Page 2,706«..1020..2,7052,7062,7072,708..2,7202,730..»

Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases

Posted: June 30, 2012 at 7:12 am

SAN DIEGO CA--(Marketwire -06/29/12)- Medistem Inc. (MEDS) announced today notice of allowance from the United States Patent and Trademark Office (USPTO) for a patent covering the use of fat stem cells, and cells associated with fat stem cells for treatment of diseases related to a dysfunctional immune system. Such diseases include multiple sclerosis, Type 1 diabetes, rheumatoid arthritis and lupus. The allowed patent, entitled "Stem Cell Mediated Treg Activation/Expansion for Therapeutic Immune Modulation" has the earliest priority date of December 2006.

"We have previously published that giving multiple sclerosis patients cells extracted from their own fat tissue, which contains stem cells, appears to confer clinical benefit in a pilot study," said Thomas Ichim, CEO of Medistem. "The current patent that has been allowed, in the broadest interpretation of the claims, gives us exclusive rights to the use of specific types of fat stem cell therapy for autoimmune diseases such as multiple sclerosis."

Subsequent to the filing of the patent application, Medistem together with collaborators at the Lawson Health Sciences Research Institute, Canada, reported data that fat tissue contains high numbers of T regulatory cells, a type of immune cell that is capable of controlling autoimmunity.

This finding was independently confirmed by Dr. Diane Mathis' laboratory at Harvard University, who published a paper in the prestigious journal, Nature Medicine, in which detailed experimental evidence was provided supporting the initial finding that adipose tissue contains high numbers of T regulatory cells. A video describing the paper can be accessed at http://www.youtube.com/watch?v=rEJfGu29Rg8.

The current patent discloses the use of T regulatory cells from fat, combinations with stem cells, and use of fat-derived mononuclear cells. Given that there are currently several groups utilizing this technology in the USA in treating patients, Medistem believes revenue can be generated through enforcement of patent rights.

"Our corporate philosophy has been to remain highly focused on our ongoing clinical stage programs using Medistem's universal donor stem cell, the Endometrial Regenerative Cell (ERC), in the treatment of critical limb ischemia and congestive heart failure," said Dr. Vladimir Bogin, Chairman and President of Medistem. "However, due to the ease of implementation of our fat stem cell technology, combined with the major burden that autoimmune diseases have on our health care system, we are highly incentivized to explore partnering, co-development and licensing opportunities."

Autoimmune conditions occur as a result of the body's immune system "turning on itself" and attacking its own organs or cells. Current treatments for autoimmune conditions are based on "globally" suppressing the immune system by administration of immunosuppressive drugs. This is associated with an increased predisposition to infections and significant side effects. The utilization of stem cells and T regulatory cells offers the potential to selectively suppress pathological immunity while preserving the ability of the body to fight bacteria and viruses. According to the NIH there are approximately 23 million victims of autoimmune conditions.

Links to Documents:

Link to peer-reviewed publication: http://www.translational-medicine.com/content/pdf/1479-5876-7-29.pdf

Link: http://www.marketwire.com/press-release/medistem-files-patent-application-on-therapeutic-cell-population-found-in-fat-tissue-frankfurt-s2u-812298.htm

View original post here:
Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases

Posted in Stem Cell Treatments | Comments Off on Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases

Brain Cells Derived From Skin Cells For Huntington's Research

Posted: June 30, 2012 at 7:12 am

Editor's Choice Main Category: Huntingtons Disease Also Included In: Stem Cell Research;Neurology / Neuroscience Article Date: 29 Jun 2012 - 14:00 PDT

Current ratings for: Brain Cells Derived From Skin Cells For Huntington's Research

3 (1 votes)

At present, there is no cure for the disease and no treatments are available. These findings open up the possibility of testing treatments for the deadly disorder in a petri dish.

The study is the work of a Huntington's Disease iPSC Consortium, including researchers from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, and six other groups.

Huntington's disease is an inherited, deadly neurodegenerative disorder. The onset of HD generally occurs during midlife, although it can also strike in childhood - as in the patient who donated the material for the cells generated in this study. The disease causes jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and ultimately death.

Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the lead researchers of the study, explained:

The team are currently testing small molecules for the ability to block HP iPSC degeneration. According to the researchers, these molecules could potentially be developed into new drugs for Huntington's disease.

