Page 2,738«..1020..2,7372,7382,7392,740..2,7502,760..»

Rui Dai: Our Misunderstanding of Stem Cells

Posted: June 7, 2012 at 11:12 am

It's always troubling to see a misunderstanding concerning a recent scientific discovery. The latest concerns an Israeli team of scientists, led by Lior Gepstein, that converted skin cells from two patients with heart attack into stem cells and then heart cells.

SourceFed, one of my favorite channels on YouTube, proclaimed that Gepstein's study means that a cure for heart disease is "10, 15 years out." Similar statements were also circulated by The Guardian, The Los Angeles Times, CBS News, and others.

However, the claims that SourceFed and other news outlets have made are not true. If anything, the field of heart regeneration is moving away from what the study did. If there is a cure for heart attack in 10 to 15 years, it will not be because of this study.

Generating stem cells from skin cells is relatively old news. This feat was first performed in 2006 for mice (2007 for humans) concurrently by two teams of scientists led by Shinya Yamanaka in Japan and James Thomson in the United States, respectively. Since then, the technology has evolved so fast that generating heart cells from stem cells is truly nothing new.

Stem cells often differentiate into heart cells, or cardiomyocytes, without much technical intervention. Even I, a mere undergraduate student, have generated beating heart cells several times without much trouble, from mice and rat skin cells. And I'm not even in the field of heart regeneration. I work with stem cells in neurobiology.

The technique to generate heart cells from skin-derived stem cells (or induced pluripotent stem cells) has existed for a long time. After a brief search on Google Scholar, I found a paper published in 2008 detailing how to generate heart cells from skin cells. This may not seem like a long time ago, but in the stem-cell world, that's almost an eon.

So if we have been able to generate heart cells for such a long time, why has no one actually successfully transplanted heart cells into patients? One of the reasons is that there are so many different problems with not only transplanting heart cells onto a beating heart but also with the induced pluripotent stem cells that are derived from skin cells.

When a heart is damaged, scar tissues grow over the damaged part of the heart. The scar tissue does not function like regular heart cells. Instead of beating, the scar tissue just sits there, not doing anything and getting in the way of the beating heart. It's just like a scab on your arm from a scrape. The only difference is that the scab eventually comes off, because your skin is constantly making new cells, but the scar on your heart doesn't, because heart cells rarely regenerate, if at all.

Transplanting new heart cells without removing the scars is like putting a new layer of skin over the old scab and expecting the scab to go away. The old scab doesn't go away. More likely, the transplanted tissue will just die off.

As a result, instead of trying to transplant new tissue, the field of heart regeneration is now trying to transform the cells in scar tissue into beating heart cells. Though there are also problems with this new direction, it opens up ways of solving a whole host of other problems that plague heart-cell transplantation.

Follow this link:
Rui Dai: Our Misunderstanding of Stem Cells

Posted in Stem Cell Videos | Comments Off on Rui Dai: Our Misunderstanding of Stem Cells

HEALTH: The real culprit behind hardened arteries? Stem cells, says landmark study

Posted: June 7, 2012 at 11:12 am

One of the top suspects behind killer vascular diseases is the victim of mistaken identity, according to researchers from the University of California, Berkeley, who used genetic tracing to help hunt down the real culprit.

The guilty party is not the smooth muscle cells within blood vessel walls, which for decades was thought to combine with cholesterol and fat that can clog arteries. Blocked vessels can eventually lead to heart attacks and strokes, which account for one in three deaths in the United States.

Instead, a previously unknown type of stem cell a multipotent vascular stem cell is to blame, and it should now be the focus in the search for new treatments, the scientists report in a new study appearing June 6 in the journal Nature Communications.

"For the first time, we are showing evidence that vascular diseases are actually a kind of stem cell disease," said principal investigator Song Li, professor of bioengineering and a researcher at the Berkeley Stem Cell Center. "This work should revolutionize therapies for vascular diseases because we now know that stem cells rather than smooth muscle cells are the correct therapeutic target."

The finding that a stem cell population contributes to artery-hardening diseases, such as atherosclerosis, provides a promising new direction for future research, the study authors said.

