Page 2,651«..1020..2,6502,6512,6522,653..2,6602,670..»

Stem cells restore hearing to deaf gerbils

Posted: September 12, 2012 at 8:18 pm

Eighteen gerbils were given a drug to make them deaf in one ear, before being given an injection of 50,000 progenitor cells into the cochlea, which translates sounds into nerve impulses which can be sent to the brain.

On average about a third of the cells grafted themselves to the ear and replace the damaged nerve cells. Brain scans showed that the gerbils typically recovered 45 per cent of their hearing after 10 weeks.

In humans this would translate to someone who could formerly not hear a lorry passing by their window gaining the ability to follow a conversation in a crowded room, researchers said.

They added that the results were variable, with some gerbils recovering up to 90 per cent of their hearing and others seeing very little improvement, depending on how many of the cells took hold.

More research is needed to establish that the benefits of the treatment are lasting and that it is safe for use on humans, but the study represents a "huge step forward" in deafness research, the team said.

Dr Marcelo Rivolta, who led the study, said: "Stem cells have been used in animal models of deafness before, mostly the mouse, with different results, but none have shown functional recovery. What we have shown here is functional recovery using human stem cells, which is unique.

"It is difficult to say when we might be able to treat patients. We are hoping in a few years, but first we need to understand more about the biology of the system and whether it is sustainable in time and safe."

Read the rest here:
Stem cells restore hearing to deaf gerbils

Posted in Stem Cell Videos | Comments Off on Stem cells restore hearing to deaf gerbils

Cytomedix’s AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall …

Posted: September 11, 2012 at 9:16 pm

GAITHERSBURG, MD--(Marketwire - Sep 11, 2012) - Cytomedix, Inc. ( OTCQB : CMXI ), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that the Company's AutoloGel System will be highlighted in three poster presentations at the Symposium on Advanced Wound Care Fall 2012 ("SAWC Fall 2012") taking place September 12-14 at the Baltimore Convention Center.

The AutoloGel System is a device for the production of autologous platelet rich plasma ("PRP") gel, and is the only PRP device cleared by the U.S. Food and Drug Administration ("FDA") for use in wound management.

Posters will be showcased in the Poster Reception September 13 from 5:30 p.m. to 6:15 p.m. local time, and posters will be available for viewing September 12 and September 13 from 8:00 a.m. to 4:00 p.m. local time. The following posters highlighting Cytomedix's PRP technology will be presented at SAWC Fall 2012.

Cytomedix will host a booth at the Symposium for clinicians and other attendees to learn more about the AutoloGel System and the benefits it provides in the management of complex recalcitrant wounds. Cytomedix will be showcasing AutoloGel at Booth #1007 in the Exhibit Hall.

"SAWC Fall 2012 is the ideal venue to showcase our growing body of positive clinical data on AutoloGel as it is the premier educational wound care program and the largest annual gathering of wound care professionals in the U.S., with more than 1,000 physicians, podiatrists, nurses, therapists and researchers expected to attend," stated Martin P. Rosendale, Chief Executive Officer of Cytomedix. "These poster presentations underscore the robust nature of AutoloGel to advance the speed and progress to healing in a variety of recalcitrant wounds in a number of healthcare settings."

About The Association for the Advancement of Wound Care Since 1995 the Association for the Advancement of Wound Care ("AAWC") has been the leader in interdisciplinary wound healing and tissue preservation. It is a not-for-profit association headquartered in the U.S. open to everyone involved in wound care, including clinicians, patients and their lay caregivers, facilities, industry, students, retirees and other advocates interested in the care of wounds. AAWC spreads awareness by promoting excellence in education, clinical practice, public policy and research. Through numerous association benefits and activities, AAWC members have the opportunity to be part of a collaborative community that facilitates optimal care for those who suffer with wounds. This community encourages an equal partnership among all individuals who are involved in the care of patients.

For more information about the AAWC and member benefits, please visit http://www.aawconline.org.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts, the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

The rest is here:
Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall ...

Posted in Regenerative Medicine | Comments Off on Cytomedix’s AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall …

Researchers improve gene therapy technique for children with immune disorder

Posted: September 11, 2012 at 9:16 pm

Public release date: 11-Sep-2012 [ | E-mail | Share ]

Contact: Claire Gwayi-Chore cgwayi-chore@hematology.org 202-776-0544 American Society of Hematology

By including chemotherapy as a conditioning regimen prior to treatment, researchers have developed a refined gene therapy approach that safely and effectively restores the immune system of children with a form of severe combined immunodeficiency (SCID), according to a study published online today in Blood, the Journal of the American Society of Hematology (ASH).

