Page 2,743«..1020..2,7422,7432,7442,745..2,7502,760..»

Researchers appealing to public for funds

Posted: June 2, 2012 at 12:11 pm

Research scientist Dr Paul Turner (left) and cell biologist Dr Jim Faed examine bone marrow stem cell colonies in the Spinal Cord Society Research Laboratory in Dunedin. Photo by Gerard O'Brien.

University of Otago cell biologist, haematologist and project leader Dr Jim Faed said $1.4 million was needed to trial the use of bone marrow stem cells to stimulate insulin production in type 1 diabetics.

Fundraising is being co-ordinated by the Spinal Cord Society, which had started recruiting for a related trial for spinal cord injury sufferers, to be led by Dr Faed.

That trial, which would have used cells from the person's nose, is on hold, partly for lack of funds, and partly because the diabetes trial would lay the groundwork for better-designed spinal cord research.

The diabetes study would be carried out in the Spinal Cord Society Research Laboratory at Otago University's Centre for Innovation in Dunedin, taking about two years.

Dr Faed said recent research from the United States had "electrified" interest in using stem cells to treat type 1 diabetics.

In what is known as the Chicago study, umbilical cord stem cells were shown to increase insulin production in even the most severe diabetics.

Dr Faed said he hoped the Dunedin study, with a dozen participants, would replicate and expand the Chicago study by explaining the mechanism by which the stem cells promoted insulin production.

Pharmaceutical companies stood to make no money from stem cell research, as the product was generated by the patient's own body; thus the companies could not be tapped for funds.

Dr Faed acknowledged the disappointment of the several spinal cord injury sufferers who had to wait longer for their study.

The rest is here:
Researchers appealing to public for funds

Posted in Stem Cell Research | Comments Off on Researchers appealing to public for funds

Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Posted: June 1, 2012 at 11:14 pm

CLEARWATER, FL--(Marketwire -06/01/12)- Biostem U.S., Corporation (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine science sector, has made its Scientific and Medical Board of Advisors publications available on the company website, http://www.biostemus.com.

Chief Executive Officer Dwight Brunoehler stated, "The company is very proud of the many contributions its SAMBA members have made, and continue to make, to the medical community. As their publications and credentials show, this is a very prestigious and influential group. Having worked with them in past projects and now at Biostem, I know them all to be active participants in the development and guidance of the company's objectives. Their diversified areas of expertise and backgrounds are already playing a major role in assisting the company as it moves forward into the expanding field of regenerative medicine."

About Biostem U.S., Corporation Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Read more:
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Posted in Regenerative Medicine | Comments Off on Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Posted: June 1, 2012 at 2:19 pm

CLEARWATER, FL--(Marketwire -06/01/12)- Biostem U.S., Corporation (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine science sector, has made its Scientific and Medical Board of Advisors publications available on the company website, http://www.biostemus.com.

Chief Executive Officer Dwight Brunoehler stated, "The company is very proud of the many contributions its SAMBA members have made, and continue to make, to the medical community. As their publications and credentials show, this is a very prestigious and influential group. Having worked with them in past projects and now at Biostem, I know them all to be active participants in the development and guidance of the company's objectives. Their diversified areas of expertise and backgrounds are already playing a major role in assisting the company as it moves forward into the expanding field of regenerative medicine."

About Biostem U.S., Corporation Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Read more:
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Posted in Cell Medicine | Comments Off on Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications

Malta opposing EU financing for stem cell research on embryos

Posted: June 1, 2012 at 2:19 pm

Stem cell therapy may one day be used to cure disorders such as Fragile-X syndrome, or Cystic fibrosis and other genetic maladies.

Matthew Vella

The Maltese government wants the European Commission to abandon plans to provide funds for research activities on stem cells that involve "the destruction of human embryos".

In a declaration on the ethical principles for the Horizon 2020 programme, which is an 80 billion fund for the EU's programme for research and innovation to create new jobs, the Maltese government said it wanted more detailed guidelines on the bioethical principles that will guide research programmes.

Horizon 2020 will allow the financing of research on human stem cells - both adult and embryonic - as long as it is permitted by the national laws of member states.

The fund however will not finance human cloning, genetic modification, or the creation of human embryos intended for the purpose of research or stem cell procurement.

The European Commission does not explicitly solicit the use of human embryonic stem cells, but Horizon 2020 allows the use of human stem cells according to the objectives of the research, and only if it has the necessary approvals from the member states.

