Page 2,731«..1020..2,7302,7312,7322,733..2,7402,750..»

“Magical State” of Embryonic Stem Cells May Help Overcome Hurdles to Therapeutics

Posted: June 13, 2012 at 9:20 pm

Salk researcher's findings suggest a potentially favorable time to harvest stem cells for therapy and may reveal genes crucial to tissue production

LA JOLLA, CA----With their potential to treat a wide range of diseases and uncover fundamental processes that lead to those diseases, embryonic stem (ES) cells hold great promise for biomedical science. A number of hurdles, both scientific and non-scientific, however, have precluded scientists from reaching the holy grail of using these special cells to treat heart disease, diabetes, Alzheimer's and other diseases.

In a paper published June 13 in Nature, scientists at the Salk Institute for Biological Studies report discovering that ES cells cycle in and out of a "magical state" in the early stages of embryo development, during which a battery of genes essential for cell potency (the ability of a generic cell to differentiate, or develop, into a cell with specialized functions) is activated. This unique condition, called totipotency, gives ES cells their unique ability to turn into any cell type in the body, thus making them attractive therapeutic targets.

"These findings," says senior author Samuel L. Pfaff, a professor in Salk's Gene Expression Laboratory, "give new insight into the network of genes important to the developmental potential of cells. We've identified a mechanism that resets embryonic stem cells to a more youthful state, where they are more plastic and therefore potentially more useful in therapeutics against disease, injury and aging."

ES cells are like silly putty that can be induced, under the right circumstances, to become specialized cells-for example, skin cells or pancreatic cells-in the body. In the initial stages of development, when an embryo contains as few as five to eight cells, the stem cells are totipotent and can develop into any cell type. After three to five days, the embryo develops into a ball of cells called a blastocyst. At this stage, the stem cells are pluripotent, meaning they can develop into almost any cell type. In order for cells to differentiate, specific genes within the cells must be turned on.

Pfaff and his colleagues performed RNA sequencing (a new technology derived from genome-sequencing to monitor what genes are active) on immature mouse egg cells, called oocytes, and two-cell-stage embryos to identify genes that are turned on just prior to and immediately following fertilization. Pfaff's team discovered a sequence of genes tied to this privileged state of totipotency and noticed that the genes were activated by retroviruses adjacent to the stem cells.

Nearly 8 percent of the human genome is made up of ancient relics of viral infections that occurred in our ancestors, which have been passed from generation to generation but are unable to produce infections. Pfaff and his collaborators found that cells have used some of these viruses as a tool to regulate the on-off switches for their own genes. "Evolution has said, 'We'll make lemonade out of lemons, and use these viruses to our advantage,'" Pfaff says. Using the remains of ancient viruses to turn on hundreds of genes at a specific moment of time in early embryo development gives cells the ability to turn into any type of tissue in the body.

From their observations, the Salk scientists say these viruses are very tightly controlled-they don't know why-and active only during a short window during embryonic development. The researchers identified ES cells in early embryogenesis and then further developed the embryos and cultured them in a laboratory dish. They found that a rare group of special ES cells activated the viral genes, distinguishing them from other ES cells in the dish. By using the retroviruses to their advantage, Pfaff says, these rare cells reverted to a more plastic, youthful state and thus had greater developmental potential.

Pfaff's team also discovered that nearly all ES cells cycle in and out of this privileged form, a feature of ES cells that has been underappreciated by the scientific community, says first author Todd S. Macfarlan, a former postdoctoral researcher in Pfaff's lab who recently accepted a faculty position at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. "If this cycle is prevented from happening," he says, "the full range of cell potential seems to be limited."

It is too early to tell if this "magical state" is an opportune time to harvest ES cells for therapeutic purposes. But, Pfaff adds, by forcing cells into this privileged status, scientists might be able to identify genes to assist in expanding the types of tissue that can be produced.

