Page 2,624«..1020..2,6232,6242,6252,626..2,6302,640..»

Stem cell researchers win Nobel medicine prize

Posted: October 8, 2012 at 3:14 pm

British researcher John Gurdon and Shinya Yamanaka of Japan won this years Nobel Prize in medicine on Monday for the discovery that mature, specialised cells of the body can be reprogrammed into blank slates that can become any kind of cell.

The prize committee at Stockholms Karonlinska institute said the discovery has revolutionised our understanding of how cells and organisms develop.

The discoveries of Gurdon and Yamanaka have shown that specialised cells can turn back the developmental clock under certain circumstances, the committee said. These discoveries have also provided new tools for scientists around the world and led to remarkable progress in many areas of medicine.

Recent winners of Nobel Prize in Medicine

The medicine award was the first Nobel Prize to be announced this year. The physics award will be announced on Tuesday, followed by Chemistry on Wednesday, literature on Thursday and the Nobel Peace Prize on Friday.

The economics prize, which was not among the original awards, but was established by the Swedish central bank in 1968, will be announced on Oct. 15. All prizes will be handed out on Dec. 10, the anniversary of prize founder Alfred Nobels death in 1896.

The rest is here:
Stem cell researchers win Nobel medicine prize

Posted in Cell Medicine | Comments Off on Stem cell researchers win Nobel medicine prize

Nobel Prize for medicine awarded to Gurdon, Yamanaka for stem cell discoveries

Posted: October 8, 2012 at 3:14 pm

British scientist John Gurdon and Japanese researcher Shinya Yamanaka shared the 2012 Nobel Prize in physiology or medicine Monday for experiments separated by almost 50 years that provide deep insight into how animals develop and offer hope for a new era of personalized medicine.

Their findings have revolutionized our understanding of how cells and organisms develop, the Nobel committee said in the prize announcement.

In 1962, Gurdon wowed the world of biology by cloning a frog via a clever technique. He transplanted the genetic material from an intestinal cell of one frog into the fertilized egg cell from another. The egg developed into a tadpole, proving that all of the genetic instructions needed to turn an embryo into an adult exist even in so-called adult cells of the body the specialized cells that make up skin, muscle, nerves and other tissues.

In 2006 and 2007, Yamanaka extended that insight by turning back time on individual cells from both mice and humans. By sprinkling four genes on ordinary skin cells, Yamanaka discovered a virtual fountain of youth for cells: Any type of cell, he found, could be reverted to a young, embryonic state. These induced embryonic cells behave much like the ethically contentious stem cells gleaned from human embryos. They can be grown into many other types of tissues but without having to destroy any embryos.

The breakthrough offered hope that someday, skin cells could be harvested from a patient, sent back in time to an embryonic state, and then grown into replacement tissues such as heart muscle or nerve cells.

Yamanakas breakthrough has spawned a huge research global effort to turn these induced pluripotent stem cells, as theyre called, into therapies tailored to individual patients for a wide range of ailments, including heart disease, some forms of blindness, Parkinsons disease and many other disorders.

The first human trials of such therapies could begin next year, Yamanaka told the journal Nature earlier this year. He said eye diseases present an attractive target for the first tests.

On Monday, Yamanaka credited his co-laureate for making his advances possible. This field has a long history starting with John Gurdon, he said in a brief telephone interview posted on the Nobel Prize Web site. Yamanaka noted he was born in 1962 the year Gurdon published his pivotal frog experiments.

A surgeon by training, Yamanaka, who splits his time between Japans Kyoto University and the University of California, San Francisco, said treating patients has always been his aim. My goal all my life is to bring this stem cell technology to the bedside, to patients.

But the therapeutic potential of induced stem cells remains in question. Some experiments show the cells may form tumors, prompting skepticism that they will ever be safe enough to treat heart disease, Parkinsons disease and many other conditions where specific cells of the body break down.

Originally posted here:
Nobel Prize for medicine awarded to Gurdon, Yamanaka for stem cell discoveries

Posted in Cell Medicine | Comments Off on Nobel Prize for medicine awarded to Gurdon, Yamanaka for stem cell discoveries

Nobel Prize In Medicine Awarded To Stem Cell Researchers

Posted: October 8, 2012 at 3:14 pm

The Nobel Prize in Medicine or Physiology for 2012 was awarded jointly to British scientist John B. Gurdon and Japanese scientist Shinya Yamanaka for their work in stem cell research, the Karolinska Institute in Stockholm announced Monday.

The announcement opens the prestigious award season for this year while the speculation over literature and peace prizes is rife.