SCID is a group of rare and debilitating genetic disorders that affect the normal development of the immune system in newborns. Infants with SCID are prone to serious, life-threatening infections within the first few months of life and require extensive treatment for survival beyond infancy.

Adenosine deaminase (ADA) deficiency, which accounts for approximately 15 percent of all SCID cases, develops when a gene mutation prohibits the production of ADA, an enzyme that breaks down toxic molecules that can accumulate to harmful levels and kill lymphocytes, the specialized white blood cells that help make up the immune system. In its absence, infants with ADA-deficient SCID lack almost all immune defenses and their condition is almost always fatal within two years if left untreated. Standard treatment for ADA-deficient SCID is a hematopoietic stem cell transplant (HSCT) from a sibling or related donor; however, finding a matched donor can be difficult and transplants can carry significant risks. An alternate treatment method, enzyme replacement therapy (ERT), involves regular injections of the ADA enzyme to maintain the immune system and can help restore immune function; however, the treatments are extremely expensive and painful for the young patients and the effects are often only temporary.

Given the limitations of HSCT and ERT, in the 1990s researchers began investigating the efficacy of gene therapy for ADA-deficient SCID. They discovered that they could "correct" the function of a mutated gene by adding a healthy copy into the cells of the body that help fight infectious diseases. Since then, there have been significant advances in gene therapy for SCID, yet successful gene therapy in patients with ADA-deficient SCID has been seen in only a small series of children due to the difficulty of introducing a healthy ADA gene into bone marrow stem cells and to engraft these cells back into the patients.

"Although the basic steps of gene therapy for patients with SCID have been known for a while, technical and clinical challenges still exist and we wanted to find an optimized gene therapy protocol to restore immunity for young children with ADA-deficient SCID," said Fabio Candotti, MD, one of the study's senior authors, senior investigator in the Genetics and Molecular Biology Branch of the National Human Genome Research Institute at the National Institutes of Health, and chair of the ASH Scientific Committee on Immunology and Host Defense.

To determine whether an enhanced gene therapy approach would improve immunity in children with ADA-deficient SCID, the teams of Dr. Candotti and Donald B. Kohn, MD, director of the Human Gene Medicine Program at the University of California, Los Angeles (UCLA), Professor of Pediatrics and of Microbiology, Immunology, and Molecular Genetics, and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, conducted a clinical trial in 10 patients with the disorder. For the first time, Drs. Candotti and Kohn and their team of investigators compared two different retroviral vectors, MND-ADA and GCsapM-ADA, to transport normal ADA genes into the young patients' bone marrow stem cells as well as two different treatment plans in preparation for receiving gene therapy. Following therapy, investigators found that more bone marrow stem cells were marked with the MND-ADA vector, demonstrating its superiority over the GCsapM-ADA vector.

The investigators also sought to determine whether providing a low dose of chemotherapy prior to gene therapy, known as a pre-transplant conditioning regimen, would successfully deplete the young patients' bone marrow stem cells and make room for gene-corrected stem cells. In four patients, gene therapy was performed without chemotherapy, and the patients remained on ERT throughout the entire procedure to evaluate the efficiency of ERT combined with gene therapy. While these patients did not experience any adverse effects, they also did not experience a significant increase in their levels of the ADA enzyme. They also maintained low absolute lymphocyte counts (ALC) and minimal immune system function, leading the researchers to believe that ERT may weaken the therapy's effect by diluting the number of gene-corrected lymphocytes.

The remaining six patients were treated with the chemotherapy drug busulfan prior to gene therapy and ERT was discontinued prior to the gene therapy procedure. A significant increase in ADA was observed in all six patients; half of them remain off of ERT with partial immune reconstitution findings that support results from prior trials in Italy and the United Kingdom using chemotherapy prior to gene therapy and discontinuting ERT. While the ALC of all six patients declined sharply in the first few months due to combined effects of busulfan administration and ERT withdrawal, their counts increased from six to 24 months, even in the three patients that remained off of ERT. After adjusting the chemotherapy dosage, investigators were able to determine an optimal level for enhancing the efficacy of the gene-therapy-corrected cells with minimal toxicity.

Read the rest here:
Researchers improve gene therapy technique for children with immune disorder

Posted in Gene therapy | Comments Off on Researchers improve gene therapy technique for children with immune disorder

Gene therapy technique for children with immune disorder improved

Posted: September 11, 2012 at 9:16 pm

ScienceDaily (Sep. 11, 2012) By including chemotherapy as a conditioning regimen prior to treatment, researchers have developed a refined gene therapy approach that safely and effectively restores the immune system of children with a form of severe combined immunodeficiency (SCID), according to a study published online September 11 in Blood, the Journal of the American Society of Hematology (ASH).

