Page 2,645«..1020..2,6442,6452,6462,647..2,6502,660..»

Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Posted: September 19, 2012 at 5:13 pm

This shows a colony of induced pluripotent stem cells. Blue fluorescence indicates cell nuclei; red and green are markers of pluripotency. Credit: Image: Courtesy of the Salk Institute for Biological Studies

Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.

In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.

"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."

Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.

In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.

However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.

Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?

Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.

"We knew there were differences between iPSCs and ESCs," says Sergio Ruiz, first author of the paper, "We now have an identifying mark for what they are."

Read the original post:
Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Posted in Stem Cell Videos | Comments Off on Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Posted: September 19, 2012 at 2:15 pm

Public release date: 18-Sep-2012 [ | E-mail | Share ]

Contact: Andy Hoang ahoang@salk.edu 619-861-5811 Salk Institute

LA JOLLA, CA---- Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.

In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.

"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."

Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.

In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.

However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.

Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?

Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.

Read more from the original source:
Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Posted in Regenerative Medicine | Comments Off on Discovery of reprogramming signature may help further stem cell-based regenerative medicine research

Cytomedix to Present at BIOX; Noble Financial Capital Markets’ Life Sciences Exposition

Posted: September 19, 2012 at 2:15 pm

GAITHERSBURG, MD--(Marketwire - Sep 19, 2012) - Cytomedix, Inc. ( OTCQX : CMXI ), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that Martin P. Rosendale, Chief Executive Officer of Cytomedix, will present a corporate update at BIOX; Noble Financial Capital Markets' Life Sciences Exposition to be held at the University of Connecticut, Stamford Campus on September, 24-25, 2012.Mr. Rosendale's presentation will take place on Monday, September 24th at 8:00 a.m. Eastern time.

In addition to the corporate presentation, Mr. Rosendale will be a participant on the panel presentation titled "Advancements in Cell Therapy & Regenerative Medicine," on September 24th at 11:45 a.m.

Following the event, a high-definition video webcast of the Company's presentation and a copy of the presentation materials will be available on the Company's web site at http://www.cytomedix.com, or through the Noble Financial websites: http://www.noblefcm.com, or http://www.nobleresearch.com/BioExposition.htm. Microsoft SilverLight viewer (a free download from the presentation link) is required to participate. The webcast will be archived on Cytomedix's website for 90 days following the event.

About Noble Financial Noble Financial Capital Markets was established in 1984 and is an equity research driven, full-service, investment banking boutique focused on life sciences, technology and media, emerging growth, companies. The company has offices in New York, Boston, New Jersey, Los Angeles, and Boca Raton, FL. In addition to non-deal road shows and sector-specific conferences throughout the year, Noble Financial hosts its large format annual equity conference in January in South Florida featuring 150 presenting companies from across North America and total attendance of close to 600. For more information: http://www.noblefcm.com.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally.Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells.A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts,the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

Visit link:
Cytomedix to Present at BIOX; Noble Financial Capital Markets' Life Sciences Exposition

Posted in Regenerative Medicine | Comments Off on Cytomedix to Present at BIOX; Noble Financial Capital Markets’ Life Sciences Exposition

BioTime CEO Michael D. West to Present at Stem Cells USA & Regenerative Medicine Congress 2012

Posted: September 19, 2012 at 2:15 pm

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE MKT: BTX) announced that Chief Executive Officer Michael D. West, Ph.D. will present at the Stem Cells USA & Regenerative Medicine Congress 2012 in Cambridge, MA on Thursday, September 20, 2012. Dr. West will speak on Second Generation hES Cell-Based Therapies: Achieving Purity and Scalability in the Midst of Diversity in the session Developments in Novel Therapeutics. The presentation will be made available on BioTime's website at http://www.biotimeinc.com.

The Stem Cells USA & Regenerative Medicine Congress 2012, September 20-21, is North Americas leading commercial stem cell event. This years conference will focus on strategies and business models for navigating the stem cell and regenerative medicine marketplace for pharma, biotech, and investors.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is enhanced through subsidiaries focused on specific fields of application. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (formerly known as HyStem-Rx), a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-Dx currently being developed for the detection of cancer in blood samples. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's subsidiary, LifeMap Sciences, Inc., markets GeneCards, the leading human gene database, and is developing an integrated database suite to complement GeneCards that will also include the LifeMap database of embryonic development, stem cell research and regenerative medicine, and MalaCards, the human disease database. LifeMap will also market BioTime research products. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corporation under exclusive licensing agreements. Additional information about BioTime can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