"These groundbreaking discoveries have completely changed our view of the development and specialization of cells," the Nobel Assembly at Sweden's Karolinska Institute said in a statement on its website.

We now understand that the mature cell does not have to be confined forever to its specialized state. Textbooks have been rewritten and new research fields have been established. By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy," the statement said.

Gurdon discovered in 1962 that the specialization of cells is reversible. Yamanaka discovered more than 40 years later in 2006 how the intact mature cells in mice could be reprogrammed to become immature stem cells. These groundbreaking discoveries have completely changed our view of the development and cellular specialization, the institute has said.

Gurdon was born in 1933 in Dippenhall, the U.K, and received his Doctorate from the University of Oxford in 1960 and was a postdoctoral fellow at the California Institute of Technology. Gurdon is currently at the Gurdon Institute in Cambridge.

Yamanaka was born in Osaka, Japan, in 1962 and received his MD in 1987 at Kobe University and was trained as an orthopedic surgeon. Yamanaka obtained his PhD at Osaka University in 1993. Yamanaka is currently Professor at Kyoto University and is also affiliated to the Gladstone Institute.

View post:
Nobel Prize In Medicine Awarded To Stem Cell Researchers

Posted in Cell Medicine | Comments Off on Nobel Prize In Medicine Awarded To Stem Cell Researchers

Stem cell experts win Nobel prize

Posted: October 8, 2012 at 3:14 pm

8 October 2012 Last updated at 09:58 ET By James Gallagher Health and science reporter, BBC News

Two pioneers of stem cell research have shared the Nobel prize for medicine or physiology.

John Gurdon from the UK and Shinya Yamanaka from Japan were awarded the prize for changing adult cells into stem cells, which can become any other type of cell in the body.

Prof Gurdon used a gut sample to clone frogs and Prof Yamanaka altered genes to reprogramme cells.

The Nobel committee said they had "revolutionised" science.

The prize is in stark contrast to Prof Gurdon's first foray into science when his biology teacher described his scientific ambitions as "a waste of time".

When a sperm fertilises an egg there is just one type of cell. It multiplies and some of the resulting cells become specialised to create all the tissues of the body including nerve and bone and skin.

It had been though to be a one-way process - once a cell had become specialised it could not change its fate.

In 1962, John Gurdon showed that the genetic information inside a cell taken from the intestines of a frog contained all the information need to create a whole new frog. He took the genetic information and placed it inside a frog egg. The resulting clone developed into a normal tadpole.

The technique would eventually give rise to Dolly the sheep, the first cloned mammal.

Go here to see the original:
Stem cell experts win Nobel prize

Posted in Cell Medicine | Comments Off on Stem cell experts win Nobel prize

Stem cell pioneers win Nobel medicine honors

Posted: October 8, 2012 at 3:14 pm

The 2012 Nobel Prize for medicine has been awarded to stem cell researchers John Gurdon and Shinya Yamanaka of Britain and Japan. They take the first Nobel prize of the year, with a flurry to follow over the next week.

Judges in Stockholm said on Monday that the medicine prize had been awarded to the researchers "for the discovery that mature cells can be reprogrammed to become pluripotent," saying that this discovery had "revolutionized our understanding of how cells and organisms develop."

Gurdon and Yamanaka are stem cell researchers who are seeking ways to obtain embryonic stem cells - a kind of genetic blank slate, cells that can be 'programmed' to take on many different forms and perform different functions - from the cells of an adult. Embryos themselves are another more controversial source of stem cells.

"We are trying to find ways of obtaining embryo cells from the cells of an adult," Gurdon writes on his Gurdon Institute website. "The eventual aim is to provide replacement cells of all kinds starting from usually obtainable cells of an adult individual."

The British scientist also said such a system was advantageous because the stem cells could be obtained from the patient themselves, reducing the risk of rejection when they were employed as a treatment.

The medals will be doled out in December, the winners named in the next few days

Stem cells appear to have potential to treat a wide range of illnesses, with a major barrier to the research the ethical implications of obtaining the cells from unborn foetuses.

A busy week in the Swedish capital

This year's laureates in the field of physics will be named on Tuesday, with chemistry following on Wednesday and perhaps the most famous Nobel Peace Prize to be awarded on Friday. As is tradition, there is no set date for the Nobel Prize for Literature - but that will almost certainly fill the gap in the schedule on Thursday. The economics prize winner or winners will be named on October 15.

All the prizes will be awarded in Stockholm simultaneously at a December 10 ceremony.