SCID is a group of rare and debilitating genetic disorders that affect the normal development of the immune system in newborns. Infants with SCID are prone to serious, life-threatening infections within the first few months of life and require extensive treatment for survival beyond infancy.

Adenosine deaminase (ADA) deficiency, which accounts for approximately 15 percent of all SCID cases, develops when a gene mutation prohibits the production of ADA, an enzyme that breaks down toxic molecules that can accumulate to harmful levels and kill lymphocytes, the specialized white blood cells that help make up the immune system. In its absence, infants with ADA-deficient SCID lack almost all immune defenses and their condition is almost always fatal within two years if left untreated. Standard treatment for ADA-deficient SCID is a hematopoietic stem cell transplant (HSCT) from a sibling or related donor; however, finding a matched donor can be difficult and transplants can carry significant risks. An alternate treatment method, enzyme replacement therapy (ERT), involves regular injections of the ADA enzyme to maintain the immune system and can help restore immune function; however, the treatments are extremely expensive and painful for the young patients and the effects are often only temporary.

Given the limitations of HSCT and ERT, in the 1990s researchers began investigating the efficacy of gene therapy for ADA-deficient SCID. They discovered that they could "correct" the function of a mutated gene by adding a healthy copy into the cells of the body that help fight infectious diseases. Since then, there have been significant advances in gene therapy for SCID, yet successful gene therapy in patients with ADA-deficient SCID has been seen in only a small series of children due to the difficulty of introducing a healthy ADA gene into bone marrow stem cells and to engraft these cells back into the patients.

"Although the basic steps of gene therapy for patients with SCID have been known for a while, technical and clinical challenges still exist and we wanted to find an optimized gene therapy protocol to restore immunity for young children with ADA-deficient SCID," said Fabio Candotti, MD, one of the study's senior authors, senior investigator in the Genetics and Molecular Biology Branch of the National Human Genome Research Institute at the National Institutes of Health, and chair of the ASH Scientific Committee on Immunology and Host Defense.

To determine whether an enhanced gene therapy approach would improve immunity in children with ADA-deficient SCID, the teams of Dr. Candotti and Donald B. Kohn, MD, director of the Human Gene Medicine Program at the University of California, Los Angeles (UCLA), Professor of Pediatrics and of Microbiology, Immunology, and Molecular Genetics, and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, conducted a clinical trial in 10 patients with the disorder. For the first time, Drs. Candotti and Kohn and their team of investigators compared two different retroviral vectors, MND-ADA and GCsapM-ADA, to transport normal ADA genes into the young patients' bone marrow stem cells as well as two different treatment plans in preparation for receiving gene therapy. Following therapy, investigators found that more bone marrow stem cells were marked with the MND-ADA vector, demonstrating its superiority over the GCsapM-ADA vector.

The investigators also sought to determine whether providing a low dose of chemotherapy prior to gene therapy, known as a pre-transplant conditioning regimen, would successfully deplete the young patients' bone marrow stem cells and make room for gene-corrected stem cells. In four patients, gene therapy was performed without chemotherapy, and the patients remained on ERT throughout the entire procedure to evaluate the efficiency of ERT combined with gene therapy. While these patients did not experience any adverse effects, they also did not experience a significant increase in their levels of the ADA enzyme. They also maintained low absolute lymphocyte counts (ALC) and minimal immune system function, leading the researchers to believe that ERT may weaken the therapy's effect by diluting the number of gene-corrected lymphocytes.

The remaining six patients were treated with the chemotherapy drug busulfan prior to gene therapy and ERT was discontinued prior to the gene therapy procedure. A significant increase in ADA was observed in all six patients; half of them remain off of ERT with partial immune reconstitution -- findings that support results from prior trials in Italy and the United Kingdom using chemotherapy prior to gene therapy and discontinuting ERT. While the ALC of all six patients declined sharply in the first few months due to combined effects of busulfan administration and ERT withdrawal, their counts increased from six to 24 months, even in the three patients that remained off of ERT. After adjusting the chemotherapy dosage, investigators were able to determine an optimal level for enhancing the efficacy of the gene-therapy-corrected cells with minimal toxicity.

This study is the first to detail comparisons of ADA-deficient SCID patient outcomes between those treated with gene therapy who have not received pre-transplant conditioning while continuing to receive ERT with those receiving pre-transplant conditioning without the administration of ERT. This study is also the first to compare two different viral vectors to transport normal ADA genes into patient bone marrow.