To receive ongoing BioTime corporate communications, please click on the following link to join our email alert list:

http://phx.corporate-ir.net/phoenix.zhtml?c=83805&p=irol-alerts

More:
BioTime CEO Michael D. West to Present at Stem Cells USA & Regenerative Medicine Congress 2012

Posted in Regenerative Medicine | Comments Off on BioTime CEO Michael D. West to Present at Stem Cells USA & Regenerative Medicine Congress 2012

NeoStem to Present at Noble Capital Markets’ Life Sciences Exposition on September 24

Posted: September 19, 2012 at 2:15 pm

NEW YORK, Sept. 19, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), a rapidly emerging market leader in the fast growing cell therapy market, today announced that Company management has been invited to participate at BIOX, the Noble Financial Capital Markets' Life Sciences Exposition on Monday, September 24. Company management will make a webcasted company presentation and participate in a cell therapy panel.

Noble Financial Capital Markets Investor Conference - BIOX Life Sciences Exposition

For more information about the conference, please visit http://www.nobleresearch.com/BIOX.htm.

About NeoStem, Inc.

NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.

Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.

For more information on NeoStem, please visit http://www.neostem.com.

Forward-Looking Statements for NeoStem, Inc.

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Company's business strategy, including with respect to the Company's or its partners' successful development of AMR-001 and other cell therapeutics, the size of the market for such products, its competitive position in such markets, the Company's ability to successfully penetrate such markets and the market for its CDMO business, and the efficacy of protection from its patent portfolio, as well as the future of the cell therapeutics industry in general, including the rate at which such industry may grow. Forward looking statements also include statements with respect to satisfying all conditions to closing the disposition of Erye, including receipt of all necessary regulatory approvals in the PRC. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors, including but not limited to (i) the Company's ability to manage its business despite operating losses and cash outflows, (ii) its ability to obtain sufficient capital or strategic business arrangement to fund its operations, including the clinical trials for AMR-001, (iii) successful results of the Company's clinical trials of AMR-001 and other cellular therapeutic products that may be pursued, (iv) demand for and market acceptance of AMR-001 or other cell therapies if clinical trials are successful and the Company is permitted to market such products, (v) establishment of a large global market for cellular-based products, (vi) the impact of competitive products and pricing, (vii) the impact of future scientific and medical developments, (viii) the Company's ability to obtain appropriate governmental licenses and approvals and, in general, future actions of regulatory bodies, including the FDA and foreign counterparts, (ix) reimbursement and rebate policies of government agencies and private payers, (x) the Company's ability to protect its intellectual property, (xi) the company's ability to successfully divest its interest in Erye, and (xii) matters described under the "Risk Factors" in the Company's Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 20, 2012 and in the Company's other periodic filings with the Securities and Exchange Commission, all of which are available on its website. The Company does not undertake to update its forward-looking statements. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.

Visit link:
NeoStem to Present at Noble Capital Markets' Life Sciences Exposition on September 24

Posted in Cell Therapy | Comments Off on NeoStem to Present at Noble Capital Markets’ Life Sciences Exposition on September 24

Developments of Stem Cell Therapy and Regenerative Medicine

Posted: September 19, 2012 at 5:11 am

Queenstown Regenerative Medicine - http://www.queenstownRM.co.nz

Professor Richard Boyd and Dr Dan Bates Latest developments of Stem Cell Therapy and Regenerative Medicine

Queenstown Regenerative Medicine, in association with Monash University Immunology and Stem Cell Centre (MISCL), has the pleasure of requesting your attendance at an evening lecture by Prof Richard Boyd, Head of MISCL and Dr Dan Bates, Sports Medicine Physician from Melbourne AFL Club.

Professor Richard Boyd is a world leader in the research and development of potential uses of stem cells to treat disease in both human and animal. He is the Director of Australia's largest and most prestigious Stem Cell Laboratory and a recipient of numerous International Awards for unique research into how stem cells and the immune system develop and how they have their effects in the body.

Professor Boyd's talk will give an overall background to stem cells and the work going on around the world to put these cellular therapies and regenerative medicine into the clinic.

Doctor Dan Bates is a Sports Medicine Physician working with Professor Boyd in the development and use of cellular medicine applications in the field of Sports Medicine and musculoskeletal injuries. Dan is the current team doctor of the Melbourne AFL club and will speak on his experiences using Platelet Rich Plasma to treat musculoskeletal injuries and the opening of stem cell treatment centres in conjunction with MISCL in Australia.