Originally posted here:
Stem cell pioneers win Nobel medicine honors

Posted in Cell Medicine | Comments Off on Stem cell pioneers win Nobel medicine honors

Stem Cell Discoveries Snag Nobel Prize in Medicine

Posted: October 8, 2012 at 3:14 pm

Two scientists who discovered the developmental clock could be turned back in mature cells, transforming them into immature cells with the ability to become any tissue in the body pluripotent stem cells are being honored with the Nobel Prize in Physiology or Medicine.

The Nobel Prize honoring Sir John B. Gurdon and Shinya Yamanaka was announced today (Oct. 8) by the Royal Swedish Academy of Sciences.

Th duo's work revealed what scientists had thought impossible. Just after conception, an embryo contains immature cells that can give rise to any cell type such as nerve, muscle and liver cells in the adult organism; these are called pluripotent stem cells, and scientists believed once these stem cells become specialized to carry out a specific body task there was no turning back.

Gurdon, now at the Gurdon Institute in Cambridge, England, found this wasn't the case when in 1962 he replaced the nucleus of a frog's egg cell with the nucleus taken from a mature intestinal cell from a tadpole. And voila, the altered frog egg developed into a tadpole, suggesting the mature nucleus held the instructions needed to become all cells in the frog, as if it were a young unspecialized cell. In fact, later experiments using nuclear transfer have produced cloned mammals. [5 Amazing Stem Cell Discoveries]

Then in 2006, Yamanaka, who was born in 1962 when Gurdon reported his discovery and is now at Kyoto University, genetically reprogrammed mature skin cells in mice to become immature cells able to become any cell in the adult mice, which he named induced pluripotent stem cells (iPS). Scientists can now derive such induced pluripotent stem cells from adult nerve, heart and liver cells, allowing new ways to study diseases.

When Yamanaka received the call from Stockholm about his award, he was doing housework, according to an interview with the Nobel Prize website. "It is a tremendous honor to me," Yamanaka said during that interview.

As for his hopes for mankind with regard to stem cells, he said, "My goal, all my life, is to bring this technology, stem cell technology, to the bedside, to patients, to clinics." He added that the first clinical trials of iPS cells will begin next year.

Follow LiveScience on Twitter @livescience. We're also on Facebook& Google+.

Read the original here:
Stem Cell Discoveries Snag Nobel Prize in Medicine

Posted in Cell Medicine | Comments Off on Stem Cell Discoveries Snag Nobel Prize in Medicine

Cellerant Awarded SBIR Contract Funding to Develop CLT-009 for Treatment of Thrombocytopenia

Posted: October 8, 2012 at 3:13 pm

SAN CARLOS, Calif.--(BUSINESS WIRE)--

Cellerant Therapeutics Inc., a biotechnology company developing novel hematopoietic stem cell-based cellular and antibody therapies for blood disorders and cancer, announced today that it has been awarded a Small Business Innovation Research (SBIR) Phase 1 contract and a Phase 2 option from the National Cancer Institute (NCI) valued up to $1,683,503. The SBIR Contract funds the development of CLT-009, a first-in-class, human allogeneic Megakaryocyte Progenitor Cell therapy for the treatment of thrombocytopenia in cancer patients and allows the Company to conduct studies to enable an Investigational New Drug (IND) Application to be filed with the FDA in the next two years.

Thrombocytopenia is characterized as a significant reduction in the concentration of circulating platelets. Platelets are crucial in the process of coagulation to stop bleeding, and thrombocytopenia can increase the risk of severe bleeding in patients. It is becoming an increasingly common problem among oncology patients and a significant dose-limiting toxicity, especially in the treatment of hematological malignancies. Chemotherapy and radiation therapy are the most common causes of thrombocytopenia because the platelet-producing cells, megakaryocytes, and their precursors are highly sensitive to myelosuppressive cytotoxics and ionizing radiation. Thrombocytopenia typically occurs during the initial cycles of high-dose chemotherapy and radiation therapy, usually 614 days after administration. According to Datamonitor, the estimated incidence of cancer patients who suffer from significant chemotherapy-induced thrombocytopenia worldwide was approximately 200,000 in 2008.

Occurrence of severe thrombocytopenia may require dose reductions for chemotherapy regimens which can impact subsequent disease control and survival, especially in the treatment of hematological malignancies such as acute leukemia and high-risk myelodysplastic syndrome. Current treatment options include platelet transfusions which are costly and labor intensive and are associated with risks such as contamination and transmission of viral and bacterial infections. Recombinant human interleukin-11 is the only approved agent for chemotherapy induced thrombocytopenia but its use is limited and has only modest efficacy and significant side effects. CLT-009, a human Megakaryocyte Progenitor Cell product, would be an alternative treatment option, providing the critical megakayocyte progenitor cellular support to rapidly produce platelets in vivo and shorten the duration of severe thrombocytopenia following chemotherapy treatment.