The Maltese declaration echoes previous statements by the Commission of Catholic Bishops of the EC (Comece), which said Horizon 2020 did not include greater protection of human embryos from stem cell research.

Malta says it does not want any such embryos to be used for stem cell research. The statement by the Maltese government said the Horizon 2020 programme "does not take sufficiently into account the therapeutic potential of human adult stem cells."

Malta wants Europe to commit to a reinforcement of research on human adult stem cells, and that Europe should abstain from financing matters of fundamental ethical principles, which differ among member states.

Read the original here:
Malta opposing EU financing for stem cell research on embryos

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Malta opposing EU financing for stem cell research on embryos

NeoStem to Present at Six Conferences in June

Posted: June 1, 2012 at 1:12 pm

NEW YORK, May 31, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE Amex:NBS) ("NeoStem" or the "Company"), an international biopharmaceutical company focused on cell based therapies, announced today that Company management will present at six conferences in June.

International Society for Cellular Therapy Annual Meeting

National Investment Banking Association Conference

International Society for Stem Cell Research 10th Annual Meeting

The Biotechnology Industry Organization (BIO) International Conference

Alliance for Regenerative Medicine -- Clinical Outlooks for Regenerative Medicine 2012

Marcum's Inaugural MicroCap Conference

About NeoStem, Inc.

NeoStem, Inc. ("NeoStem") is a leader in the development and manufacture of cell therapies. NeoStem has a strategic combination of revenues, including that which is derived from the contract manufacturing services performed by Progenitor Cell Therapy, LLC, a NeoStem company. That manufacturing base is one of the few cGMP facilities available for contracting in the burgeoning cell therapy industry, and it is the combination of PCT's core expertise in manufacturing and NeoStem's extensive research capabilities that positions the company as a leader in cell therapy development. Amorcyte, LLC, also a NeoStem company, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and is enrolling patients in a Phase 2 trial for the preservation of heart function after a heart attack. Amorcyte expects to begin a Phase 1 clinical trial in 2012/2013 for AMR-001 for the treatment of patients with congestive heart failure. Athelos Corporation, also a NeoStem company, is developing a T-cell therapy for a range of autoimmune conditions with its partner Becton-Dickinson. NeoStem's pre-clinical assets include its VSEL(TM) Technology platform for regenerative medicine, which NeoStem believes to be an endogenous, pluripotent, non-embryonic stem cell that has the potential to change the paradigm of cell therapy as we know it today.

For more information on NeoStem, please visit http://www.neostem.com.

Read this article:
NeoStem to Present at Six Conferences in June

Posted in Cell Therapy | Comments Off on NeoStem to Present at Six Conferences in June

NCAA baseball: Mike Kent of Clemson’s biggest save came away from the diamond

Posted: June 1, 2012 at 7:21 am

CLEMSON, S.C. The cells Mike Kents own cells, the donated stem cells now coursing through his stricken brothers body are working just fine. Thats what they tell him. His family and the doctors are careful to shield Mike, just 21 years old, from most of the bad news regarding Matts battle with Hodgkins lymphoma and lately there has been plenty of it. But they always make sure to tell him: Your cells are doing great.

It can mess with your head, being a stem-cell donor to your own brother. If something goes wrong, it is only natural to wonder if it was your fault. Were your cells bad? And Mike Kent, a 2009 Washington Post All-Met selection at West Springfield High, has enough on his plate right now not just Matts three-year fight with cancer, but also his own baseball career at Clemson to be saddled with all that guilt. Clemson opens play in the NCAA regionals at Columbia, S.C., on Friday.

(Family photo) - Mike Kent, right, poses with his brother, Matt, when Mike was a high school senior and a pitcher for the West Springfield, Va, baseball team.

Because now, Matts liver is failing, the veins breaking down from the high doses of chemotherapy and radiation. He floats in and out of consciousness in the intensive-care unit at the University of Maryland Medical Center in Baltimore, unaware of his surroundings.

Ill be honest: Ive asked them, Is he going to survive this? said Susan Kent, Matt and Mikes mother, a look of sheer resolve on her face. Of course, the doctors wont answer.

Such an awkward spot for a mother who had raised two boys on her own. One of them, a college sophomore, is playing out his dream, preparing to pitch in college baseballs national championship tournament, his life spread out before him. The other son, 26 years old and a late-bloomer who was just starting to get his life in order before the diagnosis, is fighting for his life.