"This is groundbreaking and provocative work, as it challenges existing dogma," said Dr. Deepak Srivastava, director of the Gladstone Institute of Cardiovascular Disease at UC San Francisco, who provided some of the mouse vascular tissues used by the researchers. "Targeting the vascular stem cells rather than the existing smooth muscle in the vessel wall might be much more effective in treating vascular disease."

It is generally accepted that the buildup of artery-blocking plaque stems from the body's immune response to vessel damage caused by low-density lipoproteins, the bad cholesterol many people try to eliminate from their diets.

Such damage attracts legions of white blood cells and can spur the formation of fibrous scar tissue that accumulates within the vessel, narrowing the blood flow.

The scar tissue, known as neointima, has certain characteristics of smooth muscle, the dominant type of tissue in the blood vessel wall.

Because mature smooth muscle cells no longer multiply and grow, it was theorized that in the course of the inflammatory response, they revert, or de-differentiate, into an earlier state where they can proliferate and form matrices that contribute to plaque buildup.

Read this article:
HEALTH: The real culprit behind hardened arteries? Stem cells, says landmark study

Posted in Stem Cell Videos | Comments Off on HEALTH: The real culprit behind hardened arteries? Stem cells, says landmark study

Stem Cells Behind Clogged Arteries

Posted: June 7, 2012 at 11:12 am

University of Georgia stem cell researcher Steve Stice shows stem cells from a tank in his lab in Athens, Ga.

WEDNESDAY, June 6 (HealthDay News) -- A previously unknown type of stem cell is the culprit behind blocked blood vessels that can lead to heart attack and stroke, new research in mice suggests.

It's long been believed that smooth muscle cells within blood vessel walls combined with cholesterol and fat to clog arteries. But in research with mice, a team at the University of California, Berkeley found that's not the case.

[Read: Stem Call Study Shows Promising Results Against Heart Failure.]

http://health.usnews.com/health-news/news/articles/2012/05/10/stem-cell-study-shows-promising-results-against-heart-failure

Using genetic tracing, the investigators determined that a type of stem cell called a multipotent vascular stem cell is to blame and said it should be the focus in the search for new treatments.

"For the first time, we are showing evidence that vascular diseases are actually a kind of stem cell disease," principal investigator Song Li, a professor of bioengineering and a researcher at the Berkeley Stem Cell Center, said in a university news release. "This work should revolutionize therapies for vascular diseases because we now know that stem cells rather than smooth muscle cells are the correct therapeutic target."

The study was published June 6 in the journal Nature Communications.

"This is groundbreaking and provocative work, as it challenges existing dogma," said Dr. Deepak Srivastava, director of the Gladstone Institute of Cardiovascular Disease at UC San Francisco, who provided some of the mouse vascular tissues used in the study.

[Read:Improved Stem Cell Line May Avoid Cancer Risk.]

Go here to read the rest:
Stem Cells Behind Clogged Arteries

Posted in Stem Cell Treatments | Comments Off on Stem Cells Behind Clogged Arteries

Ontario, Canada’s McMaster University Researchers Discover Drug Destroys Human Cancer Stem Cells but Not Healthy Ones

Posted: June 7, 2012 at 11:12 am

HAMILTON, Ontario--(BUSINESS WIRE)--

A team of scientists at McMaster University in Ontario, Canada have discovered a drug, thioridazine, successfully kills cancer stem cells in the human while avoiding the toxic side-effects of conventional cancer treatments.

"The unusual aspect of our finding is the way this human-ready drug actually kills cancer stem cells; by changing them into cells that are non-cancerous," said Mick Bhatia, the principal investigator for the study and scientific director of McMaster's Stem Cell and Cancer Research Institute (SCC-RI) in the Michael G. DeGroote School of Medicine.

Unlike chemotherapy and radiation, thioridazine appears to have no effect on normal stem cells.

The research, published in the science journal CELL, holds the promise of a new strategy and discovery pipeline for the development of anticancer drugs in the treatment of various cancers. The research team has identified another dozen drugs that have good potential for the same response.

