Page 2,675«..1020..2,6742,6752,6762,677..2,6802,690..»

Neuroscientists find brain stem cells that may be responsible for higher functions, bigger brains

Posted: August 10, 2012 at 8:12 am

ScienceDaily (Aug. 7, 2012) Scientists from The Scripps Research Institute have identified a new stem cell population that may be responsible for giving birth to the neurons responsible for higher thinking. The finding also paves the way for scientists to produce these neurons in culture -- a first step in developing better treatments for cognitive disorders, such as schizophrenia and autism, which result from disrupted connections among these brain cells.

Published in the August 10, 2012 issue of the journal Science, the new research reveals how neurons in the uppermost layers of the cerebral cortex form during embryonic brain development.

"The cerebral cortex is the seat of higher brain function, where information gets integrated and where we form memories and consciousness," said the study's senior author Ulrich Mueller, a professor and director of the Dorris Neuroscience Center at Scripps Research. "If we want to understand who we are, we need to understand this area where everything comes together and forms our impression of the world."

In the new study, Mueller's team identified a neural stem cell in mice that specifically gives rise to the neurons that make up the upper layers of the cerebral cortex. Previously, it was thought that all cortical neurons -- those making up both the lower and upper layers -- came from the same type of stem cell, called a radial glial cell, or RGC. A neuron's fate was thought to be determined by the timing of its birth date. The Scripps Research team, however, showed that there is a distinct stem cell progenitor that gives rise to upper layer neurons, regardless of birth date or place.

"Advanced functions like consciousness, thought, and creativity require a lot of different neuronal cell types and a central question has been how all this diversity is produced in the cortex," said Santos Franco, a senior research associate in Mueller's laboratory and first author of the paper. "Our study shows this diversity already exists in the progenitor cells."

Peeling Back the Onion Layers

In mammals, the cortex is made up of six distinct anatomic layers holding different types of excitatory neurons. They are not the uniform layers of a cake, but rather, they are more like the layers wrapped around an onion. The smaller lower layers, on the inside, host neurons that connect to the brain stem and spinal cord to help regulate essential functions such as breathing and movement. The larger upper layers, closer to the outer surface of the brain, contain neurons that integrate information coming in from the senses and connect across the two halves of the brain.

The upper layers are a "relatively young invention," evolutionarily speaking, having been greatly expanded during primate evolution, said Mueller. They give humans in particular the unique abilities to think abstractly, plan for the future and problem-solve.

For the last two decades, scientists have believed that the fate of cerebral cortex neurons was determined by their birth date because each layer is formed in a time-dependent manner. The lower layer neurons form in the center of the "ball" first, and then the cells that will become the upper layers form last, migrating through the lower layers.

"So the model was that there is a stem cell in the center of the ball that generates the different types of neurons in successive waves," said Mueller. "What we now show is that there are at least two different populations of RGCs and potentially more."

Original post:
Neuroscientists find brain stem cells that may be responsible for higher functions, bigger brains

Posted in Stem Cell Videos | Comments Off on Neuroscientists find brain stem cells that may be responsible for higher functions, bigger brains

Can liposuction help you live longer?

Posted: August 9, 2012 at 6:19 pm

TUCSON, Ariz., Aug. 9, 2012 /PRNewswire/ -- Doctors at the University of Oklahoma reported the first successful procedure for growing new blood vessels from adipose, or 'fat derived,' stem cells. These newly formed blood vessels can be used in heart bypass surgery and other complicated procedures requiring healthy vessels, according to the researchers, who presented their findings at the American Heart Association's 2012 Scientific Sessions.

(Photo: http://photos.prnewswire.com/prnh/20120809/LA54820)

Through liposuction, doctors can collect hundreds of millions of stem cells that can be used to generate blood vessels. The cells were "seeded" onto a 'bio-scaffold' and as they multiplied, researchers rolled them into tubes with the diameter of small blood vessels. Within weeks, new, healthy tissue began to grow into usable blood vessels. And since the cells are 'autologous', or from the same patient, there is no risk of adverse reactions or rejection.

But one of the key considerations is the age of the patient and thus the age of the stem cells. Young stem cells are much more active and potent than older cells. And young blood vessels are much more functional than older vessels.