This is a unique opportunity to get first- hand knowledge from some of the best people in the field. These talks will be aimed at the practical applications of how you can use these therapies currently, as well as giving an idea of what the near future holds.

Date: Friday 21 September 2012 Time: from 6 pm 7.30 pm Location: Heritage Hotel, 91 Fernhill Road, Queenstown (Icon Conference Room) Cost: Free of charge

Scoop Media

More:
Developments of Stem Cell Therapy and Regenerative Medicine

Posted in Cell Medicine | Comments Off on Developments of Stem Cell Therapy and Regenerative Medicine

ACT to Present at Terrapinn’s Stem Cells & Regenerative Medicine Congress in Boston

Posted: September 19, 2012 at 12:10 am

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT) (ACTC), a leader in the field of regenerative medicine, announced today that director of business development, Matthew Vincent, Ph.D., will be presenting at Terrapinns Stem Cells USA and Regenerative Medicine Congress, September 20-21 in Boston.

Dr. Vincents presentation, Advancing stem cell therapies to the clinic: ACT's three cellular therapy programs, will be given on Thursday, Sept. 20 at 3:15 p.m. EDT. Dr. Vincent will discuss the meaning and significance of the results seen thus far in ACTs three ongoing human clinical trials in the U.S. and E.U. for Dry Age-Related Macular Degeneration (Dry AMD) and Stargardts Macular Dystrophy (SMD).

About SMD, Dry AMD and Degenerative Diseases of the Retina

Stargardts Macular Dystrophy (SMD) is one of the most common forms of macular degeneration in the world. SMD causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium or RPE cell layer.

Degenerative diseases of the retina are among the most common causes of untreatable blindness in the world. As many as thirty million people in the United States and Europe suffer from macular degeneration, which represents a $25-30 billion worldwide market that has yet to be effectively addressed. Approximately 10% of people ages 66 to 74 will have symptoms of macular degeneration, the vast majority the dry form of AMD which is currently untreatable. The prevalence increases to 30% in patients 75 to 85 years of age.

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.

Forward-Looking Statements

Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words will, believes, plans, anticipates, expects, estimates, and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the companys periodic reports, including the report on Form 10-K for the year ended December 31, 2011. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Companys clinical trials will be successful.

See the article here:
ACT to Present at Terrapinn’s Stem Cells & Regenerative Medicine Congress in Boston

Posted in Stem Cell Videos | Comments Off on ACT to Present at Terrapinn’s Stem Cells & Regenerative Medicine Congress in Boston

Discovery of reprogramming signature may help overcome barriers to stem cell-based regenerative medicine

Posted: September 19, 2012 at 12:10 am

ScienceDaily (Sep. 18, 2012) Salk scientists have identified a unique molecular signature in induced pluripotent stem cells (iPSCs), "reprogrammed" cells that show great promise in regenerative medicine thanks to their ability to generate a range of body tissues.

In this week's Proceedings of the National Academy of Sciences, the Salk scientists and their collaborators at University of California, San Diego, report that there is a consistent, signature difference between embryonic and induced pluripotent stem cells. The findings could help overcome hurdles to using the induced stem cells in regenerative medicine.

"We believe that iPSCs hold a great potential for the treatment of human patients," says Juan Carlos Izpisua Belmonte, a professor in Salk's Gene Expression Laboratory and the senior author on the paper. "Yet we must thoroughly understand the molecular mechanisms governing their safety profile in order to be confident of their function in the human body. With the discovery of these small, yet apparent, epigenetic differences, we believe that we are now one step closer to that goal."

Embryonic stem cells (ESCs) are known for their "pluripotency," the ability to differentiate into nearly any cell in the body. Because of this ability, it has long been thought that ESCs would be ideal to customize for therapeutic uses. However, when ESCs mature into specific cell types, and are then transplanted into a patient, they may elicit immune responses, potentially causing the patient to reject the cells.

In 2006, scientists discovered how to revert mature cells, which had already differentiated into particular cell types, such as skin cells or hair cells, back into a pluripotent state. These "induced pluripotent stem cells" (iPSCs), which could be developed from the patient's own cells, would theoretically carry no risk of immune rejection.