We are delighted to receive this contract from NCI to support the development of our novel, off-the-shelf, platelet product and address a high unmet need, said Ram Mandalam, Ph.D., President and Chief Executive Officer of Cellerant Therapeutics. This contract allows us to not only leverage our experience in developing cellular therapies but also provides us with the ability to bring CLT-009 closer to the clinic. Our unique product portfolio, which now includes CLT-009, along with our CLT-008 myeloid progenitor cell product and our therapeutic antibodies targeting cancer stem cells, demonstrates our continued commitment to developing novel products for the benefit of cancer patients.

In addition to this SBIR contract, Cellerant has previously received grants from the National Institute of Health (NIH) in 2008 2010 to conduct research studies in platelet recovery which it has successfully completed. In its previous studies, Cellerant demonstrated that megakaryocyte progenitor cells were able to produce human platelets in preclinical models with in vivo functionality similar to that of normal human platelets.

This program is funded with Federal funds from the National Institute of Health, Department of Health and Human Services, under Contract No.HHSN261201200076C.

About CLT-009

CLT-009 is a unique, off-the-shelf, cryopreserved, cell-based therapy that contains human Megakaryocyte Progenitor Cells derived from adult hematopoietic stem cells that have the ability to mature into functional platelets in vivo. Cellerant is developing CLT-009 as an effective treatment for chemotherapy and radiation-induced thrombocytopenia in cancer patients.

About Cellerant Therapeutics

See the original post here:
Cellerant Awarded SBIR Contract Funding to Develop CLT-009 for Treatment of Thrombocytopenia

Posted in Stem Cell Therapy | Comments Off on Cellerant Awarded SBIR Contract Funding to Develop CLT-009 for Treatment of Thrombocytopenia

Stem Cell Researchers Share Nobel Medicine Prize

Posted: October 8, 2012 at 3:13 pm

British researcher John Gurdon and Shinya Yamanaka from Japan have shared the Nobel prize for medicine or physiology.

The two pioneers of stem cell research were awarded the prize for transforming specialised cells into stem cells, which can become any other type of cell in the body.

John Gurdon discovered in 1962 that the specialisation of cells is reversible. In a classic experiment, he replaced the immature cell nucleus in an egg cell of a frog with the nucleus from a mature intestinal cell. This modified egg cell developed into a normal tadpole. The DNA of the mature cell still had all the information needed to develop all cells in the frog.

Shinya Yamanaka discovered more than 40 years later, in 2006, how intact mature cells in mice could be reprogrammed to become immature stem cells. Surprisingly, by introducing only a few genes, he could reprogram mature cells to become pluripotent stem cells, i.e. immature cells that are able to develop into all types of cells in the body.

These groundbreaking discoveries have completely changed our view of the development and cellular specialisation.

By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy.

View original post here:
Stem Cell Researchers Share Nobel Medicine Prize

Posted in Cell Therapy | Comments Off on Stem Cell Researchers Share Nobel Medicine Prize

Stem cell pioneers win Nobel for medicine

Posted: October 8, 2012 at 3:13 pm

STOCKHOLM (AFP) - Shinya Yamanaka of Japan and John Gurdon of Britain won the Nobel Prize on Monday for work in cell programming, a frontier that has raised dreams of replacement tissue for people crippled by disease.

The two scientists found that adult cells can be transformed back to an infant state called stem cells, the key ingredient in the vision of regenerative medicine.

"Their findings have revolutionised our understanding of how cells and organisms develop," the Nobel jury declared. "By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy."

Among those who acclaimed the award were Britain's Royal Society; Ian Wilmut, the "father" of Dolly the cloned sheep; and a leading ethicist, who said it eased a storm about the use of embryonic cells.

Stem cells are precursor cells which differentiate into the various organs of the body.

They have stirred huge excitement, with hopes that they can be coaxed into growing into replacement tissue for victims of Alzheimer's, Parkinson's and other diseases.

Gurdon, born in 1933, said he was grateful but also surprised by the honour, since his main research was done more than 40 years ago.

In 1962, he discovered that the DNA code in the nucleus of an adult frog cell held all the information to develop into every kind of cell.

This meant that an adult cell could in essence be reprogrammed.

His landmark discovery was initially met with scepticism, as the journey from immature to specialised cell was previously deemed irreversible.