One potential downside is that these blood vessels take time to grow in the lab. "They would not be available immediately, but you could bank your own cells and keep them until the time comes that you need them," said Dr. Roberto Bolli, an American Heart Association spokesman and chief of cardiology at the University of Louisville in Kentucky.

Success using stem cells in tissue engineering have led to just that-the option for patients to bank their adipose stem cells as a biological resource for use in the future in tissue engineering and regenerative medicine.

Dr. David Harris, Professor of Immunology at the University of Arizona in Tucson, is Chief Scientific Officer and founder of Adicyte, an adipose stem cell cryogenic bank. AdiCyte uses modern cryopreservation methods to safely store an individual's adult adipose tissue and stem cells for their future use in regenerative medicine, tissue engineering and cosmetic or reconstructive procedures.

"Adipose tissue is the richest source of mesenchymal stem cells (MSCs) in the human body, and more than 100 FDA clinical trials are in motion to help bring these cellular therapies to approved indications" said Harris.

For $985, patients can save their adipose tissue and stem cells, and request them whenever needed. There is an annual maintenance fee of $120. Cryogenic storage of the tissue in essence, 'stops the clock' on cell aging, so if the cells are needed twenty years from now, they will still have the same level of vitality and activity as when they were banked.

"The ability for a patient and doctor to literally pre-order new blood vessels for a heart bypass patient is exactly what AdiCyte is about," says Scott Edelman, AdiCyte's CEO and co-founder. "We want to help drive the advancement of regenerative medicine by enabling people to preserve their youngest stem cells possible, so they have the opportunity to take advantage of these miraculous new technologies and live longer."

Read this article:
Can liposuction help you live longer?

Posted in Stem Cell Videos | Comments Off on Can liposuction help you live longer?

Stem cells responsible for higher brain function found

Posted: August 9, 2012 at 6:18 pm

Scientists have identified a type of stem cell that appears to be responsible for the neurons involved in higher brain function. The discovery may pave the way for new treatments for autism and schizophrenia.

The mammalian cerebral cortex is layered like an onion, with neurons in different layers responsible for different levels of cognitive function. Neurons in the inner layers are connected to subcortical targets such as the thalamus and basal ganglia that deal with basic sensory and motor signals. Neurons in the outer layers are connected to other parts of the cortex, which in humans play a role in higher-level brain processes such as self-awareness, language and problem-solving.

In the developing brain, stem cells in the heart of the cortex produce neurons in sequence from the inner layer outwards. "Neurons migrate past earlier-born neurons to reach a more superficial position," explains Ulrich Mueller at The Scripps Research Institute in California. This is then repeated to generate all cortical layers, with a neuron's birthdate determining its layer and therefore its function. "However, it had never been established whether the connection between birthdate and neuronal cell type is casual or causal," says Mueller. "We went to find out."

In the prevailing model, different types of neurons are generated in successive waves by a single type of stem cell. However, when Mueller and his colleagues studied the developing brains of mice embryos, they found that neurons in the upper layers of the cortex are produced by a different type of stem cell. This is particularly intriguing since upper layer neurons are especially abundant in humans. "Maybe the invention of this new type of stem cell was important in driving brain evolution," says Mueller.

Upper layer neurons are also frequently affected in psychiatric disorders such as schizophrenia and autism. "A better understanding of the development of these layers and their functions may help us to understand the causes of these mental disorders, which could lead to better treatments in the future," says Andre Strydom of University College London, who was not involved in the study. But he notes that any clinical application is probably a long way off.

Uta Frith, also of University College London, says the finding is fascinating but sounds a note of caution. "There is still a chasm between neuro-cognitive explanations of autistic symptoms and mechanisms in terms of cell structure," she says. "To put these two levels of explanation together is a big task."

If you would like to reuse any content from New Scientist, either in print or online, please contact the syndication department first for permission. New Scientist does not own rights to photos, but there are a variety of licensing options available for use of articles and graphics we own the copyright to.

Only subscribers may leave comments on this article. Please log in.

Only personal subscribers may leave comments on this article

Subscribe now to comment.

