Page 2,708«..1020..2,7072,7082,7092,710..2,7202,730..»

Stem Cell Therapy – Healthier Looking Skin ,Promote Younger, Reduce Wrinkles – Video

Posted: June 29, 2012 at 4:13 am

28-06-2012 09:19 Stem Cell Therapy More Info: Stem Cell Therapy -- Reduce Wrinkles,Promote Younger, Healthier Looking Skin * Increase production of new skin cells by 57% * Re-activate stem cells to stimulate fresh, new skin cell production * Increase natural collagen production by 80% * Decrease wrinkle appearance 56% in 30 days * Increase elastin synthesis by 61% Stem Cell Therapy, Stem Cell Skin Cream, Stem Cell Therapy BioLogic Solutions, Wrinkle Reducer, Decrease Wrinkles,Vanish Wrinkles Feel Younger, Aging Cream, Younger Looking Skin, No More Botox,antiaging,antiaging cream,botox alternative,

Read more from the original source:
Stem Cell Therapy - Healthier Looking Skin ,Promote Younger, Reduce Wrinkles - Video

Posted in Cell Therapy | Comments Off on Stem Cell Therapy – Healthier Looking Skin ,Promote Younger, Reduce Wrinkles – Video

Diabetes Reversal In Mice Via Stem Cells

Posted: June 28, 2012 at 6:21 pm

June 28, 2012

Connie K. Ho for redOrbit.com Your Universe Online

Diabetes is a detrimental disease. In order to combat the illness, University of British Columbia (UBC) researchers conducted a study with an industry partner and discovered that stem cells can reverse Type 1 diabetes in mice.

The discovery leads the way for the development of innovative treatments of diabetes, which is caused by deficient production of insulin by the pancreas. Insulin allows glucose to be held by the bodys muscle, fat, and liver; in turn, its used as fuel for the body. Blindness, heart attack, kidney failure, nerve damage, and stroke are possible consequences of low insulin production. The research by the UBC investigators addressed these various issues. The study was led by Timothy Kieffer, a professor in the Department of Cellular and Physiological Sciences, as well as scientists from BetaLogics, the New Jersey-based division of Janssen Research & Development, LLC.

We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans, remarked Kieffer, a member of UBCs Life Sciences Institute, in a prepared statement.

The team of investigators is the first to demonstrate that human stem cell transplants can bring back insulin production and reverse diabetes in mice. They were able to re-create the feedback loop that allows insulin levels to automatically increase or decrease based on blood glucose levels. The results from their projects was recently published online on the website of the journal Diabetes.

Following the stem cell transplant, the diabetes mice were slowly taken off insulin, a procedure which was to mirror human clinical condition. Even if they were given copious amounts of sugar, the mice were able to continue healthy blood sugar levels three to four months later. The transplanted cells that were removed from the mice many months after the experiments also showed signs of normal insulin-producing pancreatic cells.

Essentially, the mice were cured of their diabetes by placing the body back in charge of regulated insulin production as it is in healthy, non-diabetics, Kieffer told the Vancouver Sun. It took about four to five months for the [stem] cells to become functional in our experiments and the mice were able to maintain good blood glucose levels even when fed a high-glucose diet, said Kieffer, a UBC professor in the department of cellular and physiological sciences.

Research still needs to be done to finalize details of the approach for diabetes treatment.

The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression, explained Kieffer in the statement.

See original here:
Diabetes Reversal In Mice Via Stem Cells

Posted in Stem Cell Videos | Comments Off on Diabetes Reversal In Mice Via Stem Cells

Turning skin cells into brain cells

Posted: June 28, 2012 at 6:21 pm

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Stephanie Desmon sdesmon1@jhmi.edu 410-955-8665 Johns Hopkins Medical Institutions

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntington's disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating "HD in a dish," the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntington's Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

"Having these cells will allow us to screen for therapeutics in a way we haven't been able to before in Huntington's disease," says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the study's lead researchers. "For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic."

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntington's disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimer's and Parkinson's.

See the article here:
Turning skin cells into brain cells

Posted in Stem Cell Videos | Comments Off on Turning skin cells into brain cells

Turning skin cells into brain cells: Huntington's disease in a dish

Posted: June 28, 2012 at 6:21 pm

ScienceDaily (June 28, 2012) Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntington's disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating "HD in a dish," the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntington's Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and -- eventually -- death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

"Having these cells will allow us to screen for therapeutics in a way we haven't been able to before in Huntington's disease," saysChristopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the study's lead researchers. "For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic."

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration.These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntington's disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimer's and Parkinson's.