However, scientists found that iPSCs had molecular differences from embryonic stem cells. Specifically, there were epigenetic changes, chemical modifications in DNA that might alter genetic activity. At certain points in the iPSC's genome, scientists could see the presence of different patterns of methyl groups when compared to the genomes of ESCs. It seemed these changes occurred randomly.

Izpisua Belmonte and his colleagues wanted to understand more about these differences. Were they truly random, or was there a discernable pattern?

Unlike previous studies, which had primarily analyzed iPSCs derived from only one mature type of cells (mainly connective tissue cells called fibroblasts), the Salk and UCSD researchers examined iPSCs derived from six different mature cell types to see if there were any commonalities. They discovered that while there were hundreds of unpredictable changes, there were some that remained consistent across the cell types: the same nine genes were associated with these common changes in all iPSCs.

"We knew there were differences between iPSCs and ESCs," says Sergio Ruiz, first author of the paper, "We now have an identifying mark for what they are."

The therapeutic significance of these nine genes awaits further research. The importance of the current study is that it gives stem cells researchers a new and more precise understanding of iPSCs.

Read more:
Discovery of reprogramming signature may help overcome barriers to stem cell-based regenerative medicine

Posted in Stem Cell Videos | Comments Off on Discovery of reprogramming signature may help overcome barriers to stem cell-based regenerative medicine

America Stem Cell, Inc. Awarded a Phase I STTR to Explore the Therapeutic Potential of Its Platform Technology (ASC …

Posted: September 18, 2012 at 12:11 am

SAN ANTONIO--(BUSINESS WIRE)--America Stem Cell, Inc. (ASC) today announced that it has been awarded an Advanced Technology Small Business Technology Transfer Research (STTR) grant from the National Heart Lung and Blood Institute at the National Institutes of Health. This grant will be conducted in collaboration with scientists at the Wake Forest Institute of Regenerative Medicine (WFIRM) in Winston-Salem, NC, and will explore the combination of two technologies: ASC-101 developed by America Stem Cell and amniotic fluid-derived stem cells discovered and pioneered by Dr. Shay Soker and colleagues at WFIRM. We will examine the effect of ASC-101-treated amniotic fluid-derived stem cells in an experimental model of compartment syndrome. Compartment syndrome results from a variety of injuries such as fractures, contusions, burns, trauma, post-ischemic swelling and blast injuries such as gunshot wounds. If not addressed quickly, it can lead to considerable loss of muscle tissue. Musculoskeletal disorders are the primary cause of disability in the United States with associated costs of more than $800 billion annually. In addition to civilian injuries, more than 42,000 soldiers have been injured since the beginning of the Iraq and Afghanistan wars: the majority of these injuries were musculoskeletal in nature.

The successful combination of ASC-101 with amniotic fluid-derived stem cells would be directly relevant to improving the treatment of muscle damage that occurs following compartment syndrome as well as multiple other types of injuries.

America Stem Cell has demonstrated that ASC-101 enhances the ability of stem cells to migrate to their target tissue. While most companies are concerned with the type of cells used for cell therapy (i.e. the hardware), America Stem Cell addresses how to get the cells to go where they are needed most (i.e. the software). With this award, America Stem Cell will expand the potential for therapeutic application of ASC-101 with amniotic fluid-derived stem cells. According to Dr. Leonard Miller, the Co-Principal Investigator on the grant, The successful combination of ASC-101 with amniotic fluid-derived stem cells would be directly relevant to improving the treatment of muscle damage that occurs following compartment syndrome as well as multiple other types of injuries.

America Stem Cell, Inc. is a clinical stage company that is in clinical trials at the University of Texas M.D. Anderson Cancer Center for improving clinical outcomes for cancer patients undergoing hematopoietic stem cell transplantation. This award enables America Stem Cell to expand the development of ASC-101 to yet another cell type. Lynnet Koh, CEO of America Stem Cell, noted, The combination of ASC-101 with amniotic fluid-derived stem cells could synergistically enhance the therapeutic and regenerative capacity of these cells and most importantly provide an off-the-shelf, effective solution for tissue damage due to multiple types of injuries or diseases. ASC-101 is a transformative technology with the potential to improve clinical outcomes for patients undergoing a wide variety of cell therapies for the treatment of diseases such as graft versus host disease, diabetic complications, and ischemic diseases such as myocardial infarctions, retinopathy and critical limb ischemia. America Stem Cell has established a number of collaborations examining the potential of ASC-101 to improve cell therapies for multiple clinical conditions using a wide variety of cell types.