Read more here:
"Magical State" of Embryonic Stem Cells May Help Overcome Hurdles to Therapeutics

Posted in Stem Cells | Comments Off on “Magical State” of Embryonic Stem Cells May Help Overcome Hurdles to Therapeutics

New Applications in Drug Discovery Platforms to Fuel Advance of Stem Cells, Says Frost & Sullivan

Posted: June 13, 2012 at 9:18 pm

Ethical, Clinical and Commercial Issues to be Navigated before Full Potential of Stem Cell Therapies can be Unleashed

LONDON, June 13, 2012 /PRNewswire-Asia/ -- Stem cells offer exciting potential in regenerative medicine, and are likely to be widely used by mid-2017. Pharmaceutical, biotech and medical device companies are showing increased interest in stem cell research.

New analysis from Frost & Sullivan (http://www.pharma.frost.com), Analysis of the Stem Cell Markets-Unlocking the New Era in Therapeutics, finds that the market will be driven by stem cell applications in drug discovery platforms and by successful academia commercial company partnership models.

"The high attrition rates of potential drug candidates has piqued the interest of pharmaceutical and biotech industries in stem cell use during the drug discovery phase," notes Frost & Sullivan Consulting Analyst Vinod Jyothikumar. "Previously, animal cell lines, tumours, or genetic transformation have been the traditional platform for testing drug candidates; however, these 'abnormal' cells have significantly contributed to a lack of translation into clinical studies."

Many academic institutes and research centres are collaborating with biotechnology and pharmaceutical companies in stem cell research. This will provide impetus to the emergence of novel cell-based therapies.

Key challenges to market development relate to reimbursement, ethics and the complexity of clinical trials.

Securing reimbursement for stem cell therapeutic products is expected to be critical for commercial success. However, stem cell therapies are likely to be expensive. Insurers, therefore, may be unwilling to pay for the treatment. At the same time, patients are unlikely to be able to afford these treatments.

"The use of embryonic stem cells raises a host of thorny ethical, legal, and social issues," adds Jyothikumar. "As a result, market prices for various products may be affected."

Moreover, many research institutes are adopting policies promoting the ethical use of human embryonic tissues. Such policies are hindering the overall research process for several companies working in collaboration with these institutes.

"In addition to apprehensions about how many products will actually make it through human-based clinical trials, companies are also worried about which financial model can be applied to stem cell therapies," cautions Jyothikumar. "Possibly low return on investment (ROI) is also resulting in pharmaceutical companies adopting a cautious approach to stem cell therapeutics."

Original post:
New Applications in Drug Discovery Platforms to Fuel Advance of Stem Cells, Says Frost & Sullivan

Posted in Cell Medicine | Comments Off on New Applications in Drug Discovery Platforms to Fuel Advance of Stem Cells, Says Frost & Sullivan

Stem cell scientist wins award

Posted: June 13, 2012 at 9:18 pm

13 June 2012 Last updated at 08:31 ET

Japanese stem cell scientist Dr Shinya Yamanaka has been awarded the Millennium Technology Prize.

His award is for discovering how to reprogram human cells to mimic embryonic stem cells, which can become any cell in the body.

Called induced pluripotent stem (iPS) cells, these now aid research into regenerative medicine.

He was joint-winner with Linus Torvalds, who created a new open source operating system for computers.

This is the first time the prize has been shared by two scientists - they will split the 1.2m euros ($1.3m; 800,000) award.

My goals over the decade include to develop new drugs to treat intractable diseases by using iPS cell technology and to conduct clinical trials using it on a few patients with Parkinson's diseases, diabetes or blood diseases.

The President of the Republic of Finland, Sauli Niinisto, presented the prize at the Finnish National Opera in Helsinki.

Dr Ainomija Haarla, President of Technology Academy Finland - the foundation which awards the prize every two years - said: "The International Selection Committee has to judge whether an innovation has had a favourable impact on people's lives and assess its potential for further development to benefit humanity in the future.

"The innovations of both this year's winners embody that principle.