Read the original post:
Stem cells responsible for higher brain function found

Posted in Stem Cell Videos | Comments Off on Stem cells responsible for higher brain function found

Summer school students help scientists advance stem cell research at USC

Posted: August 9, 2012 at 6:18 pm

Listen Now [4 min 28 sec] Listen Now [4 min 28 sec]

For many Southern California high school students, summer is synonymous with surf, sand and sun. But, for some of Los Angeles' top math and science students, the lure of the beach and traditional summer fun fizzles fast when compared to microscopes, slide kits and real-life stem cell research.

Armed with little more than protective gear and enthusiasm, 20 overachieving teenagers have been clocking 40-hour weeks in the lab at USC's Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research.

Among them is 17-year-old Brian Tom of Lincoln Heights.

Its fascinating because stem cells have all this potential to heal these degenerative diseases like Multiple Sclerosis and Alzheimer's," says Tom, a senior at Bravo Medical Magnet in Los Angeles. "It's amazing how you can create multiple tissues from one cell."

Stem cells offer promise as a treatment or cure for many diseases because they can be can induced to morph into other cell types such as brain, muscle or skin cells. Stem cells can also divide without limit, which gives them the potential to repair and replace damaged tissue.

You can just imagine the possibilities," says Sophie McCallister, a 17-year-old senior at Harvard-Westlake School in Los Angeles. McCallister works with a USC mentor on cardiac cell regeneration.

Two programs, one goal

McCallister and nine other students are in a program that's privately funded by two donors with ties to USC. Meanwhile, Tom and his summer school classmates are studying under a statewide program funded by the California Institute of Regenerative Medicine (CIRM), a voter-created agency that funds stem cell research throughout California.

CIRM has invested $1.7 million in nine high school summer programs statewide for three years.

See more here:
Summer school students help scientists advance stem cell research at USC

Posted in Stem Cell Research | Comments Off on Summer school students help scientists advance stem cell research at USC

Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

Posted: August 8, 2012 at 12:11 pm

ROCKVILLE, MD--(Marketwire -08/08/12)- MarketResearch.com has announced the addition of the new report "Global Markets for Stem Cells," to their collection of Biotechnology market reports. For more information, visit http://www.marketresearch.com/BCC-Research-v374/Global-Stem-Cells-7083022/

The global market for stem cell products was $3.8 billion in 2011. This market is expected to reach nearly $4.3 billion in 2012 and $6.6 billion by 2016, increasing at a compound annual growth rate (CAGR) of 11.7% from 2011 to 2016.

The American market for stem cell products was $1.3 billion in 2011. This sector is expected to rise at a CAGR of 11.5% and reach nearly $2.3 billion by 2016.

The European market for stem cell products was $872 million in 2011 and is expected to reach nearly $1.5 billion by 2016, a CAGR of 10.9%.

For more information, visit http://www.marketresearch.com/BCC-Research-v374/Global-Stem-Cells-7083022/

About MarketResearch.com

MarketResearch.com is the leading provider of global market intelligence products and services. With research reports from more than 720 top consulting and advisory firms, MarketResearch.com offers instant online access to the world's most extensive database of expert insights on global industries, companies, products, and trends. Moreover, MarketResearch.com's Research Specialists have in-depth knowledge of the publishers and the various types of reports in their respective industries and are ready to provide research assistance. For more information, call Will Gray at 240-747-3008 or visit http://www.marketresearch.com.

See the rest here:
Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

Posted in Stem Cell Videos | Comments Off on Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

UW researchers see work as step toward regenerating human heart

Posted: August 8, 2012 at 12:11 pm

Originally published August 7, 2012 at 7:45 PM | Page modified August 7, 2012 at 8:25 PM

Two University of Washington scientists, using expertise in stem cells, cardiology, pathology, cell biology and the electrophysiology of the heart, are a step closer to their holy grail: regenerating a damaged heart.

Human heart-muscle cells injected into the damaged heart of a guinea pig not only strengthened the heart's ability to contract, the cells synchronized with the animal's heart and protected it from arrhythmias, rhythm disturbances that can be fatal.