To conduct their experiment, Ross took a skin biopsy from a patient with very early onset HD.When seen by Ross at the HD Center at Hopkins, the patient was just seven years old. She had a very severe form of the disease, which rarely appears in childhood, and of the mutation that causes it. Using cells from a patient with a more rapidly progressing form of the disease gave Ross' team the best tools with which to replicate HD in a way that is applicable to patients with all forms of HD.

Her skin cells were grown in culture and then reprogrammed by the lab of Hongjun Song, Ph.D., a professor at Johns Hopkins' Institute for Cell Engineering, into induced pluripotent stem cells. A second cell line was generated in an identical fashion in Dr. Ross's lab from someone without HD. Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

See the article here:
Turning skin cells into brain cells: Huntington's disease in a dish

Posted in Stem Cell Videos | Comments Off on Turning skin cells into brain cells: Huntington's disease in a dish

Stem cells help some ailing Houston Zoo creatures

Posted: June 28, 2012 at 6:21 pm

HOUSTON -

Pandu, the 286-pound Malayan tiger stretched out on the gurney in the Houston Zoo's hospital, had bone chips big ones in his right elbow.

Ivy the leopard, being prepped in another room, also needed medical treatment for her limp. The zoo's 68-pound black cat, which had arthroscopic surgery in 2009, was showing signs of pain again in her elbows.

The zoo staff was worried.

"I imagine we are going to end up euthanizing her at some point if it can't be fixed," said Beth Schaefer, the zoo's curator of carnivores and primates.

With two big cats needing attention, surgeon Brian Beale of Gulf Coast Veterinary Specialists and stem-cell specialists at InGeneron Inc. donated their services to treat the animals. While Beale removed bone chips and cleaned the joints during arthroscopic surgery, InGeneron staffers produced stem cells from each animal's body fat.

When the surgeries were complete, Beale injected the stem cells, which had taken about two hours to process for each big cat, into the animals' joints to promote faster healing.

Pandu, always a big baby looking for attention, was moving a bit slowly the day after surgery.

Feisty Ivy pretended nothing was wrong.

A week after the surgery, Houston Zoo veterinarian Lauren Howard says neither animal has suffered complications. Pandu, with mild swelling, was released into his exhibit half-days on Monday.

Read more from the original source:
Stem cells help some ailing Houston Zoo creatures

Posted in Stem Cell Videos | Comments Off on Stem cells help some ailing Houston Zoo creatures

Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Posted: June 28, 2012 at 6:21 pm

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES (EMBARGOED UNTIL NOON EDT ON JUNE 28, 2012) Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.

As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.

"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.

The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.

"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."

Originally posted here:
Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Posted in Stem Cell Treatments | Comments Off on Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Huntington's Research Tool Developed Using Stem Cells

Posted: June 28, 2012 at 6:21 pm

Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 28 Jun 2012 - 9:00 PDT

Current ratings for: Huntington's Research Tool Developed Using Stem Cells

Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.

As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.

"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.

The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.

"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."

Read the original:
Huntington's Research Tool Developed Using Stem Cells

Posted in Stem Cell Treatments | Comments Off on Huntington's Research Tool Developed Using Stem Cells

Stem cell bank at UMass to close at year's end

Posted: June 28, 2012 at 6:21 pm

SHREWSBURY, Mass.The stem cell bank at the University of Massachusetts is set to run out of cash and close at the end of this year.

State and university officials tell The Boston Globe (http://bo.st/LQi71Z ) that changes in technology and federal policies around stem cell research have made obsolete the facility at the U-Mass Medical Center's Shrewsbury campus.

The stem cell bank was established in 2008 with the help of $8.6 million state funding, part of Gov. Deval Patrick's effort to boost the life sciences industry in Massachusetts. Human stem cells were kept and distributed to researchers working on potential cures for diseases and spinal cord injuries.

Experts say new technologies for producing stem cells and the loosening of federal restrictions on research have significantly altered the need for facilities like the one at U-Mass.

Information from: The Boston Globe, http://www.boston.com/globe

Copyright 2012 Associated Press. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

See the original post here:
Stem cell bank at UMass to close at year's end

Posted in Stem Cell Research | Comments Off on Stem cell bank at UMass to close at year's end

Human model of Huntington's disease created from skin's stem cells

Posted: June 28, 2012 at 6:21 pm

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine

Irvine, Calif., June 28, 2012 An international consortium of Huntington's disease experts, including several from the Sue & Bill Gross Stem Cell Research Center at UC Irvine, has generated a human model of the deadly inherited disorder directly from the skin cells of affected patients.