Furthermore, the teams ability to create "HD in a dish" may also have implications for similar research in other diseases such as Parkinson's and Alzheimer's.

In the study, the team took a skin biopsy from a 7-year-old patient with very early onset of severe HD. In the laboratory of Hongjun Song, Ph.D., a professor at Johns Hopkins' Institute for Cell Engineering, the skin cells were grown in culture and then created into pluripotent stem cells. In addition, a second cell line was created in the same way in Dr. Ross's lab from an individuals without HD.Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

See the original post here:
Brain Cells Derived From Skin Cells For Huntington's Research

Posted in Stem Cell Research | Comments Off on Brain Cells Derived From Skin Cells For Huntington's Research

Research and Markets: Handbook of Stem Cells, Two-Volume Set. Edition No. 2

Posted: June 30, 2012 at 7:12 am

DUBLIN--(BUSINESS WIRE)--

Research and Markets (http://www.researchandmarkets.com/research/4ghhzd/handbook_of_stem_c) has announced the addition of Elsevier Science and Technology's new report "Handbook of Stem Cells, Two-Volume Set. Edition No. 2" to their offering.

New discoveries in the field of stem cells increasingly dominate the news and scientific literature revealing an avalanche of new knowledge and research tools that are producing therapies for cancer, heart disease, diabetes, and a wide variety of other diseases that afflict humanity. The Handbook of Stem Cells integrates this exciting area of life science, combining in two volumes the requisites for a general understanding of adult and embryonic stem cells. Organized in two volumes entitled Pluripotent Stem Cells & Cell Biology and Adult & Fetal Stem Cells, this work contains contributions from the world's experts in stem cell research to provide a description of the tools, methods, and experimental protocols needed to study and characterize stem cells and progenitor populations as well as a the latest information of what is known about each specific organ system.

- Provides comprehensive coverage on this highly topical subject

- Contains contributions by the foremost authorities and premiere names in the field of stem cell research

- Companion website contains over 250 color figures in presentation format

For more information visit http://www.researchandmarkets.com/research/4ghhzd/handbook_of_stem_c

Source: Elsevier Science and Technology

Here is the original post:
Research and Markets: Handbook of Stem Cells, Two-Volume Set. Edition No. 2

Posted in Stem Cell Research | Comments Off on Research and Markets: Handbook of Stem Cells, Two-Volume Set. Edition No. 2

Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Posted: June 30, 2012 at 7:12 am

MOBILE, Alabama -- The Baldwin County doctor that treated former Alabama football players with adult stem cells also has treated at least two people diagnosed with amyotrophic lateral sclerosis, also known as Lou Gehrigs disease.

One of the ALS patients, former NFL football player and college coach Frank Orgel, recently underwent a new stem cell reprogramming technique performed by Dr. Jason R. Williams at Precision StemCell in Gulf Shores.

Before the injections, Orgels health had declined. He could not move his left arm or leg. He couldnt walk or stand on his own, he said.

Within a few days of having the stem cell treatment, Orgels constant muscle twitching diminished, said Bob Hubbard, director of stem cell therapy at the practice. Within weeks, he was able to walk in a pool of water and stand unassisted.

I think its helped me, said Orgel, who was a defensive coordinator at Auburn under former head coach Pat Dye. Im walking in the pool and I used to drag my feet. Now my left leg is picking up.

ALS is a progressive neuro-degenerative disease that affects nerve cells in the brain and the spinal cord. The progressive degeneration of the motor neurons in ALS eventually leads to death, according to the ALS Association.

Stem cells, sometimes called the bodys master cells, are precursor cells that develop into blood, bones and organs, according to the U.S. Food and Drug Administration, which regulates their use. Their promise in medicine, according to many scientists and doctors, is that the cells have the potential to help and regenerate other cells.

While Williams treatments are considered investigational, he has said, they meet FDA guidelines because the stem cells are collected from a patients fat tissue and administered back to that patient during the same procedure.

Orgel, 74, said Williams told him it would take between eight months to a year for his nerves to regrow. He is traveling to Gulf Shores from his home in Albany, Ga., this weekend for another stem cell treatment, Orgel said: I need to get to where I can walk.

In recent years, Orgel has gone to Mexico at least three times for different types of treatments, not sanctioned in the U.S. At least once, he said, he had placenta cells injected into his body. That didnt work, Orgel said. I didnt feel any better.