Read more from the original source:
Stem cell scientist wins award

Posted in Cell Medicine | Comments Off on Stem cell scientist wins award

Scientists see new hope for restoring vision with stem cell help

Posted: June 13, 2012 at 9:18 pm

This is a human ES cell-derived optic cup generated in our self-organization culture (culture day 26). Bright green, neural retina; off green, pigment epithelium; blue, nuclei; red, active myosin (strong in the inner surface of pigment epithelium). Credit: Nakano et al. Cell Stem Cell Volume 10 Issue 6

Human-derived stem cells can spontaneously form the tissue that develops into the part of the eye that allows us to see, according to a study published by Cell Press in the 5th anniversary issue of the journal Cell Stem Cell. Transplantation of this 3D tissue in the future could help patients with visual impairments see clearly.

"This is an important milestone for a new generation of regenerative medicine," says senior study author Yoshiki Sasai of the RIKEN Center for Developmental Biology. "Our approach opens a new avenue to the use of human stem cell-derived complex tissues for therapy, as well as for other medical studies related to pathogenesis and drug discovery."

During development, light-sensitive tissue lining the back of the eye, called the retina, forms from a structure known as the optic cup. In the new study, this structure spontaneously emerged from human embryonic stem cells (hESCs)cells derived from human embryos that are capable of developing into a variety of tissuesthanks to the cell culture methods optimized by Sasai and his team.

The hESC-derived cells formed the correct 3D shape and the two layers of the optic cup, including a layer containing a large number of light-responsive cells called photoreceptors. Because retinal degeneration primarily results from damage to these cells, the hESC-derived tissue could be ideal transplantation material.

Beyond the clinical implications, the study will likely accelerate the acquisition of knowledge in the field of developmental biology. For instance, the hESC-derived optic cup is much larger than the optic cup that Sasai and collaborators previously derived from mouse embryonic stem cells, suggesting that these cells contain innate species-specific instructions for building this eye structure. "This study opens the door to understanding human-specific aspects of eye development that researchers were not able to investigate before," Sasai says.

The anniversary issue containing Sasai's study will be given to each delegate attending the 2012 ISSCR meeting in Yokohama, Japan. To highlight the ISSCR meeting and showcase the strong advances made by Japanese scientists in the stem cell field, the issue will also feature two other papers from Japanese authors, including the research groups of Akira Onishi and Jun Yamashita. In addition, the issue contains a series of reviews and perspectives from worldwide leaders in stem cell research.

More information: Nakano et al.: "Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs." DOI 10.1016/j.stem.2012.05.009

Journal reference: Cell Stem Cell

Provided by Cell Press

The rest is here:
Scientists see new hope for restoring vision with stem cell help

Posted in Cell Therapy | Comments Off on Scientists see new hope for restoring vision with stem cell help

Stem cell scientist wins award

Posted: June 13, 2012 at 6:24 pm

13 June 2012 Last updated at 08:31 ET

Japanese stem cell scientist Dr Shinya Yamanaka has been awarded the Millennium Technology Prize.

His award is for discovering how to reprogram human cells to mimic embryonic stem cells, which can become any cell in the body.

Called induced pluripotent stem (iPS) cells, these now aid research into regenerative medicine.

He was joint-winner with Linus Torvalds, who created a new open source operating system for computers.

This is the first time the prize has been shared by two scientists - they will split the 1.2m euros ($1.3m; 800,000) award.

My goals over the decade include to develop new drugs to treat intractable diseases by using iPS cell technology and to conduct clinical trials using it on a few patients with Parkinson's diseases, diabetes or blood diseases.

The President of the Republic of Finland, Sauli Niinisto, presented the prize at the Finnish National Opera in Helsinki.

Dr Ainomija Haarla, President of Technology Academy Finland - the foundation which awards the prize every two years - said: "The International Selection Committee has to judge whether an innovation has had a favourable impact on people's lives and assess its potential for further development to benefit humanity in the future.

"The innovations of both this year's winners embody that principle.