The re-created neurons, which live in a petri dish, will help researchers better understand what disables and kills brain cells in people with HD and let them gauge the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

UCI scientists were part of a consortium that in 1993 identified the autosomal dominant gene mutation responsible for HD, but there is still no cure, and no treatments are available to even slow its onset or progression. The research, published online today in the journal Cell Stem Cell, is the work of the Huntington's Disease iPSC Consortium. Participants examined several other cell lines and control cell lines to ensure that their results were consistent and reproducible in different labs.

"Our discovery will enable us for the first time to test therapies on human Huntington's disease neurons," said Leslie Thompson, UCI professor of psychiatry & human behavior and neurobiology & behavior, one of the world's leading HD experts and a senior author of the study. "This has been a remarkable time in HD research, with the advent of stem cell technologies that have allowed these scientific advancements. Also, having a team of scientists working together as a consortium has benefited the research tremendously and accelerated its pace."

Leslie Lock, a UCI assistant professor of developmental & cell biology and biological chemistry whose lab helped develop the induced pluripotent stem cells (iPSC), added: "It's exciting to be carrying out work that provides hope for HD patients and their families."

Thompson said that UCI scientists will use the new model to study the specific gene expression changes in human brain cells that trigger the onset of HD, helping them understand how these changes happen and how to correct them.

Huntington's disease afflicts about 30,000 people in the U.S. typically striking in midlife and another 75,000 carry the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that individuals with HD progressively lose their ability to walk, talk and reason. It invariably culminates in death. While rare, HD is the most common inherited neurodegenerative disease.

###

See the original post:
Human model of Huntington's disease created from skin's stem cells

Posted in Stem Cell Research | Comments Off on Human model of Huntington's disease created from skin's stem cells

UMass stem cell lab to close

Posted: June 28, 2012 at 6:21 pm

The stem cell bank that was a marquee piece of Governor Deval Patricks effort to bolster the life sciences industry will run out of funding at the end of the year and close, state and University of Massachusetts Medical School officials said Wednesday. The state invested $8.6 million in public funds to establish the bank at the medical schools Shrewsbury campus.

That decision in 2008 was seen then as a bold statement of support for research on human embryonic stem cells during a time when federal funding for work on the controversial cells was restricted. But advances in technology and changes to federal policies rapidly made the bank obsolete, state officials said.

The laboratory grew and stored human stem cells, which are capable of becoming any cell in the body, and made them available to scientists nationwide for use in experiments to study diseases such as diabetes and spinal cord injuries. When it is dismantled, several thousand vials of stem cellswill be sent back to the research centers where they originated, and the equipment will be given to other UMass labs.

Susan Windham-Bannister, president of the Massachusetts Life Sciences Center, a quasi-public agency that oversees the $1 billion life sciences initiative, defended the decision to initially fund the stem cell bank. She said there are many examples of technology that in hindsight are unnecessary, but at the time it was conceived, when the investment was made, it was absolutely state of the art. The center, she said, was one of them.

Originally, the bank was seen as a repository for embryonic stem cell lines that were being created but were not eligible for federal funding under Bush-era restrictions. The field has evolved significantly since then, with President Obamas loosening of restrictions on federal funding and the development of new technologies for making stem cells.

Still, stem cell banks are seen as useful by some. The California Institute for Regenerative Medicine, for example, is preparing to invest $10 million in its own stem cell banking initiative, and another $20 million to underwrite the creation of stem cells from patients with specific diseases.

Massachusetts Senate minority leader Bruce Tarr, Republican of Gloucester, said he was concerned that lawmakers had not been told the bank would close.

Given the fact that this is a resource that was created by an act of the Legislature, I would hope anyone seeking to change its status would consult with the Legislature, he said. The notion has always been we have been working hard to make Massachusetts a leader in stem cell research, and I dont know how ceasing the operations of the stem cell bank advances that goal.

Researchers who had developed and sent some of the 18 embryonic stem cell batches, called lines, that are currently available at UMass expressed their disappointment.

I think the closing of the UMass bank, where we had anticipated maintaining a lot of our lines, means we will have to come up with an alternative, said Dr. George Q. Daley, a stem cell scientist at Boston Childrens Hospital and the Harvard Stem Cell Institute who has sent about half a dozen stem cell lines to the bank. He said he received a call Tuesday from Joseph Laning, who joined UMass Medical School in 2010 to run the bank, alerting him that the bank would be closed.

Read the original post:
UMass stem cell lab to close

Posted in Stem Cell Research | Comments Off on UMass stem cell lab to close

Page 2,708«..1020..2,7072,7082,7092,710..2,7202,730..»