"We were very happy that in this trial we were able to see a benefit in the patients after we modified the protocol," said Dr. Kohn. "Doctors treating ADA-deficient SCID have had too few options for too long, and we hope this will provide them with an efficient and effective treatment for this devastating disease."

See the original post here:
Gene therapy technique for children with immune disorder improved

Posted in Gene therapy | Comments Off on Gene therapy technique for children with immune disorder improved

Stem cell researchers use gene therapy to restore immune systems in ‘Bubble Boy’ disease

Posted: September 11, 2012 at 9:15 pm

ScienceDaily (Sep. 11, 2012) UCLA stem cell researchers have found that a gene therapy regimen can safely restore immune systems to children with so-called "Bubble Boy" disease, a life threatening condition that if left untreated can be fatal within one to two years.

In the 11-year study, researchers were able to test two therapy regimens for 10 children with ADA-deficient severe combined immunodeficiency (SCID). During the study, they refined their approach to include a light dose of chemotherapy to help remove many of the blood stem cells in the bone marrow that are not creating an enzyme called adenosine deaminase (ADA), which is critical for the production and survival of healthy white blood cells, said study senior Dr. Donald Kohn, a professor of pediatrics and of microbiology, immunology, and molecular genetics in Life Sciences and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The refined gene therapy and chemotherapy regimen proved superior to the other method tested in the study, restoring immune function to three of the six children who received it, Kohn said. Going forward, an even further refined regimen using a different type of virus delivery system will be studied in the next phase of the study, which already has enrolled eight of the 10 patients needed.

The study appears Aug. 30 in the advance online issue of the peer-reviewed journal Blood.

"We were very happy that in the human trials we were able to see a benefit in the patients after we modified the protocol," Kohn said. "Doctors treating ADA-deficient SCID have had too few options for too long, and we hope this will provide them with an efficient and effective treatment for this devastating disease."

Children born with SCID, an inherited immunodeficiency, are generally diagnosed at about six months. They are extremely vulnerable to infectious diseases and don't grow well. Chronic diarrhea, ear infections, recurrent pneumonia and profuse oral candidiasis commonly occur in these children. SCID cases occur in about 1 of 100,000 births

Currently, the only treatment for ADA-deficient SCID calls for injecting the patients twice a week with the necessary enzyme, Kohn said, a life-long process that is very expensive and often doesn't return the immune system to optimal levels. These patients also can undergo bone marrow transplants from matched siblings, but matches can be very rare.

About 15 percent of all SCID patients are ADA-deficient. Kohn and his team used a virus delivery system that he had developed in his lab in the 1990s to restore the gene that produces the missing enzyme necessary for a healthy immune system. To date, about 40 children with SCID have received gene therapy in clinical trials around the world, Kohn said.

Two slightly different viral vectors were tested in the study, each modified to deliver healthy ADA genes into the bone marrow cells of the patients so the needed enzyme could be produced and make up for the cells that don't have the gene. Four of the 10 patients in the study remained on their enzyme replacement therapy during the gene therapy study. There were no side effects, but their immune systems were not sufficiently restored, Kohn said.

In the next six patients, the enzyme therapy was stopped and a small dose of chemotherapy was given before starting the gene therapy to deplete the ADA-deficient stem cells in their bone marrow. Of those patients, half had their immune systems restored. The human findings confirmed another study, also published recently in Blood by Kohn and UCLA colleague Dr. Denise Carbonaro-Sarracino, which tested the techniques in parallel, using a mouse model of ADA-deficient SCID.

Visit link:
Stem cell researchers use gene therapy to restore immune systems in 'Bubble Boy' disease

Posted in Cell Therapy | Comments Off on Stem cell researchers use gene therapy to restore immune systems in ‘Bubble Boy’ disease

UCLA stem cell researchers use gene therapy to restore immune systems in ‘bubble babies’

Posted: September 11, 2012 at 9:15 pm

Public release date: 11-Sep-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-435-9457 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have found that a gene therapy regimen can safely restore immune systems to children with so-called "Bubble Boy" disease, a life threatening condition that if left untreated can be fatal within one to two years.

In the 11-year study, researchers were able to test two therapy regimens for 10 children with ADA-deficient severe combined immunodeficiency (SCID). During the study, they refined their approach to include a light dose of chemotherapy to help remove many of the blood stem cells in the bone marrow that are not creating an enzyme called adenosine deaminase (ADA), which is critical for the production and survival of healthy white blood cells, said study senior Dr. Donald Kohn, a professor of pediatrics and of microbiology, immunology, and molecular genetics in Life Sciences and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The refined gene therapy and chemotherapy regimen proved superior to the other method tested in the study, restoring immune function to three of the six children who received it, Kohn said. Going forward, an even further refined regimen using a different type of virus delivery system will be studied in the next phase of the study, which already has enrolled eight of the 10 patients needed.