More:
Stem cell pioneers win Nobel for medicine

Posted in Stem Cell Therapy | Comments Off on Stem cell pioneers win Nobel for medicine

NeoStem Announces Very Small Embryonic-Like Cells (VSEL(TM)) Publication in Stem Cells and Development

Posted: October 8, 2012 at 3:13 pm

NEW YORK, Oct. 8, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS), an emerging leader in the fast growing cell therapy market, announced today that data from its collaborative studies with the University of Michigan School of Dentistry further expands the therapeutic potential of its proprietary regenerative cell therapy product, "VSELSTM" (very small embryonic-like stem cells), by demonstrating bone regeneration capabilities in a study published online ahead of print1 in the journal Stem Cells and Development (DOI: 10.1089/scd.2012.0327). The paper highlights that human VSEL stem cells form human bone when implanted in the bone tissue of SCID mice.

VSELs are a population of stem cells found in adult bone marrow with potential regenerative properties similar to those of embryonic stem cells. NeoStem has shown that these cells can be mobilized into the peripheral blood, enabling a minimally invasive means for collecting what NeoStem believes to be a population of stem cells that have the potential to achieve the positive benefits associated with embryonic stem cells without the ethical or moral dilemmas or the potential negative effects known to be associated with embryonic stem cells.

This published controlled study, funded by NIH and led by Dr. Russell Taichman, Major Ash Collegiate Professor and Co-Director of the Scholars Program in Dental Leadership Department of Periodontics & Oral Medicine, University of Michigan and Dr. Aaron Havens, Department of Orthodontics and Pediatric Dentistry at University of Michigan, involved isolating G-CSF mobilized VSEL stem cells from the blood of healthy donors and transplanting them into burr holes made in the cranial bones of SCID mice. After three months, it was observed that the implanted VSEL stem cells had differentiated into human bone tissue in the crania of the mice. Dr. Taichman stated, "I believe this work represents a true partnership between Industry and Academic Institutions. Our findings that VSEL cells can generate human bone in animals would not have been feasible without the help and vision that Dr. Denis Rodgerson and his team at NeoStem brought to the table. It was my privilege to have been a part of this collaborative effort, and I see the resulting data as a significant milestone in stem cell therapy development. It is truly inspiring."

Dr. Robin Smith, Chairman and CEO of NeoStem, added, "This is very exciting data that we believe will be the foundation for future VSEL stem cell studies of bone regeneration in humans. We look forward to moving the development work from the laboratory into the clinic to develop a therapeutic stem cell product to enhance bone formation in humans."

About NeoStem, Inc.

NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.

Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.

Forward-Looking Statements for NeoStem, Inc.

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Company's business strategy, including with respect to the Company's or its partners' successful development of AMR-001 and other cell therapeutics, the size of the market for such products, its competitive position in such markets, the Company's ability to successfully penetrate such markets and the market for its CDMO business, and the efficacy of protection from its patent portfolio, as well as the future of the cell therapeutics industry in general, including the rate at which such industry may grow. Forward looking statements also include statements with respect to satisfying all conditions to closing the disposition of Erye, including receipt of all necessary regulatory approvals in the PRC. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors, including but not limited to (i) the Company's ability to manage its business despite operating losses and cash outflows, (ii) its ability to obtain sufficient capital or strategic business arrangement to fund its operations, including the clinical trials for AMR-001, (iii) successful results of the Company's clinical trials of AMR-001 and other cellular therapeutic products that may be pursued, (iv) demand for and market acceptance of AMR-001 or other cell therapies if clinical trials are successful and the Company is permitted to market such products, (v) establishment of a large global market for cellular-based products, (vi) the impact of competitive products and pricing, (vii) the impact of future scientific and medical developments, (viii) the Company's ability to obtain appropriate governmental licenses and approvals and, in general, future actions of regulatory bodies, including the FDA and foreign counterparts, (ix) reimbursement and rebate policies of government agencies and private payers, (x) the Company's ability to protect its intellectual property, (xi) the company's ability to successfully divest its interest in Erye, and (xii) matters described under the "Risk Factors" in the Company's Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 20, 2012 and in the Company's other periodic filings with the Securities and Exchange Commission, all of which are available on its website. The Company does not undertake to update its forward-looking statements. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.

(1) Human Very Small Embryonic-Like Cells Generate Skeletal Structures, In Vivo. Havens A., et al., Stem Cells and Development.

See original here:
NeoStem Announces Very Small Embryonic-Like Cells (VSEL(TM)) Publication in Stem Cells and Development

Posted in Stem Cell Therapy | Comments Off on NeoStem Announces Very Small Embryonic-Like Cells (VSEL(TM)) Publication in Stem Cells and Development

Page 2,624«..1020..2,6232,6242,6252,626..2,6302,640..»