Read the original post:
Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Posted in Stem Cell Research | Comments Off on Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Researcher hunts for sickle cell anemia cure with gene targeting, stem cells

Posted: June 30, 2012 at 7:12 am

Halfway around the world in India, Sivaprakash Ramalingam had heard of Johns Hopkins researchers using a promising new technique for gene therapy that he hoped to integrate with stem cells to cure diseases.

After getting a doctorate in biochemistry in his native country, he came to Baltimore four years ago to study under the technique's pioneer, Srinivasan Chandrasegaran, at Hopkins' Bloomberg School of Public Health. Ramalingam's research has led him down the path of seeking a cure for sickle cell anemia, a painful, life-shortening blood disorder that afflicts many in his home region in southern India. In the United States, the disease affects 70,000-100,000 people, mostly African-Americans, according to the National Heart Lung and Blood Institute.

"I couldn't have done this type of research in India," said Ramalingam. "I wanted to use this technique with stem cells to treat disease."

Ramalingam's research was given a lift last month by the state. He was one of 17 researchers who was funded by the Maryland Stem Cell Research Commission, a state entity that has doled out roughly $10 million to $12 million a year in taxpayer funds since its founding in 2006.

The program helps keep Maryland competitive in stem cell research when other states have instituted similar ones to lure scientists and biotechnology companies. More than 100 researchers applied for funding from the program, many from Johns Hopkins and the University of Maryland.

"There's definitely a great demand for the awards," said Dan Gincel, the commission's director. "We're trying to figure out how to fund so many researchers."

Gincel said Ramalingam's work is interesting because his approach could have applications beyond sickle cell anemia. It could be used to treat other diseases and, for instance, modify plants and crops to make them resistant to pests.

Ramalingam received a $110,000 award two years ago from the commission to help fund his post-doctoral fellowship; the commission invested more money in his work this year because he was continuing to progress with it, Gincel said.

"The approach can be translated to many other diseases, which is what we want to see with stem cells," said Gincel.

Ramalingam is applying a relatively new technique called zinc finger nuclease, or ZFN, to try to cure sickle cell anemia. With ZFN, Ramalingam is able to target and replace specific, problem-causing sequences of the human genome with healthier genetic material.

Here is the original post:
Researcher hunts for sickle cell anemia cure with gene targeting, stem cells

Posted in Stem Cell Research | Comments Off on Researcher hunts for sickle cell anemia cure with gene targeting, stem cells

Stem cell bank, age 4, to be closed

Posted: June 30, 2012 at 7:12 am

BOSTON The University of Massachusetts Medical School and the Massachusetts Life Sciences Center have agreed to phase out operation of the embryonic stem cell bank in Shrewsbury, saying the facility, which is 4 years old, has largely outlived its usefulness.

The stem cell bank, slated for closure at the end of the year, was established at the medical school alongside a stem cell registry that collects stem cell research data, to store embryonic stem cell lines from an array of research centers and make them available to scientists around the world.

It was set up at a time when the federal government had banned use of federal funds for research using embryonic stem cells. That ban put in place by President George W. Bush was withdrawn by President Barack Obama after he took office in 2009.

State funding for the bank came as part of a larger state effort to expand life science research across Massachusetts using targeted state grants, tax benefits and by supporting facilities such as the stem cell bank.

Angus G. McQuilken, spokesman for the Life Sciences Center that awarded the project $8.6 million to open and operate, said yesterday that the school and Life Sciences officials have agreed to wind down the bank's operations by the end of this year.

He said the stem cell registry, which received $1.7 million in startup and operational funding from the Life Sciences Center, remains a valued center for compilation of stem cell research and will remain in operation and continue receiving funds from the Life Science Center.

When this investment was made in 2007 it filled an important gap, Mr. McQuilken said, referring to the restrictions on federal support for embryonic stem cell research. Stem cell lines are now more readily available from multiple sources.

Future investment by the state in stem cell research will move in a different direction. The university is building the $400 million Albert Sherman Center, a major new genetic research facility at its Worcester campus.

While it may have quickly outlived its usefulness, the initial investment in the stem cell bank was an important one that made an important statement about the state's commitment to stem cell research, Mr. McQuilken said.