Read the original post:
Stem cell scientist wins award

Posted in Cell Medicine | Comments Off on Stem cell scientist wins award

BGI, GE Healthcare Team Up On Pioneering Stem Cell Science Projects

Posted: June 13, 2012 at 11:11 am

GE Healthcare, the healthcare business of GE, and BGI, the worlds largest genomics organization, jointly announced recently a pioneering multi-year research collaboration in stem cell science. The objective of the collaboration is to help advance the potential global utility of stem cell-derived assays for use in drug discovery and toxicity testing by exploring the underlying genetic variation between ethnically diverse human stem cell lines. The collaboration was announced at a signing ceremony attended by Dr Amr Abid, General Manager Cell Technologies, GE Healthcare Life Sciences and Lin Fang, Vice President of BGI, Ye Yin, Deputy President of BGI, and Yutao Du, Deputy President of BGI.

The collaborating parties are initially undertaking two ground-breaking projects. Firstly, BGI is performing genome sequencing and epigenetic analysis on cardiomyocytes and hepatocytes supplied by GE Healthcare Life Sciences. The aim is to map out the genetic variation across an ethnically diverse range of stem cell lines and to examine the changes that occur during differentiation into specific cell types in order to increase the understanding of cell models used in drug development research. Secondly, GE Healthcare is providing BGI with an IN Cell Analyzer 2000 system, a research tool for high content cellular imaging analysis. Training on the IN Cell Analyzer will be provided to BGI, enabling it to investigate gene function ! for a library of previously sequenced cell types by overexpressing or blocking the activity of single genes and observing the effect in selected populations of cells.

Dr Amr Abid, General Manager Cell Technologies, GE Healthcare Life Sciences, said, As the pharmaceutical industry seeks to reduce the cost of drug development and to bring more effective, safer drugs to market, the availability of more biologically relevant and predictive cell models is becoming increasingly important. Our long term vision is to help this process by developing a broad range of Cytiva stem-cell derived assays, to include cell types from a wide diversity of ethnic backgrounds. This is a big challenge a! nd we are delighted to be working with such a prestigious institute as the BGI, with its significant resources and world-class capabilities in genomics and epigenomics. By working together, we will advance our understanding of different stem cell lines, which in turn may in the future help in the global drive to develop new, safer and more effective medicines.

Yutao Du, Deputy President of BGI, said, The importance of high-throughput sequencing has been increasing rapidly in the areas of healthcare, agriculture, environment, and others. Genetic variation analysis of functional cells derived from embryonic stem ce! lls may provide a promising cell model resource for drug development and cell therapy. We are grateful for this opportunity to join hands with an outstanding healthcare organization to push the boundaries of understanding in the field of stem cells.

About GE Healthcare GE Healthcare provides tr ansformational medical technologies and services that are shaping a new age of patient care. Our broad expertise in medical imaging and information technologies, medical diagnostics, patient monitoring systems, drug discovery, biopharmaceutical manufacturing technologies, performance improvement and performance solutions services help our customers to deliver better care to more people around the world at a lower cost. In addition, we partner with healthcare leaders, striving to leverage the global policy change necessary to implement a successful shift to sustainable healthcare systems. Our healthymagination vision for the future invites the world to join us on our journey as we continuously develop innovations focused on reducing costs, increasing access and improving quality around the world. Headquartered in the United Kingdom, GE Healthcare is a unit of General Electric Company. Worldwide, GE Healthcare employees are ! committed to serving healthcare professionals and their patients in more than 100 countries. For more information, visit http://www.gehealthcare.com.

About BGI BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best avail! able technology, economies of scale, and expert bioinformatics resourc es. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German de! adly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1,000 genomes and human gut metagenome. For more information, visit http://www.genomics.cn.

SOURCE: GE Healthcare Life Sciences

Read more:
BGI, GE Healthcare Team Up On Pioneering Stem Cell Science Projects

Posted in Cell Therapy | Comments Off on BGI, GE Healthcare Team Up On Pioneering Stem Cell Science Projects

Stem cells harvested long after death

Posted: June 13, 2012 at 8:18 am

2012-06-13 08:31

Paris - Some stem cells can lay dormant for more than two weeks in a dead person and then be revived to divide into new, functioning cells, scientists in France said on Tuesday.