Regenerating a damaged heart is the "big dream, the big vision," said Dr. Charles E. Murry, a cardiovascular biologist who co-led the research published in the most recent issue of Nature.

"This is the first demonstration that human heart-muscle grafts can electrically stabilize the injured heart, and the first demonstration that they can couple and beat in sync," Murry said.

When the researchers injected the human heart cells, grown from embryonic stem cells, into the hearts of guinea pigs with damaged hearts, they saw a "profound effect," said Dr. Michael Laflamme, the senior author.

"The animals that had received these stem-cell-derived heart-muscle cells had far fewer arrhythmias," said Laflamme.

Like Murry, he is a cardiovascular biologist, pathologist and member of the UW Center for Cardiovascular Biology and the Institute for Stem Cell and Regenerative Medicine.

To tell if the new cells were beating in rhythm with their host, the researchers inserted a sensor gene that would fluoresce green when the cells contracted. The fluorescent protein was originally discovered in the Aequorea victoria jellyfish at Friday Harbor on San Juan Island.

In the last several years, medical science has made much progress in helping patients survive acute heart attacks, Murry noted.

Here is the original post:
UW researchers see work as step toward regenerating human heart

Posted in Stem Cell Videos | Comments Off on UW researchers see work as step toward regenerating human heart

Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

Posted: August 8, 2012 at 10:18 am

ROCKVILLE, MD--(Marketwire -08/08/12)- MarketResearch.com has announced the addition of the new report "Global Markets for Stem Cells," to their collection of Biotechnology market reports. For more information, visit http://www.marketresearch.com/BCC-Research-v374/Global-Stem-Cells-7083022/

The global market for stem cell products was $3.8 billion in 2011. This market is expected to reach nearly $4.3 billion in 2012 and $6.6 billion by 2016, increasing at a compound annual growth rate (CAGR) of 11.7% from 2011 to 2016.

The American market for stem cell products was $1.3 billion in 2011. This sector is expected to rise at a CAGR of 11.5% and reach nearly $2.3 billion by 2016.

The European market for stem cell products was $872 million in 2011 and is expected to reach nearly $1.5 billion by 2016, a CAGR of 10.9%.

For more information, visit http://www.marketresearch.com/BCC-Research-v374/Global-Stem-Cells-7083022/

About MarketResearch.com

MarketResearch.com is the leading provider of global market intelligence products and services. With research reports from more than 720 top consulting and advisory firms, MarketResearch.com offers instant online access to the world's most extensive database of expert insights on global industries, companies, products, and trends. Moreover, MarketResearch.com's Research Specialists have in-depth knowledge of the publishers and the various types of reports in their respective industries and are ready to provide research assistance. For more information, call Will Gray at 240-747-3008 or visit http://www.marketresearch.com.

The rest is here:
Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

Posted in Stem Cells | Comments Off on Latest Research Shows Stem Cell Product Market to Reach $6 Billion by 2016

UW researchers see work as step toward regenerating human heart

Posted: August 8, 2012 at 10:18 am

Originally published August 7, 2012 at 7:45 PM | Page modified August 7, 2012 at 8:25 PM

Two University of Washington scientists, using expertise in stem cells, cardiology, pathology, cell biology and the electrophysiology of the heart, are a step closer to their holy grail: regenerating a damaged heart.

Human heart-muscle cells injected into the damaged heart of a guinea pig not only strengthened the heart's ability to contract, the cells synchronized with the animal's heart and protected it from arrhythmias, rhythm disturbances that can be fatal.

Regenerating a damaged heart is the "big dream, the big vision," said Dr. Charles E. Murry, a cardiovascular biologist who co-led the research published in the most recent issue of Nature.

"This is the first demonstration that human heart-muscle grafts can electrically stabilize the injured heart, and the first demonstration that they can couple and beat in sync," Murry said.

When the researchers injected the human heart cells, grown from embryonic stem cells, into the hearts of guinea pigs with damaged hearts, they saw a "profound effect," said Dr. Michael Laflamme, the senior author.

"The animals that had received these stem-cell-derived heart-muscle cells had far fewer arrhythmias," said Laflamme.