How do you handle such a fate? You play up the positives, thats how. You visit Matt in the hospital Matt being the one who taught Mike the game of baseball, in the absence of a father and you tell him, in great detail, about all of Mikes solid outings at Clemson: the scoreless relief appearances, the saves. And you spare him the gory details about the ugly ones the three-run homers, the bases-loaded walks, the losses.

And you give Mike the barest of details about Matts setbacks: There are some complications. Some side effects. But while Mike knows most of the more pertinent information the liver failure, the ICU you emphasize what is important, the thing Mike needs to know: Your cells are doing great.

Throwing extra innings

The injections, the doctors told Mike, would make him feel like he had the flu. The drug, Neupogen, was being given in eight doses, spread over four days to produce and stimulate white blood cells in his body in preparation for the stem cell transplant. One thing he shouldnt try to do, they told him, was play baseball.

See the original post:
NCAA baseball: Mike Kent of Clemson’s biggest save came away from the diamond

Posted in Stem Cell Videos | Comments Off on NCAA baseball: Mike Kent of Clemson’s biggest save came away from the diamond

Stemedica Takes Part in Mexican Clinical Trial

Posted: June 1, 2012 at 7:21 am

Stem cells provided by San Diego-based Stemedica Cell Technologies Inc. are expected to be used soon in a phase I/II clinical trial for chronic heart failure in Mexico.

Stemedica announced May 29 that its strategic Mexico partner, Grupo Angeles Health Services, has received approval for a single-blind randomized clinical trial from Mexicos FDA equivalent regulatory agency, COFEPRIS.

The trial being conducted at multiple hospital sites throughout Mexico will involve Stemedicas adult allogeneic ischemia tolerant mesenchymal stem cells delivered via intravenous infusion. The trial will involve three safety cohorts at different dosages, followed by a larger group being treated with the maximum safe dosage.

The trial, set to begin on or before July 1 with 60 to 80 patients, is one of only two studies using allogeneic stem cells approved by COFEPRIS. The other study approved in 2010 was a clinical trial for ischemic stroke.

We are pleased that we will be working with the largest and most prestigious private medical institution in Mexico to study Stemedicas product for this indication, said Stemedica CEO Maynard Howe in a statement. If successful, our stem cells may provide a treatment option for the millions of patients, both in Mexico and internationally, who suffer from this condition.

Grupo Angeles, comprised of 24 state-of-the-art hospitals, conducts some 100 clinical trials annually, primarily with major global pharmaceutical and medical device companies.

Stemedica stem cells are also currently being used in a phase I/IIa trial for stroke patients at UC San Diego. The 36-patient clinical trial has been progressing about a year and is moving into its third and final cohort, said Dave McGuigan, vice president of marketing and business development for the company. When patient treatments are completed by the end of September, data will be evaluated to determine whether it moves to a full phase IIb trial to primarily determine efficacy in a larger population of 60 to 80 patients, McGuigan said.

Our next step would be to initiate a phase II clinical trial in multiple sites across the U.S. in 2013, he said.

Founded seven years ago, the privately held Stemedica specialty biopharmaceutical company has about 46 locally based employees in the U.S. and an additional eight staff in Switzerland, South Korea and Singapore.

Go here to see the original:
Stemedica Takes Part in Mexican Clinical Trial

Posted in Stem Cell Videos | Comments Off on Stemedica Takes Part in Mexican Clinical Trial

Mechanism that maintains stem cells readiness identified

Posted: June 1, 2012 at 7:21 am

ScienceDaily (May 31, 2012) An immune-system receptor plays an unexpected but crucially important role in keeping stem cells from differentiating and in helping blood cancer cells grow, researchers at UT Southwestern Medical Center report today in the journal Nature.

"Cancer cells grow rapidly in part because they fail to differentiate into mature cells. Drugs that induce differentiation can be used to treat cancers," said Dr. Chengcheng "Alec" Zhang, assistant professor in UT Southwestern's departments of physiology and developmental biology. "Our research identified a protein receptor on cancer cells that inhibits differentiation, and knowing the identity of this protein should facilitate the development of new drugs to treat cancers."

The family of proteins investigated in the study could help open a new field of biology integrating immunology with stem cell and cancer research, he added.

"The receptor we identified turned out to be a protein called a classical immune inhibitory receptor, which is known to maintain stemness of normal adult stem cells and to be important in the development of leukemia," he said.