A medical school spokesman said closing the stem cell bank is expected to eliminate about nine jobs. Those displaced will be encouraged to seek other positions at the medical school, officials said.

Continue reading here:
Stem cell bank, age 4, to be closed

Posted in Stem Cell Research | Comments Off on Stem cell bank, age 4, to be closed

Skin Cells Create Stem Cells In Huntington Disease Study

Posted: June 30, 2012 at 4:15 am

June 29, 2012

Connie K. Ho for redOrbit.com Your Universe Online

In 1993, the autosomal dominant gene mutation responsible for Huntingtons Disease (HD) was discovered. However, no treatments are known to slow its progression. New research may pave the way to better understanding of the disease. Researchers at Johns Hopkins recently announced that they were able to produce stem cells from skin cells from a person who had severe, early-onset form of HD; the cells were then changed into neurons that degenerated like the cells affected by HD.

The research was recently published in the journal Cell Stem Cell. The investigators worked with an international consortium in creating HD in a dish. The group was made up of scientists from Johns Hopkins University School of Medicine, Cedars-Sinai Medical Center, the University of California at Irvine, as well as six other groups. The team looked at many other HD cell lines and control cell lines to verify that the results were consistent and reproducible in other labs. The investigators believe that the findings allow them to better understand and eliminate cells in people in with HD. They hope to study the effects of possible drug treatments on cells that would be otherwise found deep in the brain.

Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, remarked lead researcher Dr. Christopher A. Ross, a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine, in a prepared statement. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.

The team of researchers is studying small molecules for the ability to block HD iPSC degeneration to see if they can be developed into new drugs for HD. As well, the ability to produce from stem cells the same neurons found in HD may have effects for similar research in other neurodegenerative diseases like Alzheimers and Parkinsons. In the experiment, Ross took a skin biopsy from a patient with very early onset HD. The patient was seven years old at the time, with a severe form of disease and a mutation that caused it. By using cells from a patient who had quickly progressing HD, Ross team were able to mimic HD in a way that could be used by patients who had different forms of HD.

The skin cells were grown in culture and reprogrammed to induce stem cells that were pluripotent. Then, another cell line was created in the same way from someone who didnt have HD. The other HD and control iPS cells were produced as part of the NINDS funded HD iPS cell consortium. Investigators from Johns Hopkins and the other consortium labs changed the cells into typical neurons and then into medium spiny neurons. The process took a total of three months and the scientists found the medium spiny neurons from the HD cells acted how the medium spiny neurons form an HD patient would. The cells demonstrated quick degeneration when cultured in the lab with a basic culture medium that didnt include extensive supporting nutrients. On the other hand, control cell lines didnt demonstrate neuronal degeneration.

These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntingtons Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.

Source: Connie K. Ho for redOrbit.com Your Universe Online

Read the original post:
Skin Cells Create Stem Cells In Huntington Disease Study

Posted in Stem Cells | Comments Off on Skin Cells Create Stem Cells In Huntington Disease Study

Stem Cells From Muscular Dystrophy Patients Transplanted Into Mice

Posted: June 30, 2012 at 4:15 am

Editor's Choice Main Category: Muscular Dystrophy / ALS Also Included In: Transplants / Organ Donations Article Date: 29 Jun 2012 - 11:00 PDT

Current ratings for: Stem Cells From Muscular Dystrophy Patients Transplanted Into Mice

A new study published in Science Translational Medicine reveals that researchers have, for the first time, managed to turn fibroblast cells, i.e. common cells within connective tissue, from muscular dystrophy patients into stem cells and subsequently changed these cells into muscle precursor cells. After modifying the muscle precursor cells genetically, the researchers transplanted them into mice.

In future, this new technique could be used in order to treat patients with the rare condition of limb-girdle muscular dystrophy, which primarily affects the shoulders and hips, and maybe other types of muscular dystrophies. The method was initially developed in Milan at the San Raffaele Scientific Institute and was completed at UCL.

Muscular dystrophy is a genetic disorder, which typically affects skeletal muscles. The condition leads to severely impaired mobility and can, in severe cases result in respiratory and cardiac dysfunction. At present, there is no effective treatment for the condition. A number of new potential therapies, including cell therapy, are entering clinical trials.

The scientists of this study concentrated their research on genetically modifying mesoangioblasts, i.e. a self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues, which demonstrated its potential for treating muscular dystrophy in earlier studies.