Like Murry, he is a cardiovascular biologist, pathologist and member of the UW Center for Cardiovascular Biology and the Institute for Stem Cell and Regenerative Medicine.

To tell if the new cells were beating in rhythm with their host, the researchers inserted a sensor gene that would fluoresce green when the cells contracted. The fluorescent protein was originally discovered in the Aequorea victoria jellyfish at Friday Harbor on San Juan Island.

In the last several years, medical science has made much progress in helping patients survive acute heart attacks, Murry noted.

View original post here:
UW researchers see work as step toward regenerating human heart

Posted in Stem Cells | Comments Off on UW researchers see work as step toward regenerating human heart

TiGenix Completes Patient Enrollment in Phase IIa Rheumatoid Arthritis Study

Posted: August 8, 2012 at 7:18 am

LEUVEN, BELGIUM and MADRID, SPAIN--(Marketwire -08/08/12)- TiGenix (EURONEXT:TIG), the European leader in cell therapy, announced today the completion of patient enrollment in the Company's Phase IIa study of Cx611, a suspension of expanded allogeneic adult stem cells, in rheumatoid arthritis. The Phase IIa clinical trial is a 53-subject, multicenter, placebo-controlled study in 3 cohorts with different dosing regimens, designed to assess safety, feasibility, tolerance, and optimal dosing. The study is being conducted at 23 centers. The Company believes that this clinical trial can set the stage not only for the further development of Cx611 in RA, but also in a wide range of other autoimmune disorders.

"In addition to the primary endpoints of safety and optimal dosing, we expect this trial to yield a first indication of the duration of the efficacy of Cx611 in this very difficult patient population: the enrolled patients have previously failed to respond to at least two biologicals," said Eduardo Bravo, CEO of TiGenix. "In the trial patients are treated with three injections of Cx611. The six-month follow-up without further dosing should provide us with a truly meaningful result. This is the most advanced stem cell therapy trial in RA in the world, and completing the enrollment on time confirms our leadership position in the field. We anticipate reporting the results of the study no later than April 2013."

About Cx611 for rheumatoid arthritisCx611 is a suspension of expanded allogeneic adult stem cells derived from human adipose (fat) tissue (expanded Adipose derived Stem Cells or 'eASCs') that is delivered through intra-venous injection for the treatment of rheumatoid arthritis. The objective of the Phase IIa trial is to determine safety, feasibility, tolerance, and optimal dosing. This multicentre, placebo-controlled study has enrolled 53 patients, divided in 3 cohorts with different dosing regimens. There are 23 centers open and the company expects the final results to be available in the first half of 2013.

About TiGenixTiGenix NV (EURONEXT:TIG) is a leading European cell therapy company with a marketed product for cartilage repair, ChondroCelect, and a strong pipeline with clinical stage allogeneic adult stem cell programs for the treatment of autoimmune and inflammatory diseases. TiGenix is based out of Leuven (Belgium) and has operations in Madrid (Spain), and Sittard-Geleen (the Netherlands). For more information please visit http://www.tigenix.com.

Forward-looking informationThis document may contain forward-looking statements and estimates with respect to the anticipated future performance of TiGenix and the market in which it operates. Certain of these statements, forecasts and estimates can be recognised by the use of words such as, without limitation, "believes", "anticipates", "expects", "intends", "plans", "seeks", "estimates", "may", "will" and "continue" and similar expressions. They include all matters that are not historical facts. Such statements, forecasts and estimates are based on various assumptions and assessments of known and unknown risks, uncertainties and other factors, which were deemed reasonable when made but may or may not prove to be correct. Actual events are difficult to predict and may depend upon factors that are beyond TiGenix' control. Therefore, actual results, the financial condition, performance or achievements of TiGenix, or industry results, may turn out to be materially different from any future results, performance or achievements expressed or implied by such statements, forecasts and estimates. Given these uncertainties, no representations are made as to the accuracy or fairness of such forward-looking statements, forecasts and estimates. Furthermore, forward-looking statements, forecasts and estimates only speak as of the date of the publication of this document. TiGenix disclaims any obligation to update any such forward-looking statement, forecast or estimates to reflect any change in TiGenix' expectations with regard thereto, or any change in events, conditions or circumstances on which any such statement, forecast or estimate is based, except to the extent required by Belgian law.