Stemness refers to the blood stem cells' potential to develop into a range of different kinds of cells as needed, for instance to replenish red blood cells lost to bleeding or to produce more white blood cells to fight off infection. Once stem cells differentiate into adult cells, they cannot go back to being stem cells. Current thinking is that the body has a finite number of stem cells and it is best to avoid depleting them, Dr. Zhang explained.

Prior to this study, no high-affinity receptors had been identified for the family of seven proteins called the human angiopoetic-like proteins. These seven proteins are known to be involved in inflammation, supporting the activity of stem cells, breaking down fats in the blood, and growing new blood vessels to nourish tumors. Because the receptor to which these proteins bind had not been identified, the angiopoetic-like proteins were referred to as "orphans," he said.

The researchers found that the human immune-inhibitory receptor LILRB2 and a corresponding receptor on the surface of mouse cells bind to several of the angiopoetic-like proteins. Further studies, Dr. Zhang said, showed that two of the seven family members bind particularly well to the LILRB2 receptor and that binding exerts an inhibitory effect on the cell, similar to a car's brakes.

In the case of stem cells, inhibition keeps them in their stem state. They retain their potential to mature into all kinds of blood cells as needed but they don't use up their energy differentiating into mature cells. That inhibition helps stem cells maintain their potential to create new stem cells because in addition to differentiation, self-renewal is the cells' other major activity, Dr. Zhang said. He stressed that the inhibition doesn't cause them to create new stem cells but does preserve their potential to do so.

In future research, the scientists hope to find subtle differences between stem cells and leukemia cells that will identify treatments to block the receptors' action only in leukemia.

Other UT Southwestern researchers involved in the study from the departments of physiology and developmental biology include postdoctoral researchers Dr. ChangHao Cui, Dr. Xiaoli Chen, Dr. Chaozheng Zhang, Dr. HoangDinh Huynh, and Dr. Xunlei Kang; senior research associates Robert Silvany and Jiyuan Li; and graduate student Xuan Wan. Researchers from the department of immunology include former technician Alberto Puig Cant and Dr. E. Sally Ward, professor of immunology.

Continued here:
Mechanism that maintains stem cells readiness identified

Posted in Stem Cell Videos | Comments Off on Mechanism that maintains stem cells readiness identified

UT Southwestern Researchers Identify Mechanism That Maintains Stem-Cell Readiness, Helps Leukemia Cells Growth

Posted: June 1, 2012 at 12:22 am

Newswise DALLAS May 31, 2012 An immune-system receptor plays an unexpected but crucially important role in keeping stem cells from differentiating and in helping blood cancer cells grow, researchers at UT Southwestern Medical Center report today in the journal Nature.

Cancer cells grow rapidly in part because they fail to differentiate into mature cells. Drugs that induce differentiation can be used to treat cancers, said Dr. Chengcheng Alec Zhang, assistant professor in UT Southwesterns departments of physiology and developmental biology. Our research identified a protein receptor on cancer cells that inhibits differentiation, and knowing the identity of this protein should facilitate the development of new drugs to treat cancers.

The family of proteins investigated in the study could help open a new field of biology integrating immunology with stem cell and cancer research, he added.

The receptor we identified turned out to be a protein called a classical immune inhibitory receptor, which is known to maintain stemness of normal adult stem cells and to be important in the development of leukemia, he said.

Stemness refers to the blood stem cells potential to develop into a range of different kinds of cells as needed, for instance to replenish red blood cells lost to bleeding or to produce more white blood cells to fight off infection. Once stem cells differentiate into adult cells, they cannot go back to being stem cells. Current thinking is that the body has a finite number of stem cells and it is best to avoid depleting them, Dr. Zhang explained.

Prior to this study, no high-affinity receptors had been identified for the family of seven proteins called the human angiopoetic-like proteins. These seven proteins are known to be involved in inflammation, supporting the activity of stem cells, breaking down fats in the blood, and growing new blood vessels to nourish tumors. Because the receptor to which these proteins bind had not been identified, the angiopoetic-like proteins were referred to as orphans, he said.

The researchers found that the human immune-inhibitory receptor LILRB2 and a corresponding receptor on the surface of mouse cells bind to several of the angiopoetic-like proteins. Further studies, Dr. Zhang said, showed that two of the seven family members bind particularly well to the LILRB2 receptor and that binding exerts an inhibitory effect on the cell, similar to a cars brakes.

In the case of stem cells, inhibition keeps them in their stem state. They retain their potential to mature into all kinds of blood cells as needed but they dont use up their energy differentiating into mature cells. That inhibition helps stem cells maintain their potential to create new stem cells because in addition to differentiation, self-renewal is the cells other major activity, Dr. Zhang said. He stressed that the inhibition doesnt cause them to create new stem cells but does preserve their potential to do so.