For 15 years, some researchers have believed stem cells are the source of many cancers. In 1997, Canadian researchers first identified cancer stem cells in certain types of leukemia. Cancer stem cells have since been identified in blood, breast, brain, lung, gastrointestinal, prostate and ovarian cancer.

To test more than a dozen different compounds, McMaster researchers pioneered a fully automated robotic system to identify several drugs, including thioridazine.

"Now we can test thousands of compounds, eventually defining a candidate drug that has little effect on normal stem cells but kills the cells that start the tumor," said Bhatia.

The next step is to test thioridazine in clinical trials, focusing on patients with acute myeloid leukemia whose disease has relapsed after chemotherapy. Bhatia wants to find out if the drug can put their cancer into remission, and by targeting the root of the cancer (cancer stem cells) prevent the cancer from coming back. Researchers at McMaster have already designed how these trials would be done.

Bhatia's team found thioridazine works through the dopamine receptor on the surface of the cancer cells in both leukemia and breast cancer patients. This means it may be possible to use it as a biomarker that would allow early detection and treatment of breast cancer and early signs of leukemia progression, he said. The research team's next step is to investigate the effectiveness of the drug in other types of cancer. In addition, the team will explore several drugs identified along with thioridazine. In the future, thousands of other compounds will be analyzed with McMaster robotic stem cell screening system in partnership with collaborations that include academic groups as well as industry.

Read more here:
Ontario, Canada’s McMaster University Researchers Discover Drug Destroys Human Cancer Stem Cells but Not Healthy Ones

Posted in Stem Cell Treatments | Comments Off on Ontario, Canada’s McMaster University Researchers Discover Drug Destroys Human Cancer Stem Cells but Not Healthy Ones

Cellular Dynamics Launches MyCell™ Services

Posted: June 7, 2012 at 11:12 am

MADISON, Wis., June 7, 2012 /PRNewswire/ --Cellular Dynamics International, Inc. (CDI), the world's largest commercial producer of human induced pluripotent stem (iPS) cell lines and tissue cells, today announced the launch of its MyCell Services. These services include novel iPS cell line reprogramming, genetic engineering and differentiation of iPS cells into commercially available iCell terminal tissue cells (for example, heart or nerve cells).

"CDI's mission is to be the top developer and manufacturer of standardized human cells in high quantity, quality and purity and to make these cells widely available to the research community. Our MyCell Services provide researchers with unprecedented access to the full diversity of human cellular biology," said Bob Palay, CDI Chief Executive Officer. "The launch of MyCell Services furthers CDI founder and stem cell pioneer Jamie Thomson's vision to enable scientists worldwide to easily access the power of iPSC technology, thus driving breakthroughs in human health."

Over the past 2 years, CDI has launched iCell Cardiomyocytes, iCell Neurons and iCell Endothelial Cells for human biology and drug discovery research. MyCell Services leverage CDI's prior investment in building an industrial manufacturing platform that can handle the parallel production of multiple iPSC lines and tissue cells, manufacturing billions of cells daily.

Chris Parker, CDI Chief Commercial Officer, commented, "Not all studies requiring human cells can be accomplished by using cells from a limited set of normal, healthy donors. Researchers may need iPS cells or tissue cells derived from specific ethnic or disease populations, and MyCell Services enable them to take advantage of our deep stem cell expertise and robust industrial manufacturing pipeline to do so. Previously, scientists had to create and differentiate iPS cells themselves. Such activities consume significant laboratory time and resources, both of which could be better applied to conducting experiments that help us better understand human biology. CDI's MyCell Services enable scientists to re-direct those resources back to their experiments."

CDI pioneered the technique to create iPS cells from small amounts of peripheral blood, although iPS cells can be created from other tissue types as well. Additionally, CDI's episomal reprogramming method is "footprint-free," meaning no foreign DNA is integrated into the genome of the reprogrammed cells, alleviating safety concerns over the possible use of iPS cells in therapeutic settings. These techniques have been optimized for manufacture of over 2 billion human iPS cells a day, and differentiated cells at commercial scale with high quality and purity to match the research needs.