View original post here:
TiGenix Completes Patient Enrollment in Phase IIa Rheumatoid Arthritis Study

Posted in Cell Therapy | Comments Off on TiGenix Completes Patient Enrollment in Phase IIa Rheumatoid Arthritis Study

Heart tissue derived from embryonic stem cells doesn’t skip a beat

Posted: August 8, 2012 at 1:14 am

Cardiac muscle cells derived from human embryonic stem cells

The promise of embryonic stem cells lies in their ability to develop into any type of cell in the human body, which should allow us to replace tissues lost due to injury or disease. But it's one thing to generate replacement cells; it's another thing to generate entire tissues and integrate them into a functioning organ. A paper released by Nature now reports some success with turning human embryonic stem cells (hESCs) into cardiac cells and getting them to beat in synchrony with a damaged heart.

The blockage of blood vessels in the heart, either through clots or occlusion, causes the cells that rely on the blocked vessel to die off. This both weakens the heart structurally and changes the ability of the heart to beat in an organized manner, since the scar tissue that develops doesn't conduct electrical impulses. Serious arrhythmias can develop as a result of this changed activity, and these can sometimes end up causing the heartbeat to be lost entirely.

Embryonic stem cells have been used to try to repair damaged hearts for a while, starting with simple experiments where the stem cells themselves were injected. More recently, researchers have induced hESCs to form cardiac muscle cells (cardiomyocytes) before implanting them in a damaged heart (typically that of a mouse or rat). This treatment tends to increase the ability of the heart to pump blood, indicating that stem cells can reverse the weakening of the heart.

But it has been harder to get at the electrical integration of these stem cells, in part because the rodents that the researchers used have a very fast heartbeaton the order of 400-600 beats a minute. (The human heart rate is normally under 100 beats per minute.) So, the new work relied on the guinea pig, which apparently has a heart rate that is only about 200-250 beats per minute.

The authors took an hESC line and induced it to form cardiomyocytes, which were injected into injured hearts and then allowed to integrate with the injured heart for a while. Rather than focusing on blood flow, the authors tracked the development of arrhythmias. It turns out that the hESC-derived cardiomyocytes suppressed them. The guinea pigs treated with them had the lowest rate of premature ventricular contractions, or PVCs, which occur when the lower chambers of the heart beat ahead of schedule. They also went into tachycardia, or a run of rapid heartbeats, less often.

To track the behavior of the hESC-derived cardiac cells, the authors inserted a gene for a protein that becomes fluorescent in response to changes in calcium, which accompany the electrical impulses that drive a heartbeat. By tracking whether a cell was glowing, the authors could determine whether the human cells were tied to the regular guinea pig heartbeat.

Here, the results were a bit mixed. In areas where the hESC-derived cells were stuck in an area with lots of scar tissue, they tended to contract on their own, without significant influence from the guinea pig's rhythm. But in other areas where the cells were clear of nearby scar tissue, they tended to tie in nicely with the heart's overall rhythmeven when they weren't necessarily close to any guinea pig tissue.

The results are very promising, in that they show that embryonic stem cells can be used to create a large population of cardiomyocytes that can then function normally when placed back into a heart. But they also make it clear that scar tissue remains a problem in damaged hearts. Even if muscle tissue gets replaced, it won't integrate well if there's a significant amount of scar tissue around. This provides researchers with an obvious target for future efforts.

Incidentally, a number of the researchers involved in this work were based at US institutions. Early in the history of stem cell research, legislation was considered that would ban the creation of human-animal hybrids. Although it was probably written with Frankenstein-like chimeras in mind, some of it was so broadly worded that it would have banned basic safety and efficacy research such as the work described by this paper. Fortunately, it never passed, so US researchers are still able to contribute to work like this.

Read more from the original source:
Heart tissue derived from embryonic stem cells doesn't skip a beat

Posted in Stem Cells | Comments Off on Heart tissue derived from embryonic stem cells doesn’t skip a beat

Page 2,675«..1020..2,6742,6752,6762,677..2,6802,690..»