In future research, the scientists hope to find subtle differences between stem cells and leukemia cells that will identify treatments to block the receptors action only in leukemia.

Other UT Southwestern researchers involved in the study from the departments of physiology and developmental biology include postdoctoral researchers Dr. ChangHao Cui, Dr. Xiaoli Chen, Dr. Chaozheng Zhang, Dr. HoangDinh Huynh, and Dr. Xunlei Kang; senior research associates Robert Silvany and Jiyuan Li; and graduate student Xuan Wan. Researchers from the department of immunology include former technician Alberto Puig Cant and Dr. E. Sally Ward, professor of immunology.

Visit link:
UT Southwestern Researchers Identify Mechanism That Maintains Stem-Cell Readiness, Helps Leukemia Cells Growth

Posted in Stem Cells | Comments Off on UT Southwestern Researchers Identify Mechanism That Maintains Stem-Cell Readiness, Helps Leukemia Cells Growth

Mechanism that maintains stem cells readiness identified

Posted: June 1, 2012 at 12:22 am

ScienceDaily (May 31, 2012) An immune-system receptor plays an unexpected but crucially important role in keeping stem cells from differentiating and in helping blood cancer cells grow, researchers at UT Southwestern Medical Center report today in the journal Nature.

"Cancer cells grow rapidly in part because they fail to differentiate into mature cells. Drugs that induce differentiation can be used to treat cancers," said Dr. Chengcheng "Alec" Zhang, assistant professor in UT Southwestern's departments of physiology and developmental biology. "Our research identified a protein receptor on cancer cells that inhibits differentiation, and knowing the identity of this protein should facilitate the development of new drugs to treat cancers."

The family of proteins investigated in the study could help open a new field of biology integrating immunology with stem cell and cancer research, he added.

"The receptor we identified turned out to be a protein called a classical immune inhibitory receptor, which is known to maintain stemness of normal adult stem cells and to be important in the development of leukemia," he said.

Stemness refers to the blood stem cells' potential to develop into a range of different kinds of cells as needed, for instance to replenish red blood cells lost to bleeding or to produce more white blood cells to fight off infection. Once stem cells differentiate into adult cells, they cannot go back to being stem cells. Current thinking is that the body has a finite number of stem cells and it is best to avoid depleting them, Dr. Zhang explained.

Prior to this study, no high-affinity receptors had been identified for the family of seven proteins called the human angiopoetic-like proteins. These seven proteins are known to be involved in inflammation, supporting the activity of stem cells, breaking down fats in the blood, and growing new blood vessels to nourish tumors. Because the receptor to which these proteins bind had not been identified, the angiopoetic-like proteins were referred to as "orphans," he said.

The researchers found that the human immune-inhibitory receptor LILRB2 and a corresponding receptor on the surface of mouse cells bind to several of the angiopoetic-like proteins. Further studies, Dr. Zhang said, showed that two of the seven family members bind particularly well to the LILRB2 receptor and that binding exerts an inhibitory effect on the cell, similar to a car's brakes.

In the case of stem cells, inhibition keeps them in their stem state. They retain their potential to mature into all kinds of blood cells as needed but they don't use up their energy differentiating into mature cells. That inhibition helps stem cells maintain their potential to create new stem cells because in addition to differentiation, self-renewal is the cells' other major activity, Dr. Zhang said. He stressed that the inhibition doesn't cause them to create new stem cells but does preserve their potential to do so.

In future research, the scientists hope to find subtle differences between stem cells and leukemia cells that will identify treatments to block the receptors' action only in leukemia.

Other UT Southwestern researchers involved in the study from the departments of physiology and developmental biology include postdoctoral researchers Dr. ChangHao Cui, Dr. Xiaoli Chen, Dr. Chaozheng Zhang, Dr. HoangDinh Huynh, and Dr. Xunlei Kang; senior research associates Robert Silvany and Jiyuan Li; and graduate student Xuan Wan. Researchers from the department of immunology include former technician Alberto Puig Cant and Dr. E. Sally Ward, professor of immunology.

View post:
Mechanism that maintains stem cells readiness identified

Posted in Stem Cells | Comments Off on Mechanism that maintains stem cells readiness identified

Page 2,743«..1020..2,7422,7432,7442,745..2,7502,760..»