The study appears Aug. 30 in the advance online issue of the peer-reviewed journal Blood.

"We were very happy that in the human trials we were able to see a benefit in the patients after we modified the protocol," Kohn said. "Doctors treating ADA-deficient SCID have had too few options for too long, and we hope this will provide them with an efficient and effective treatment for this devastating disease."

Children born with SCID, an inherited immunodeficiency, are generally diagnosed at about six months. They are extremely vulnerable to infectious diseases and don't grow well. Chronic diarrhea, ear infections, recurrent pneumonia and profuse oral candidiasis commonly occur in these children. SCID cases occur in about 1 of 100,000 births

Currently, the only treatment for ADA-deficient SCID calls for injecting the patients twice a week with the necessary enzyme, Kohn said, a life-long process that is very expensive and often doesn't return the immune system to optimal levels. These patients also can undergo bone marrow transplants from matched siblings, but matches can be very rare.

About 15 percent of all SCID patients are ADA-deficient. Kohn and his team used a virus delivery system that he had developed in his lab in the 1990s to restore the gene that produces the missing enzyme necessary for a healthy immune system. To date, about 40 children with SCID have received gene therapy in clinical trials around the world, Kohn said.

Read this article:
UCLA stem cell researchers use gene therapy to restore immune systems in 'bubble babies'

Posted in Cell Therapy | Comments Off on UCLA stem cell researchers use gene therapy to restore immune systems in ‘bubble babies’

Molecular beacons light up stem cell transformation

Posted: September 11, 2012 at 6:18 pm

ScienceDaily (Sep. 11, 2012) A novel set of custom-designed "molecular beacons" allows scientists to monitor gene expression in living populations of stem cells as they turn into a specific tissue in real-time. The technology, which Brown University researchers describe in a new study, provides tissue engineers with a potentially powerful tool to discover what it may take to make stem cells transform into desired tissue cells more often and more quickly. That's a key goal in improving regenerative medicine treatments.

"We're not the inventors of molecular beacons but we have used it in a way that hasn't been done before, which is to do this in long-term culture and watch the same population change in a reliable and harmless way," said graduate student Hetal Desai, lead author of the paper published online Sept. 5, 2012, in the journal Tissue Engineering Part A.

In their research, Desai and corresponding author Eric Darling, assistant professor of biology in the Department of Molecular Pharmacology, Physiology, and Biotechnology, designed their beacons to fluoresce when they bind to mRNA from three specific genes in fat-derived stem cells that are expressed only when the stem cells are transforming into bone cells.

Throughout 21 days of their development, the cells in the experiments remained alive and unfettered, Desai said, except that some populations received a chemical inducement toward becoming bone and others did not. Over those three weeks, the team watched the populations for the fluorescence of the beacons to see how many stem cells within each population were becoming bone and the timing of each gene expression milestone.

The beacons' fluorescence made it easy to see a distinct pattern in that timing. Expression of the gene ALPL peaked first in more than 90 percent of induced stem cells on day four, followed by about 85 percent expressing the gene COL1A1 on day 14. The last few days of the experiments saw an unmistakably sharp rise in expression of the gene BGLAP in more than 80 percent of the induced stem cells.

Each successive episode of gene expression ramped up from zero to the peak more quickly, the researchers noted, leading to a new hypothesis that the pace of the stem cell transformation, or "differentiation" in stem cell parlance, may become more synchronized in a population over time.

"If you could find a way to get them on this track earlier, you could get the differentiation faster," Darling said.

Meanwhile the stem cell populations that were not induced with bone-promoting chemicals, showed virtually no beacon fluorescence or expression of the genes, indicating that the beacons were truly indicators of steps along the transformation from stem cell to bone.

Beacons don't affect cells

Desai said the team took extra care to design beacons that would not alter the cells' development or functioning in any way. While the beacons do bind to messenger RNA produced in gene expression, for example, they do not require adding any genes to the stem cells' DNA, or expressing any special proteins, as many other fluorescence techniques do.

Link:
Molecular beacons light up stem cell transformation

Posted in Stem Cell Videos | Comments Off on Molecular beacons light up stem cell transformation

Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall …

Posted: September 11, 2012 at 5:17 pm

GAITHERSBURG, MD--(Marketwire - Sep 11, 2012) - Cytomedix, Inc. ( OTCQB : CMXI ), a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell technologies, today announced that the Company's AutoloGel System will be highlighted in three poster presentations at the Symposium on Advanced Wound Care Fall 2012 ("SAWC Fall 2012") taking place September 12-14 at the Baltimore Convention Center.

