work where all current treatment options have failed."

About Immunovative, Inc.: On December 12th, 2011, Immunovative, Inc. ("IMUN") signed an exclusive License Agreement (the "License Agreement") with Immunovative Therapies, Ltd. ("ITL"). Under the terms of the License Agreement, IMUN has been granted an exclusive, worldwide license to commercialize any products covered under ITL's current issued and pending patent application portfolio, as well as the rights to any future patent applications, including improvements or modifications to the existing applications and any corresponding improvements or new versions of the existing products. Please visit IMUN's website at http://www.imun.com.

About Immunovative Therapies, Ltd.:

Immunovative Therapies, Ltd. is an Israeli biopharmaceutical company that was founded in May 2004 with financial support from the Israeli Office of the Chief Scientist. ITL is a graduate of the Misgav Venture Accelerator, a member of the world-renowned Israeli technological incubator program. The company was the Misgav Venture Accelerator's candidate for the prize for the outstanding incubator project of 2006, awarded by the Office of the Chief Scientist. ITL specializes in the development of novel immunotherapy drug products that incorporate living immune cells as the active ingredients for treatment of cancer and infectious disease. Please visit ITL's website at: http://www.immunovative.co.il

DISCLAIMER: Forward-Looking Statements: Except for statements of historical fact, this news release contains certain "forward-looking statements" as defined by the Private Securities Litigation Reform Act of 1995, including, without limitation, expectations, beliefs, plans and objectives regarding the development, use and marketability of products. Such forward-looking statements are based on present circumstances and on IMUN's predictions with respect to events that have not occurred, that may not occur, or that may occur with different consequences and timing than those now assumed or anticipated. Such forward-looking statements involve known and unknown risks, uncertainties and other factors, and are not guarantees of future performance or results and involve risks and uncertainties that could cause actual events or results to differ materially from the events or results expressed or implied by such forward-looking statements. Such factors include general economic and business conditions, the ability to successfully develop and market products, consumer and business consumption habits, the ability to fund operations and other factors over which IMUN has little or no control. Such forward-looking statements are made only as of the date of this release, and IMUN assumes no obligation to update forward-looking statements to reflect subsequent events or circumstances. Readers should not place undue reliance on these forward-looking statements. Risks, uncertainties and other factors are discussed in documents filed from time to time by IMUN with the Securities and Exchange Commission.

Continued here:
Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough

Posted in Cell Therapy | Comments Off on Immunovative, Inc. Announces Issuance of U.S. Patent on Key Scientific Breakthrough

Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

Posted: October 11, 2012 at 2:19 pm

Stem cell transfusions may someday replace the need for transplants in patients who suffer from liver failure caused by hepatitis B, according to a new study coming out of Beijing. . The results are published in the October issue of STEM CELLS Translational Medicine. Worldwide more than 500,000 people die each year from this condition.

Durham, NC (PRWEB) October 11, 2012

In China, hepatitis B virus (HBV) infection accounts for the highest proportion of liver failure cases. While liver transplantation is considered the standard treatment, it has several drawbacks including a limited number of donors, long waiting lists, high cost and multiple complications. Our study shows that mesenchymal stem cell (MSCs) transfusions might be a good, safe alternative, said Fu-Sheng Wang, Ph.D., M.D., the studys lead author and director of the Research Center for Biological Therapy (RCBT) in Beijing.

Wang along with RCBT colleague, Drs. Ming Shi and Zheng Zhang of the Research Center for Biological Therapy, The Institute of Translational Hepatology led the group of physician-scientists from the centers and Beijing 302 Hospital who conducted the study.

MSC transfusions had already been shown to improve liver function in patients with end-stage liver diseases. This time, the researchers wanted to gauge the safety and initial efficacy of treating acute-on-chronic liver failure (ACLF) with MSCs. The American Association for the Study of Liver Diseases and the European Association for the Study of the Liver define ACLF as an acute deterioration of pre-existing chronic liver disease usually related to a precipitating event and associated with increased mortality at three months due to multisystem organ failure. The short-term mortality rate for this condition is more than 50 percent.