Modeling Genetic Diversity

CDI has several projects already underway using MyCell Services to model genetic diversity of human biology. The Medical College of Wisconsin and CDI received a $6.3M research grant from the National Heart, Lung, and Blood Institute (NHLBI), announced July 2011, for which CDI's MyCell Services will reprogram an unprecedented 250 iPS cell lines from blood samples collected from Caucasian and African-American families in the Hypertension Genetic Epidemiology Network (HyperGEN) study. In addition, MyCell Services will differentiate these iPS cells into heart cells to investigate the genetic mechanisms underlying Left Ventricular Hypertrophy, an increase of the size and weight of the heart that is a major risk factor for heart disease and heart failure.

Researchers are also using CDI's MyCell Services to generate iPS cells and liver cells from individuals with drug induced liver injury (DILI), toward an eventual goal of identifying genetic factors linked to idiosyncratic liver toxicity. "The most problematic adverse drug event is sudden and severe liver toxicity that may occur in less than one in one thousand patients treated with a new drug, and thus may not become evident until the drug is marketed. This type of liver toxicity is not predicted well by usual preclinical testing, including screening in liver cultures derived from random human donors," said Paul B. Watkins, M.D., director of with The Hamner - University of North Carolina Institute for Drug Safety Sciences. "The ability to use iPS cell technology to prepare liver cultures from patients who have actually experienced drug-induced liver injury, and for whom we have extensive genetic information, represents a potential revolution in understanding and predicting this liability."

Screening Human Disease

While most diseases are multi-systemic, focus typically centers on only one organ system. For example, congenital muscular dystrophy (CMD) is a group of rare genetic diseases with a focus on skeletal muscle, yet other systems, including heart, eye, brain, diaphragm and skin, can be involved. Understanding the molecular mechanisms underlying complex disease phenotypes requires access to multiple tissue types from a single patient. While some systems are readily accessible for taking a biopsy sample, for example skin, other organs are not.

Originally posted here:
Cellular Dynamics Launches MyCell™ Services

Posted in Stem Cell Treatments | Comments Off on Cellular Dynamics Launches MyCell™ Services

Stem Cells Harden Arteries In Mice, Prompting New Theory On The Cause Of Cardiovascular Disease

Posted: June 7, 2012 at 11:12 am

In a finding that could open up a new realm of treatments for cardiovascular disease, UC Berkeley scientists say they've found that hardened arteries are actually caused by rogue stem cells in blood vessels that start multiplying after blood vessel walls are damaged, not by rogue muscle cells as previously suspected.

"For the first time, we are showing evidence that vascular diseases are actually a kind of stem cell disease," UC Berkeley bioengineering professor Song Li, senior author of a paper documenting the discovery that appeared Wednesday in the journal Nature Communications, said in a statement Wednesday.

The researchers examined cells from mouse blood vessels and found that the ones that proliferated after vascular injury couldn't be traced back to smooth muscle cells, which are commonly thought to be the culprits behind clogged arteries (in combination with cholesterol and fat).

"We did further tests and detected proteins and transcriptional factors that are only found in stem cells. No one knew that these cells existed in the blood vessel walls, because no one looked for them before," co-author Aijun Wang said in a statement.

The team is calling the newly identified stem cell type multipotent vascular stem cells. Their ability to differentiate into a variety of cell types, including bone and cartilage, could explain how blood vessels become hardened and brittle in the later stages of cardiovascular disease, according to Li.

Follow us

In further experiments, the scientists confirmed that human blood vessels contain multipotent vascular stem cells after isolating them from arteries and coaxing them to develop into several different cell types.

Artery-blocking plaque forms as part of the body's natural immune response to blood vessel damage caused by low-density lipoprotein,also known as "bad" cholesterol. Researchers used to think that smooth muscle cells along the blood vessel walls helped form plaque by de-differentiating into a stem cell-like state, but Li and his team were suspicious because this process had never been directly documented in experiments.

Li said in an email that the next step is to establish a model for human blood vessel disease that can be used in the lab to screen drug candidates targeting the vascular stem cells.