The AutoloGel System is a device for the production of autologous platelet rich plasma ("PRP") gel, and is the only PRP device cleared by the U.S. Food and Drug Administration ("FDA") for use in wound management.

Posters will be showcased in the Poster Reception September 13 from 5:30 p.m. to 6:15 p.m. local time, and posters will be available for viewing September 12 and September 13 from 8:00 a.m. to 4:00 p.m. local time. The following posters highlighting Cytomedix's PRP technology will be presented at SAWC Fall 2012.

Cytomedix will host a booth at the Symposium for clinicians and other attendees to learn more about the AutoloGel System and the benefits it provides in the management of complex recalcitrant wounds. Cytomedix will be showcasing AutoloGel at Booth #1007 in the Exhibit Hall.

"SAWC Fall 2012 is the ideal venue to showcase our growing body of positive clinical data on AutoloGel as it is the premier educational wound care program and the largest annual gathering of wound care professionals in the U.S., with more than 1,000 physicians, podiatrists, nurses, therapists and researchers expected to attend," stated Martin P. Rosendale, Chief Executive Officer of Cytomedix. "These poster presentations underscore the robust nature of AutoloGel to advance the speed and progress to healing in a variety of recalcitrant wounds in a number of healthcare settings."

About The Association for the Advancement of Wound Care Since 1995 the Association for the Advancement of Wound Care ("AAWC") has been the leader in interdisciplinary wound healing and tissue preservation. It is a not-for-profit association headquartered in the U.S. open to everyone involved in wound care, including clinicians, patients and their lay caregivers, facilities, industry, students, retirees and other advocates interested in the care of wounds. AAWC spreads awareness by promoting excellence in education, clinical practice, public policy and research. Through numerous association benefits and activities, AAWC members have the opportunity to be part of a collaborative community that facilitates optimal care for those who suffer with wounds. This community encourages an equal partnership among all individuals who are involved in the care of patients.

For more information about the AAWC and member benefits, please visit http://www.aawconline.org.

About Cytomedix, Inc. Cytomedix, Inc. is a fully integrated regenerative medicine company commercializing and developing innovative platelet and adult stem cell separation products that enhance the body's natural healing processes. The Company's advanced autologous technologies offer clinicians a new treatment paradigm for wound and tissue repair. The Company's patient-derived PRP systems are marketed by Cytomedix in the U.S. and distributed internationally. Our commercial products include the AutoloGel System, cleared by the FDA for wound care and the Angel Whole Blood Separation System. The Company is developing novel regenerative therapies using our proprietary ALDH Bright Cell ("ALDHbr") technology to isolate a unique, biologically active population of a patient's own stem cells. A Phase 2 trial evaluating the use of ALDHbr for the treatment of ischemic stroke is underway. For additional information please visit http://www.cytomedix.com.

Safe Harbor Statement Statements contained in this press release not relating to historical facts are forward-looking statements that are intended to fall within the safe harbor rule for such statements under the Private Securities Litigation Reform Act of 1995. The information contained in the forward-looking statements is inherently uncertain, and Cytomedix' actual results may differ materially due to a number of factors, many of which are beyond Cytomedix' ability to predict or control, including among many others, risks and uncertainties related to the Company's reimbursement related efforts, the Company's ability to capitalize on the benefits of the above-referenced CMS determination, the Company's ability to successfully and favorably conclude the negotiations and related discussions with the above-referenced global pharmaceutical company, the Company's ability to successfully integrate the Aldagen acquisition, to successfully manage contemplated clinical trials, to manage and address the capital needs, human resource, management, compliance and other challenges of a larger, more complex and integrated business enterprise, viability and effectiveness of the Company's sales approach and overall marketing strategies, commercial success or acceptance by the medical community, competitive responses, the Company's ability to raise additional capital and to continue as a going concern, and Cytomedix's ability to execute on its strategy to market the AutoloGel System as contemplated. To the extent that any statements made here are not historical, these statements are essentially forward-looking. The Company uses words and phrases such as "believes," "forecasted," "projects," "is expected," "remain confident," "will" and/or similar expressions to identify forward-looking statements in this press release. Undue reliance should not be placed on forward-looking information. These forward-looking statements are subject to known and unknown risks and uncertainties that could cause actual events to differ from the forward-looking statements. More information about some of these risks and uncertainties may be found in the reports filed with the Securities and Exchange Commission by Cytomedix, Inc. Cytomedix operates in a highly competitive and rapidly changing business and regulatory environment, thus new or unforeseen risks may arise. Accordingly, investors should not place any reliance on forward-looking statements as a prediction of actual results. Except as is expressly required by the federal securities laws, Cytomedix undertakes no obligation to update or revise any forward-looking statements, whether as a result of new information, changed circumstances or future events or for any other reason. Additional risks that could affect our future operating results are more fully described in our U.S. Securities and Exchange Commission filings, including our Annual Report on Form 10-K for the year ended December 31, 2011 and other subsequent filings. These filings are available at http://www.sec.gov.