MSCs have self-renewing abilities and the potential to differentiate into various types of cells. More importantly, they can interact with immune cells and cause the immune system to adjust to the desired level.

Of the 43 patients in this pilot study each of whom had liver failure resulting from chronic HBV infection 24 were treated with MSCs taken from donated umbilical cords and 19 were treated with saline as the control group. All received conventional therapy as well. The liver function, adverse events and survival rates were then evaluated during the 48-week or 72-week follow-up period.

Along with increased survival rates, the patients liver function improved and platelet count increased. No significant side effects were observed throughout the treatment and follow-up period.

While the results are preliminary and this pilot study includes a small number of patients, MSC transfusions appear to be safe and may serve as a novel therapeutic approach for HBV-associated ACLF patients, Dr. Shi said.

The study also highlights several key issues that will need to be considered in the design of future clinical studies, such as the optimal type of stem cells that will be infused, the minimum effective number of the cells and the best route of administration, Dr. Wang added.

Read more here:
Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

Posted in Stem Cells | Comments Off on Early Results Show Promise for Stem Cells in Treating Chronic Liver Failure

10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand

Posted: October 11, 2012 at 2:19 pm

10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand by Pino Cazzaniga Research on iPS (induced pluripotent stem cells) can produce stem cells from adult cells, for use in regenerative medicine. Shinya Yamanakas discovery reveals that research on embryonic stem cells is unnecessary, saving the lives of many embryos. The Japanese researcher has searched for new ways driven by ethical question.

Tokyo (AsiaNews) - Shinya Yamanaka, fresh from the Nobel Prize for medicine, states that science and ethics must go hand in hand. Interviewed by the Mainichi Shimbun after the award, he said: "I would like to invite ethical experts as teachers at my laboratory and work to guide iPS [induced pluripotent stem] cell research from that direction as well. The work of a scientific researcher is just one part of the equation. "

Yamanaka, 50, found that adult cells can be transformed into cells in their infancy, stem cells (iPS), which are, so to speak, the raw material for the reconstruction of tissue irreparably damaged by disease. For regenerative medicine the implications of Yamanaka's discovery are obvious. Adult skin cells can for example be reprogrammed and transformed into any other cell that is desired: from the skin to the brain, from the skin to the heart, from the skin to elements that produce insulin.

"Their discovery - says the statement of the jury that awarded him the Nobel Prize on October 8 - has revolutionized our understanding of how cells and organisms develop. Through the programming of human cells, scientists have created new opportunities for the study of diseases and development of methods for the diagnosis and therapy ".

These "opportunities" are not only "scientific", but also "ethical". Much of the scientific research and global investment is in fact launched to design and produce stem cells from embryos, arriving at the point of manipulating and destroying them, facing scientists with enormous ethical problems.

" Ethics are really difficult - Yamanaka explainsto Mainichi - In the United States I began work on mouse experiments, and when I returned to Japan I learned that human embryonic stem cells had been created. I was happy that they would contribute to medical science, but I faced an ethical issue. I started iPS cell research as a way to do good things as a researcher, and I wanted to do what I could to expand the merits of embryonic stem cells. If we make sperm or eggs from iPS cells, however, it leads to the creation of new life, so the work I did on iPS cells led to an ethical problem. If we don't prepare debates for ethical problems in advance, technology will proceed ahead faster than we think.. "

The "ethical question" Yamanaka pushed to find a way to "not keep destroying embryos for our research."

Speaking with his co-workers at the University of Kyoto, immediately after receiving the award, Yamanaka showed dedication and modesty.

"Now - he said - I strongly feel a sense of gratitude and responsibility" gratitude for family and friends who have supported him in a demanding journey of discovery that lasted decades; responsibility for a discovery that gives hope to millions of patients. Now iPS cells can grow into any tissue of the human body allowing regeneration of parts so far irretrievably lost due to illness.