The team has already applied for a grant from the California Institute for Regenerative Medicine to work on their "blood vessel on a chip," Li says.

Link:
Stem Cells Harden Arteries In Mice, Prompting New Theory On The Cause Of Cardiovascular Disease

Posted in Stem Cell Treatments | Comments Off on Stem Cells Harden Arteries In Mice, Prompting New Theory On The Cause Of Cardiovascular Disease

Stem cells may be to blame for clogged arteries

Posted: June 7, 2012 at 11:11 am

A newly discovered type of stem cell may be one of the major driving forces behind heart attacks and other killer vascular diseases, according to a new study. The finding may provide a brand new target for future heart disease treatments, the researchers said.

While doctors have long thought that it was the smooth muscle cells within the blood vessel walls that combined with cholesterol and fat to clog the arteries--and developed treatments accordingly--the new research indicates the guilty party may actually be a previously unknown type of stem cell, called a multipotent vascular stem cell.

In a study conducted in mice, researchers found it was these stem cells, rather than muscle cells, that formed the scar tissue that blocks the flow of blood in the arteries and causes them to harden.

According to the researchers, because multipotent stem cells are capable of becoming multiple types of cells, including smooth muscle, nerve, cartilage, bone and fat cells, the ability of the stem cells to form bone or cartilage could explain how a soft artery calcifies and hardens.

?We are very confident that vascular stem cells play a much more important role than what was thought previously,? principal investigator Dr. Song Li, professor of bioengineering and researcher at the Berkeley Stem Cell Center, told FoxNews.com.

Li said these stem cells appear to be involved in most major vascular diseases such as atherosclerosis and restenosis, or the clogging of the arteries. The researchers also believe the stem cells are involved the repair and diseases of all blood vessels.

The study could potentially lead to an entirely new area of heart disease treatment, as there are no therapies or medications that currently target stem cells.

?Previous therapies focused on cholesterol metabolism and killing smooth muscle cells,? Li said. ?This new finding opens a door to new therapies that target the vascular stem cells, not only to block the proliferation of the stem cells but also stop their differentiation into bone, cartilage, and even fat cells?It will be a new area for vascular biology, medicine and the pharmaceutical industry.?

However, Li said it was important to note the stem cells aren?t all bad ? they appear to not only be involved with disease development but also in the regeneration of blood vessels after certain surgeries, such as bypass procedures.

?The stem cells can do good and bad things, and the fate needs to be controlled after we understand the mechanisms,? Li said.

More here:
Stem cells may be to blame for clogged arteries

Posted in Stem Cell Research | Comments Off on Stem cells may be to blame for clogged arteries

Haematopoietic stem cell transplantation increases survival in systemic sclerosis patients

Posted: June 7, 2012 at 11:11 am

Public release date: 7-Jun-2012 [ | E-mail | Share ]

Contact: Candice Debleu eularpressoffice@cohnwolfe.com 44-789-438-6425 European League Against Rheumatism

Berlin, Germany, June 7 2012: Initial results from an international, investigator-initiated, open label phase III trial were presented at EULAR 2012, the Annual Congress of the European League Against Rheumatism. Data indicate that haematopoietic stem cell transplantation (HSCT) results in better long term survival than conventional treatment for patients with poor prognosis early diffuse cutaneous systemic sclerosis.

The ASTIS (Autologous Stem Cell Transplantation International Scleroderma) trial enrolled more than 150 patients between 2001 and 2009, and randomised patients to the HSCT arm or to intravenous pulse cyclophosphamide treatment. As of May 1, 2012, significantly more deaths have occurred in the conventional treatment group. Half of the deaths in the HSCT group occurred early and were deemed treatment-related according to an independent data monitoring committee. In the conventional treatment group in contrast, none of the deaths were deemed to be treatment-related; but more deaths occurred later and most were related to progressive disease.