About America Stem Cell, Inc.

America Stem Cell is a privately held biotechnology company based in San Antonio, TX, with offices in San Diego, CA, and is dedicated to the development and commercialization of enabling technologies to enhance and expand the therapeutic potential of cell therapies. The key technology platforms (ASC-101 and ASC-102) are designed to improve the homing and engraftment of cells to target organs. ASC-101 is currently in clinical trials to improve the therapeutic potential of hematopoietic stem cells for patients in need of hematopoietic stem cell transplantation. Additionally, these technologies have the potential to enhance the efficacy of cell therapies for the treatment of inflammation from chemotherapy/radiation, autoimmune diseases, and ischemic diseases including myocardial infarction and stroke. America Stem Cell has partnerships and collaborations with Kyowa Hakko Kirin, Spectrum Medical Innvoations, Florida Biologix, and various medical research institutions including the University of Texas M.D. Anderson Cancer Center, Oklahoma Medical Research Foundation, Fred Hutchinson Cancer Center,,University of California San Diego, Sanford-Burnham Institute, Indiana University, Juvenile Diabetes Research Foundation, as well as corporate partnerships. For additional information, please contact Lynnet Koh at 210-410-6427, or view http://www.americastemcell.com.

Go here to read the rest:
America Stem Cell, Inc. Awarded a Phase I STTR to Explore the Therapeutic Potential of Its Platform Technology (ASC ...

Posted in Stem Cell Videos | Comments Off on America Stem Cell, Inc. Awarded a Phase I STTR to Explore the Therapeutic Potential of Its Platform Technology (ASC …

At the Right Place at the Right Time – New Insights into Muscle Stem Cells

Posted: September 18, 2012 at 12:11 am

17.09.2012 - (idw) Max-Delbrck-Centrum fr Molekulare Medizin (MDC) Berlin-Buch

Muscles have a pool of stem cells which provides a source for muscle growth and for regeneration of injured muscles. The stem cells must reside in special niches of the muscle for efficient growth and repair. The developmental biologists Dr. Dominique Brhl and Prof. Carmen Birchmeier of the Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch have elucidated how these stem cells colonize these niches. At the same time, they show that the stem cells weaken when, due to a mutation, they locate outside of the muscle fibers instead of in their stem cell niches (Developmental Cell, http://dx.doi.org/10.1016/j.devcel.2012.07.014)*. Muscle stem cells, also called satellite cells, colonize a niche that is located between the plasma membrane of the muscle cell and the surrounding basal lamina. Already in newborns these niches contain satellite cells from which both muscle cells and new stem cells can be generated.

Weakened stem cells In the present study Dr. Brhl and Professor Birchmeier showed that mouse muscle progenitor cells lacking components of the Notch signaling pathway cannot colonize their niche. Instead the muscle progenitor cells locate in tissue between the muscle fibers. The developmental biologists view this as the cause for the weakening of the muscles. The stem cells that are in the wrong place are no longer as potent as they originally were and hardly contribute to muscle growth.

In addition, the Notch signaling pathway has a second function in muscle development. It prevents the differentiation of stem cells into muscle cells through suppression of the muscle developmental factor MyoD and thus ensures that there will always be a pool of stem cells for muscle repair and regeneration. In the future this work could gain in importance for research on muscle regeneration and muscle weakness.

Contact: Barbara Bachtler Press Department Max Delbrck Center for Molecular Medicine (MDC) Berlin-Buch in the Helmholtz Association Robert-Rssle-Strae 10; 13125 Berlin, Germany Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33 e-mail: presse@mdc-berlin.de http://www.mdc-berlin.de/ function fbs_click() {u=location.href;t=document.title;window.open('http://www.facebook.com/sharer.php?u='+encodeURIComponent(u)+'&t='+encodeURIComponent(t),'sharer','toolbar=0,status=0,width=626,height=436');return false;} html .fb_share_link { padding:2px 0 0 20px; height:16px; background:url(http://static.ak.facebook.com/images/share/facebook_share_icon.gif?6:26981) no-repeat top left; } Share on Facebook

More:
At the Right Place at the Right Time - New Insights into Muscle Stem Cells

Posted in Stem Cell Videos | Comments Off on At the Right Place at the Right Time – New Insights into Muscle Stem Cells

Page 2,645«..1020..2,6442,6452,6462,647..2,6502,660..»