More:
Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall ...

Posted in Regenerative Medicine | Comments Off on Cytomedix's AutoloGel System Highlighted in Multiple Poster Presentations at the Symposium on Advanced Wound Care Fall …

Stem cell researchers use gene therapy to restore immune systems in 'Bubble Boy' disease

Posted: September 11, 2012 at 5:17 pm

ScienceDaily (Sep. 11, 2012) UCLA stem cell researchers have found that a gene therapy regimen can safely restore immune systems to children with so-called "Bubble Boy" disease, a life threatening condition that if left untreated can be fatal within one to two years.

In the 11-year study, researchers were able to test two therapy regimens for 10 children with ADA-deficient severe combined immunodeficiency (SCID). During the study, they refined their approach to include a light dose of chemotherapy to help remove many of the blood stem cells in the bone marrow that are not creating an enzyme called adenosine deaminase (ADA), which is critical for the production and survival of healthy white blood cells, said study senior Dr. Donald Kohn, a professor of pediatrics and of microbiology, immunology, and molecular genetics in Life Sciences and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The refined gene therapy and chemotherapy regimen proved superior to the other method tested in the study, restoring immune function to three of the six children who received it, Kohn said. Going forward, an even further refined regimen using a different type of virus delivery system will be studied in the next phase of the study, which already has enrolled eight of the 10 patients needed.

The study appears Aug. 30 in the advance online issue of the peer-reviewed journal Blood.

"We were very happy that in the human trials we were able to see a benefit in the patients after we modified the protocol," Kohn said. "Doctors treating ADA-deficient SCID have had too few options for too long, and we hope this will provide them with an efficient and effective treatment for this devastating disease."

Children born with SCID, an inherited immunodeficiency, are generally diagnosed at about six months. They are extremely vulnerable to infectious diseases and don't grow well. Chronic diarrhea, ear infections, recurrent pneumonia and profuse oral candidiasis commonly occur in these children. SCID cases occur in about 1 of 100,000 births

Currently, the only treatment for ADA-deficient SCID calls for injecting the patients twice a week with the necessary enzyme, Kohn said, a life-long process that is very expensive and often doesn't return the immune system to optimal levels. These patients also can undergo bone marrow transplants from matched siblings, but matches can be very rare.

About 15 percent of all SCID patients are ADA-deficient. Kohn and his team used a virus delivery system that he had developed in his lab in the 1990s to restore the gene that produces the missing enzyme necessary for a healthy immune system. To date, about 40 children with SCID have received gene therapy in clinical trials around the world, Kohn said.

Two slightly different viral vectors were tested in the study, each modified to deliver healthy ADA genes into the bone marrow cells of the patients so the needed enzyme could be produced and make up for the cells that don't have the gene. Four of the 10 patients in the study remained on their enzyme replacement therapy during the gene therapy study. There were no side effects, but their immune systems were not sufficiently restored, Kohn said.

In the next six patients, the enzyme therapy was stopped and a small dose of chemotherapy was given before starting the gene therapy to deplete the ADA-deficient stem cells in their bone marrow. Of those patients, half had their immune systems restored. The human findings confirmed another study, also published recently in Blood by Kohn and UCLA colleague Dr. Denise Carbonaro-Sarracino, which tested the techniques in parallel, using a mouse model of ADA-deficient SCID.

Read the rest here:
Stem cell researchers use gene therapy to restore immune systems in 'Bubble Boy' disease

Posted in Gene therapy | Comments Off on Stem cell researchers use gene therapy to restore immune systems in 'Bubble Boy' disease

Researchers improve gene therapy technique for children with immune disorder

Posted: September 11, 2012 at 5:17 pm

Public release date: 11-Sep-2012 [ | E-mail | Share ]

Contact: Claire Gwayi-Chore cgwayi-chore@hematology.org 202-776-0544 American Society of Hematology

By including chemotherapy as a conditioning regimen prior to treatment, researchers have developed a refined gene therapy approach that safely and effectively restores the immune system of children with a form of severe combined immunodeficiency (SCID), according to a study published online today in Blood, the Journal of the American Society of Hematology (ASH).