Read the original here:
10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand

Posted in Stem Cells | Comments Off on 10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand

Stem Cells Show Early Promise for Rare Brain Disorder

Posted: October 11, 2012 at 2:19 pm

By Emily Underwood, ScienceNOW

Four young boys with a rare, fatal brain condition have made it through a dangerous ordeal. Scientists have safely transplanted human neural stem cells into their brains. Twelve months after the surgeries, the boys have more myelina fatty insulating protein that coats nerve fibers and speeds up electric signals between neuronsand show improved brain function, a new study in Science Translational Medicine reports. The preliminary trial paves the way for future research into potential stem cell treatments for the disorder, which overlaps with more common diseases such as Parkinsons disease and multiple sclerosis.

This is very exciting, says Douglas Fields, a neuroscientist at the National Institutes of Health in Bethesda, Maryland, who was not involved in the work. From these early studies one sees the promise of cell transplant therapy in overcoming disease and relieving suffering.

Without myelin, electrical impulses traveling along nerve fibers in the brain cant travel from neuron to neuron says Nalin Gupta, lead author of the study and a neurosurgeon at the University of California, San Francisco (UCSF). Signals in the brain become scattered and disorganized, he says, comparing them to a pile of lumber. You wouldnt expect lumber to assemble itself into a house, he notes, yet neurons in a newborn babys brain perform a similar feat with the help of myelin-producing cells called oligodendrocytes. Most infants are born with very little myelin and develop it over time. In children with early-onset Pelizaeus-Merzbacher disease, he says, a genetic mutation prevents oligodendrocytes from producing myelin, causing electrical signals to die out before they reach their destinations. This results in serious developmental setbacks, such as the inability to talk, walk, or breathe independently, and ultimately causes premature death.

Although researchers have long dreamed of implanting human neural stem cells to generate healthy oligodendrocytes and replace myelin, it has taken years of research in animals to develop a stem cell that can do the job, says Stephen Huhn, vice president of Newark, California-based StemCells Inc., the biotechnology company that created the cells used in the study and that funded the research. However, he says, a separate study by researchers at Oregon Health & Science University, Portland, found that the StemCell Inc. cells specialized into oligodendrocytes 60% to 70% of the time in mice, producing myelin and improved survival rates in myelin-deficient animals. So the team was able to test the cells safety and efficacy in the boys.

Led by Gupta, the researchers drilled four small holes in each childs skull and then used a fine needle to insert millions of stem cells into white matter deep in their frontal lobes. The scientists administered a drug that suppressed the boys immune systems for 9 months to keep them from rejecting the cells and checked their progress with magnetic resonance imaging and a variety of psychological and motor tests. After a year, each of the boys showed brain changes consistent with increased myelination and no serious side effects such as tumors, says David Rowitch, one of the neuroscientists on the UCSF team. In addition, three of the four boys showed modest improvements in their development. For example, the 5-year-old boythe oldest child in the studyhad begun for the first time to feed himself and walk with minimal assistance.

Although these signs are encouraging, Gupta and Rowitch say, a cure for Pelizaeus-Merzbacher disease is not near. Animal studies strongly support the idea that the stem cells are producing myelin-making oligodendrocytes in the boys, but its possible that the myelination didnt result from the transplant but from a bout of normal growth. Rowitch adds that although such behavioral improvements are unusual for the disease, they could be a fluke. Huhn acknowledges that the study is small and has no control, but hes is still excited. We are for the first time seeing a biological effect of a neural stem cells transplantation into the brain [in humans]. The most important thing, he says, is that the transplants appear safe. This gives the researchers a green light to pursue larger, controlled studies, he says.

It isnt the flashiest thing, but demonstrating that its feasible to transplant these stem cells into childrens brains without negative consequencesat least so faris extremely hopeful, says Timothy Kennedy, a neuroscientist at McGill University in Montreal, Canada.

Although hes concerned that myelination seen in mouse models might not scale up to a disease as severe as Pelizaeus-Merzbacher in humans, Ian Duncan, a neuroscientist at the University of Wisconsin, Madison, describes the study as setting a precedent for translating animal research in stem cells to humans. If you could improve quality of life by targeting key areas of the brain with these cells, he says, that would be a huge advance.

Continue reading here:
Stem Cells Show Early Promise for Rare Brain Disorder

Posted in Stem Cells | Comments Off on Stem Cells Show Early Promise for Rare Brain Disorder

Page 2,613«..1020..2,6122,6132,6142,615..2,6202,630..»