The research, published in the journal Nature Communications, unlocks further knowledge about the versatility of these cells, touted as a future source to replenish damaged tissue.

"Remarkably, skeletal muscle stem cells can survive for 17 days in humans and 16 days in mice, post mortem well beyond the one to two days currently thought," they said in a statement.

The stem cells retained their ability to differentiate into perfectly functioning muscle cells, they found.

"This discovery could form the basis of a new source, and more importantly new methods of conservation, for stem cells used to treat a number of pathologies," the statement said.

Stem cells are infant cells that develop into the specialised tissues of the body.

They have sparked great excitement as they offer hopes of rebuilding organs damaged by disease or accident.

The study led by Fabrice Chretien of France's Pasteur Institute found that to survive in adverse conditions, skeletal muscle stem cells lower their metabolism to enter a dormant state, using less energy.

The team then also looked at stem cells taken from bone marrow, where blood cells are produced.

The rest is here:
Stem cells harvested long after death

Posted in Stem Cells | Comments Off on Stem cells harvested long after death

Abunda to try stem cell therapy for mom

Posted: June 13, 2012 at 8:16 am

MANILA, Philippines -- "The Buzz" host Boy Abunda is going to Europe this weekend with his mother, who is suffering from dementia and Alzeimers disease.

In an interview with ABS-CBN News on Tuesday afternoon, Abunda said he will bring his mother to Germany to try stem cell therapy.

"Ako ay pupunta sa Europe hindi para magbakasyon. Dadalhin ko po ang aking ina para magpagamot sa Germany. Ito po 'yung fresh stem cell therapy. Maganda 'yung dini-diretso na dahil napag-uusapan ito," Abunda said.

While Abunda is in Germany, Kris Aquino will take his place on ABS-CBN's entertainment talk show "The Buzz."

In the interview, Abunda also said he's proud of Aquino, who's now open to doing extreme adventures, while continuing to be a good mother to her two sons.

"Ang daming nagbago kay Kris. May mga bagay na hindi ko inakala na gagawin ni Kris like 'yung diving, zipline at marami pang iba. Natutuwa ako that she has become more open to many things. She has become more adventurous. She has retained being the doting mother that she is pero mas malalim ang halakhak niya ngayon sa buhay. She's just so joyful. Natutuwa ako habang pinapanood ko ang kanyang adventure sa 'KrisTV,'" Abunda said.

Abunda said he's also hoping to do a new project with Aquino.

"I'm hoping na someday ay muli kaming magtagpo sa isang palabas dahil marami ang humihiling na kami ay magsama sa isang palabas. Sigurado ako sa puso ko na kami ay gagawa at gagawa dahil magkadugtong ang aming pusod," he said.

The rest is here:
Abunda to try stem cell therapy for mom

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Abunda to try stem cell therapy for mom

Some Stem-Cells May Not Be The Answer For Heart Disease

Posted: June 13, 2012 at 6:12 am

June 12, 2012

The use of stem-cells building-block cells that are harvested from embryos or adults to treat heart disease could rely on faith as much as it does science, after billions of dollars in research has not produced the results that researchers have been looking for.

Questions and concerns on the topic arose during the recent opening of the multi-million-dollar Scottish Center for Regenerative Medicine (SCRM) in Edinburgh, chaired by Sir Ian Wilmut, the renowned scientist whose Dolly the sheep clone in 1996, was a groundbreaking step in stem cell technology.

During the opening ceremonies of the Center, Christine Mummery of the Leiden University Medical Center in the Netherlands discussed how a 2001 claim, based on mice experimentation, indicated that bone-marrow cells could mend heart damaged by coronary disease, caused a mad rush of people to the clinics looking for a cure-all.

With nothing in the way of systematic research in animals, the first patients were being treated within a year, prematurely by Mummerys account. She argued that the paper that launched the mass stampede was completely wrong, and subsequent studies proved that. But despite the findings, the 2001 paper has never been withdrawn.