"Systemic sclerosis is a debilitating disease that can lead to heart, lung or kidney failure and premature death, especially in patients who have the diffuse cutaneous form of the condition, where skin thickening is more generalised and involvement of vital organs more common. The ASTIS study shows that such patients may benefit from early intensive immunosuppressive treatment," said Professor Jaap van Laar from Newcastle University, Professor Dominique Farge, Assistance Publique Hopitaux de Paris (Sponsor in France, Paris 7 University) and Professor Alan Tyndall from Basel University, on behalf of their colleagues from the EBMT EULAR Scleroderma Study Group. "These initial results are very encouraging and will help identify patients who benefit from stem cell transplantation."

The ASTIS trial was a unique collaborative project of 27 multidisciplinary teams from 10 countries conducted under the auspices of two leading organisations in the respective fields, the European Group for Blood and Marrow Transplantation (EBMT; http://www.ebmt.org) and the European League Against Rheumatism (EULAR;www.eular.org). The primary endpoint of the trial was event-free survival, defined as survival until death or development of major organ failure.

Systemic sclerosis is a rare but severe autoimmune systemic connective tissue disease*. Increased fibroblast activity results in abnormal growth of connective tissue which causes vascular damage and fibrosis of the skin, gastrointestinal (GI) tract and other internal organs**. Characteristics of systemic sclerosis include vasomotor disturbances; fibrosis; subsequent atrophy of the skin, subcutaneous tissue, muscles, and internal organs and immunologic disturbances*. Systemic sclerosis is estimated to occur in 2.3-10 people per one million*. Diffuse cutaneous systemic sclerosis cases make up 30% of all systemic sclerosis cases and involve the upper arms, thighs and trunk**. Lung fibrosis and pulmonary hypertension are important causes of mortality in these patients and there is no curative treatment available so far*.

###

Abstract Number: LB0002

*Schwartz R A. (2011) Medscape Reference: Systemic Sclerosis. [Online] Available from: http://emedicine.medscape.com/article/1066280-overview [Accessed 8 May 2012]

Originally posted here:
Haematopoietic stem cell transplantation increases survival in systemic sclerosis patients

Posted in Stem Cell Research | Comments Off on Haematopoietic stem cell transplantation increases survival in systemic sclerosis patients

The real culprit behind hardened arteries? Stem cells, says landmark study

Posted: June 7, 2012 at 11:11 am

ScienceDaily (June 6, 2012) One of the top suspects behind killer vascular diseases is the victim of mistaken identity, according to researchers from the University of California, Berkeley, who used genetic tracing to help hunt down the real culprit.

The guilty party is not the smooth muscle cells within blood vessel walls, which for decades was thought to combine with cholesterol and fat that can clog arteries. Blocked vessels can eventually lead to heart attacks and strokes, which account for one in three deaths in the United States.

Instead, a previously unknown type of stem cell -- a multipotent vascular stem cell -- is to blame, and it should now be the focus in the search for new treatments, the scientists report in a new study appearing June 6 in the journal Nature Communications.

"For the first time, we are showing evidence that vascular diseases are actually a kind of stem cell disease," said principal investigator Song Li, professor of bioengineering and a researcher at the Berkeley Stem Cell Center. "This work should revolutionize therapies for vascular diseases because we now know that stem cells rather than smooth muscle cells are the correct therapeutic target."

The finding that a stem cell population contributes to artery-hardening diseases, such as atherosclerosis, provides a promising new direction for future research, the study authors said.

"This is groundbreaking and provocative work, as it challenges existing dogma," said Dr. Deepak Srivastava, who directs cardiovascular and stem cell research at the Gladstone Institutes in San Francisco, and who provided some of the mouse vascular tissues used by the researchers. "Targeting the vascular stem cells rather than the existing smooth muscle in the vessel wall might be much more effective in treating vascular disease."

It is generally accepted that the buildup of artery-blocking plaque stems from the body's immune response to vessel damage caused by low-density lipoproteins, the bad cholesterol many people try to eliminate from their diets. Such damage attracts legions of white blood cells and can spur the formation of fibrous scar tissue that accumulates within the vessel, narrowing the blood flow.

The scar tissue, known as neointima, has certain characteristics of smooth muscle, the dominant type of tissue in the blood vessel wall. Because mature smooth muscle cells no longer multiply and grow, it was theorized that in the course of the inflammatory response, they revert, or de-differentiate, into an earlier state where they can proliferate and form matrices that contribute to plaque buildup.