SCID is a group of rare and debilitating genetic disorders that affect the normal development of the immune system in newborns. Infants with SCID are prone to serious, life-threatening infections within the first few months of life and require extensive treatment for survival beyond infancy.

Adenosine deaminase (ADA) deficiency, which accounts for approximately 15 percent of all SCID cases, develops when a gene mutation prohibits the production of ADA, an enzyme that breaks down toxic molecules that can accumulate to harmful levels and kill lymphocytes, the specialized white blood cells that help make up the immune system. In its absence, infants with ADA-deficient SCID lack almost all immune defenses and their condition is almost always fatal within two years if left untreated. Standard treatment for ADA-deficient SCID is a hematopoietic stem cell transplant (HSCT) from a sibling or related donor; however, finding a matched donor can be difficult and transplants can carry significant risks. An alternate treatment method, enzyme replacement therapy (ERT), involves regular injections of the ADA enzyme to maintain the immune system and can help restore immune function; however, the treatments are extremely expensive and painful for the young patients and the effects are often only temporary.

Given the limitations of HSCT and ERT, in the 1990s researchers began investigating the efficacy of gene therapy for ADA-deficient SCID. They discovered that they could "correct" the function of a mutated gene by adding a healthy copy into the cells of the body that help fight infectious diseases. Since then, there have been significant advances in gene therapy for SCID, yet successful gene therapy in patients with ADA-deficient SCID has been seen in only a small series of children due to the difficulty of introducing a healthy ADA gene into bone marrow stem cells and to engraft these cells back into the patients.

"Although the basic steps of gene therapy for patients with SCID have been known for a while, technical and clinical challenges still exist and we wanted to find an optimized gene therapy protocol to restore immunity for young children with ADA-deficient SCID," said Fabio Candotti, MD, one of the study's senior authors, senior investigator in the Genetics and Molecular Biology Branch of the National Human Genome Research Institute at the National Institutes of Health, and chair of the ASH Scientific Committee on Immunology and Host Defense.

To determine whether an enhanced gene therapy approach would improve immunity in children with ADA-deficient SCID, the teams of Dr. Candotti and Donald B. Kohn, MD, director of the Human Gene Medicine Program at the University of California, Los Angeles (UCLA), Professor of Pediatrics and of Microbiology, Immunology, and Molecular Genetics, and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, conducted a clinical trial in 10 patients with the disorder. For the first time, Drs. Candotti and Kohn and their team of investigators compared two different retroviral vectors, MND-ADA and GCsapM-ADA, to transport normal ADA genes into the young patients' bone marrow stem cells as well as two different treatment plans in preparation for receiving gene therapy. Following therapy, investigators found that more bone marrow stem cells were marked with the MND-ADA vector, demonstrating its superiority over the GCsapM-ADA vector.

The investigators also sought to determine whether providing a low dose of chemotherapy prior to gene therapy, known as a pre-transplant conditioning regimen, would successfully deplete the young patients' bone marrow stem cells and make room for gene-corrected stem cells. In four patients, gene therapy was performed without chemotherapy, and the patients remained on ERT throughout the entire procedure to evaluate the efficiency of ERT combined with gene therapy. While these patients did not experience any adverse effects, they also did not experience a significant increase in their levels of the ADA enzyme. They also maintained low absolute lymphocyte counts (ALC) and minimal immune system function, leading the researchers to believe that ERT may weaken the therapy's effect by diluting the number of gene-corrected lymphocytes.

The remaining six patients were treated with the chemotherapy drug busulfan prior to gene therapy and ERT was discontinued prior to the gene therapy procedure. A significant increase in ADA was observed in all six patients; half of them remain off of ERT with partial immune reconstitution findings that support results from prior trials in Italy and the United Kingdom using chemotherapy prior to gene therapy and discontinuting ERT. While the ALC of all six patients declined sharply in the first few months due to combined effects of busulfan administration and ERT withdrawal, their counts increased from six to 24 months, even in the three patients that remained off of ERT. After adjusting the chemotherapy dosage, investigators were able to determine an optimal level for enhancing the efficacy of the gene-therapy-corrected cells with minimal toxicity.

Read this article:
Researchers improve gene therapy technique for children with immune disorder

Posted in Gene therapy | Comments Off on Researchers improve gene therapy technique for children with immune disorder

Page 2,651«..1020..2,6502,6512,6522,653..2,6602,670..»