Norwegian professor Harald Arnesen in 2007 voiced his concerns over those heart trials as well. He concluded that they were not convincing and that one German team had achieved striking results only because the control group had done particularly badly. Arnesen called for a moratorium on this kind of stem-cell therapy, based on that research.

But neither Arnesen, nor Mummery, could deter clinicians. Another trial, the largest to date, began in January 2012 and included 3,000 heart-attack patients recruited from across Europe. The trial was funded by the European Union as well.

The idea behind the trials is straightforward. During a heart attack, a clogged blood vessel starves heart muscle of oxygen. Up to a billion heart muscle cells, called cardiomyocytes, can be damaged, and the body responds by replacing them with relatively inflexible scar tissue, which can lead to fatal heart failure.

What is notably surprising, explained Mummery, is that stem cells come in many different forms: Embryonic stem cells are the building-blocks of the body and have the potential to turn into all 200 cell types found in the human body. Adult stem cells, however, are limited in what they can do. For example, bone marrow stem cells only generate blood cells.

So, the 2001 study claiming that bone marrow stem cells could turn into healthy heart muscle was a surprising and exciting claim, although a bold move.

View post:
Some Stem-Cells May Not Be The Answer For Heart Disease

Posted in Stem Cell Videos | Comments Off on Some Stem-Cells May Not Be The Answer For Heart Disease

Fresh, purified fat stem cells grow bone faster, better

Posted: June 13, 2012 at 6:12 am

LOS ANGELES UCLA stem cell scientists who purified a subset of stem cells from fat tissue and used the stem cells to grow bone discovered that the bone formed faster and was of higher quality than bone grown using traditional methods.

The finding may one day eliminate the need for painful bone grafts that use material taken from patients during invasive procedures.

Adipose, or fat, tissue is thought to be an ideal source of mesenchymal stem cells cells capable of developing into bone, cartilage, muscle and other tissues because such cells are plentiful in the tissue and easily obtained through procedures like liposuction, said Dr. Chia Soo, vice chair of research for the UCLA Division of Plastic and Reconstructive Surgery.

Soo and Bruno Pault, the co-senior authors on the project, are members of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Traditionally, cells taken from fat had to be cultured for weeks to isolate the stem cells which could become bone, and their expansion increases the risk of infection and genetic instability. A fresh, non-cultured cell composition called stromal vascular fraction (SVF) also is used to grow bone. However, SVF cells taken from adipose tissue are a highly heterogeneous population that includes cells that aren't capable of becoming bone.

Pault and Soo's team used a cell-sorting machine to isolate and purify human perivascular stem cells (hPSC) from adipose tissue and showed that those cells worked far better than SVF cells in creating bone. They also showed that a growth factor called NELL-1, discovered by Dr. Kang Ting of the UCLA School of Dentistry, enhanced bone formation in their animal model.

"People have shown that culture-derived cells could grow bone, but ours are a fresh cell population, and we didn't have to go through the culture process, which can take weeks," Soo said. "The best bone graft is still your own bone, but that is in limited supply and sometimes not of good quality. What we show here is a faster and better way to create bone that could have clinical applications."

The study was published Monday (June 11) in the early online edition of Stem Cells Translational Medicine, a new peer-reviewed journal that seeks to bridge stem cell research and clinical trials.

In the animal model, Soo and Pault's team put the hPSCs with NELL-1 in a muscle pouch, a place where bone is not normally grown. They then used X-rays to determine that the cells did indeed become bone.

"The purified human hPSCs formed significantly more bone in comparison to the SVF by all parameters," Soo said. "And these cells are plentiful enough that patients with not much excess body fat can donate their own fat tissue."

Read the original:
Fresh, purified fat stem cells grow bone faster, better

Posted in Stem Cell Research | Comments Off on Fresh, purified fat stem cells grow bone faster, better

Page 2,731«..1020..2,7302,7312,7322,733..2,7402,750..»