Given that the muscles of patients with muscular dystrophy are depleted of mesonangioblasts, the researchers were unable to obtain sufficient numbers of these cells from patients with limb-girdle muscular dystrophy, and therefore "reprogrammed" adult cells from these patients into stem cells, which enabled them to prompt them to differentiate into mesoangioblast-like cells.The team then genetically corrected these 'progenitor' cells by using a viral vector, and injected them into mice with muscular dystrophy so that the cells targeted damaged muscle fibers.

In a mice study, the same process demonstrated that dystrophic mice were able to run on a treadmill for longer a longer time than dystrophic mice that did not receive the cells.

Research leader, Dr Francesco Saverio Tedesco, from UCL Cell & Developmental Biology, who led the study, explained:

Professor Giulio Cossu, also an author at UCL, concluded:

See the rest here:
Stem Cells From Muscular Dystrophy Patients Transplanted Into Mice

Posted in Stem Cells | Comments Off on Stem Cells From Muscular Dystrophy Patients Transplanted Into Mice

Stem Cell Therapy | Producers Direct | Kansas City, Missouri – Video

Posted: June 30, 2012 at 4:14 am

28-06-2012 14:46

See more here:
Stem Cell Therapy | Producers Direct | Kansas City, Missouri - Video

Posted in Cell Therapy | Comments Off on Stem Cell Therapy | Producers Direct | Kansas City, Missouri – Video

Cell Press journals continue to deliver high impact

Posted: June 30, 2012 at 4:14 am

Public release date: 29-Jun-2012 [ | E-mail | Share ]

Contact: Elisabeth (Lisa) Lyons elyons@cell.com 617-386-2121 Cell Press

Latest annual citation reports confirm Cell Press delivers highly valued, highly cited research and reviews to the scientific community it serves

We are delighted to report that the new impact factors align with community perception and confirm that Cell Press continues to publish the highest impact research and reviews in the biomedical sciences, according to the latest Journal Citation Reports published by Thomas Reuters.

Cell Press's flagship journal Cell received an impressive impact factor of 32.403. Showing strong and steady growth, Cell's impact factor has increased by 9% since 2005, maintaining its status as the premier research journal in its field. Cell is currently ranked the number one research journal in the 'Cell Biology' and 'Biochemistry & Molecular Biology' categories.

Over 70% of journals within the Trends review journal series increased in impact factor this year, with significant growth across several life science disciplines. Top performers include Trends in Cognitive Science, which increased by 30% to 12.586, Trends in Immunology, which grew 9% to 10.403, and Trends in Ecology and Evolution, which rose 9% to 15.748. Published by Cell Press since 2007, Trends journals offer the unparalleled level of in-house editorial expertise that exists within all of the Cell Press journals, with the support of committed and enthusiastic editorial boards and an extensive range of fair and knowledgeable reviewers.

The substantial increase for Trends in Cognitive Sciences is also reflected in the other Cell Press neuroscience journals. Neuron, which has been publishing leading neuroscience research and reviews since 1988, increased by 5% to 14.736, and Trends in Neurosciences is up from 13.320 to 14.235.

"We are very pleased to see the scientific community's response to the work published in Cell Press journals. We are grateful to the authors who entrust their best work to us and to the reviewers who provide invaluable advice and guidance," said Emilie Marcus, Editor-in-Chief and CEO of Cell Press. "Cell Press editors work hard to maintain the high editorial standards expected of them by our authors and readers, and understand the importance of engaging with, and being accessible to, the life science research community which we are all proud to be a part of."

Cell Press's more recent journal launches, aimed at expanding our scope into translational biomedical areas, continue to maintain their influence within the scientific community. Launched in 2007, Cell Stem Cell has an impact factor of 25.421 and has been named a "Rising Star" in the field of Clinical Medicine by Thomson Reuters. This means that, in 2011, Cell Stem Cell had the highest percentage growth in citations in its field. Celebrating a decade of high impact publication in 2012, Cancer Cell has a well established impact factor of 26.566.

The 2011 Journal Citation Reports ranks the Cell Press journals' impact factors as follows:

More here:
Cell Press journals continue to deliver high impact

Posted in Cell Medicine | Comments Off on Cell Press journals continue to deliver high impact

Page 2,706«..1020..2,7052,7062,7072,708..2,7202,730..»