However, no experiments published have directly demonstrated this de-differentiation process, so Li and his research team remained skeptical. They turned to transgenic mice with a gene that caused their mature smooth muscle cells to glow green under a microscope.

In analyzing the cells from cross sections of the blood vessels, they found that more than 90 percent of the cells in the blood vessels were mature smooth muscle cells. They then isolated and cultured the cells taken from the middle layer of the mouse blood vessels.

Read the rest here:
The real culprit behind hardened arteries? Stem cells, says landmark study

Posted in Stem Cell Research | Comments Off on The real culprit behind hardened arteries? Stem cells, says landmark study

AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

Posted: June 7, 2012 at 11:11 am

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Leading stem cell therapeutic and regenerative medicine company, AuxoCell Laboratories, Inc., today announced an agreement with CordVida, a Brazilian stem cell cryopreservation company, which will allow CordVida to expand its services. Families who select CordVida to store umbilical cord blood will now have the opportunity to bank stem cells from an additional source cord tissue. With this agreement, AuxoCell broadens its international reach to South America.

At AuxoCell, we are pleased by the opportunity to provide this groundbreaking technology to families around the globe, said Rouzbeh R. Taghizadeh, PhD, Chief Scientific Officer of AuxoCell Laboratories, Inc. CordVida is Brazils premier cord blood bank and adheres to the highest quality standards. It is for that reason that we have selected them as our exclusive partner in Brazil.

Cord tissue has an abundant source of mesenchymal stem cells (MSCs). Currently, there is a significant amount of research underway focused on mesenchymal stem cells extracted from cord tissue. MSCs are rapidly becoming the leading stem cell in regenerative medicine studies, and MSCs from a variety of sources are in use in over 150 clinical trials. The AuxoCell cord tissue technology represents the gold standard in the industry, as its technology prepares stem cells that are ready for immediate use, if needed.

CordVida is excited to be the first company in Brazil to offer storage of multiple kinds of stem cells, says Roberto Waddington, CEO for CordVida. Considering the enormous therapeutic prospects of cord tissue derived MSCs, our clients in the future will now rely on a much wider array of potential therapeutic applications.We are proud that AuxoCell selected CordVidaas its exclusive technology partner for all of Brazil.

Banking umbilical cord tissue stem cells offers clients a chance to reap the benefits of research that is being conducted on MSCs. Additionally, AuxoCells own studies have shown that a combination of cord tissue mesenchymal stem cells derived using AuxoCells validated processing SOPs and hematapoietic stem cells (HSCs) from the cord blood enhances the engraftment of the cord blood HSCs.

About AuxoCell

AuxoCell Laboratories, Inc. (AuxoCell) is a leading stem cell therapeutic and regenerative medicine company located in Massachusetts. AuxoCell's primary research focus is to develop the enormous therapeutic potential of the primitive stem cells found in the Wharton's Jelly of the human umbilical cord. With exclusive patent rights and proprietary processing protocols, AuxoCell is uniquely situated to offer the very best in cord tissue stem cell banking. Through strategic partnerships with both private and public cord blood banks, stem cell centers, and research laboratories around the world, AuxoCell strives every day to bring novel stem cell therapies from the bench to the bedside. Additional information is available through HYPERLINK http://www.auxocell.com or at (617) 610-9000.

About CordVida

Founded in 2004, CordVida is the premier stem cell cryopreservation company in Brazil with 10.000 umbilical cord blood units stored. It is the cord blood bank of choice for key doctors in Brazil. Committed to the highest global quality standards, CordVida has been AABB accredited since 2008. Half of the transplants made in Brazil using private cord blood units have been made with units stored in CordVida.

Read more from the original source:
AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

Posted in Stem Cell Research | Comments Off on AuxoCell Laboratories Licenses Umbilical Cord Tissue Stem Cell Service to Brazil’s CordVida

Page 2,738«..1020..2,7372,7382,7392,740..2,7502,760..»