Page 2,748«..1020..2,7472,7482,7492,750..2,7602,770..»

Biostem Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted: May 29, 2012 at 3:11 pm

More Topics: Choose a Sector Accounting Firms Advertising/Media/Communications Capital CEO/Board General Business Health/Biotech Internet/Technology Investment Firms Law Firms Mergers & Acquisitions Money Managers People Private Companies Public Companies Venture Capital

Posted May 29, 2012

Philip A. Lowry

Highly Recognized Bone Marrow Stem Cell Transplant Specialist Added to Existing Member Expertise in Maternal Fetal Medicine, Cardiology, and Pathology

CLEARWATER, FL -- Biostem U.S., Corporation, (OTCQB: HAIR) (PINKSHEETS: HAIR) a stem cell regenerative medicine sciences company, announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

Read more here:
Biostem Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted in Cell Medicine | Comments Off on Biostem Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(r)

Posted: May 29, 2012 at 3:10 pm

But Reviewers Urge Caution in Development and Clinical Use of Adipose Stem Cells

Newswise Philadelphia, Pa. (May 29, 2012) Adipose stem cells (ASCs)stem cells derived from fatare a promising source of cells for use in plastic surgery and regenerative medicine, according to a special review in the June issue of Plastic and Reconstructive Surgery, the official medical journal of the American Society of Plastic Surgeons (ASPS).

But much more research is needed to establish the safety and effectiveness of any type of ASC therapy in human patients, according to the article by Dr. Rod Rohrich of University of Texas Southwestern Medical Center, Dallas, and colleagues. Dr. Rohrich is Editor-in-Chief of Plastic and Reconstructive Surgery.

Adipose Stem CellsExciting Possibilities, but Proceed with Caution The authors present an up-to-date review of research on the science and clinical uses of ASCs. Relatively easily derived from human fat, ASCs are "multipotent" cells that can be induced to develop into other kinds of cellsnot only fat cells, but also bone, cartilage and muscle cells.

Adipose stem cells promote the development of new blood vessels (angiogenesis) and seem to represent an "immune privileged" set of cells that blocks inflammation. "Clinicians and patients alike have high expectations that ASCs may well be the answer to curing many recalcitrant diseases or to reconstruct anatomical defects," according to Dr. Rohrich and coauthors.

However, even as the number of studies using ASCs increases, there is continued concern about their "true clinical potential." The reviewers write, "For example, there are questions related to isolation and purification of ASCs, their effect on tumor growth, and the enforcement of FDA regulations."

Dr. Rohrich and coauthors performed an in-depth review to identify all known clinical trials of ASCs. So far, most studies have been performed in Europe and Korea; reflecting stringent FDA regulations, only three ASC studies have been performed in the United States to date.

Many Different Uses, But Little Experience So Far Most ASC clinical trials to date have been performed in plastic surgerya field with "unique privileged access to adipose tissues." Plastic surgeon-researchers have used ASCs for several types of soft tissue augmentation, such as breast augmentation (including after implant removal) and regeneration of fat in patients with abnormal fat loss (lipodystrophy). Studies exploring the use of ASCs to promote healing of difficult wounds have been reported as well. They have also been used as a method of soft tissue engineering or tissue regeneration, with inconclusive results.

In other specialties, ASCs have been studied for use in treating certain blood and immunologic disorders, heart and vascular problems, and fistulas. Some studies have explored the use of ASCs for generating new bone for use in reconstructive surgery. A few studies have reported promising preliminary results in the treatment of diabetes, multiple sclerosis, and spinal cord injury. No serious adverse events related to ASCs were reported in either group of studies.

Although many of the results are encouraging, the reviewers emphasize that all of these applications are in their infancy. Around the world, for all uses, less than 300 patients have been treatedwith no standard protocol for the preparation or clinical applications of ASCs.

See the rest here:
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(r)

Posted in Regenerative Medicine | Comments Off on Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(r)

Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

Posted: May 29, 2012 at 3:10 pm

SUNRISE, Fla., May 29, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News) announced today that it will offer another laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine, on Saturday/Sunday June 23-24, 2012. Attendees will participate in hands on, in depth training in laboratory practices in stem cell science at Bioheart, Inc.'s corporate headquarters and clean room in Sunrise, Florida. The course was designed for Laboratory technicians, Students, Physicians and Physician Assistants.

"Attendees will graduate from this one-of-a-kind course with an extensive understanding of stem cell science laboratory practices," said Kristin Comella, Chief Scientific Officer, Bioheart, Inc. "Previous attendees described the course as incredibly well orchestrated providing comprehensive know how for laboratory start up."

An emerging field with tremendous opportunities, adult stem cell research has been shown to regenerate and repair injured or diseased structures via the release of bioactive tissue growth factors and cytokines. This is the second time that The Ageless Regenerative Institute has partnered with Bioheart, Inc. to provide hands-on training in a stem cell laboratory. This course provides instruction regarding how to grow stem cells and perform quality control testing in an actual cGMP facility following FDA regulations.

The course goals and objectives include reviewing stem cell types and characteristics; learning cell culture including plating, trypsinization and harvesting, and cryopreservation; learning quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, sterility; and learning and performing cGMP functions including clean room maintenance, gowning and environmental monitoring.

For information on costs and to register, visit http://www.agelessregen.com or email: info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Go here to read the rest:
Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 ...

Posted in Stem Cell Therapy | Comments Off on Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

Umbilical cord donor unit to open

Posted: May 29, 2012 at 1:24 pm

29 May 2012 Last updated at 06:31 ET

An umbilical cord donor centre which will harvest stems cells to treat people with leukaemia is being set up at a Birmingham hospital.

The Anthony Nolan charity will run the centre at Birmingham Women's Hospital.

The charity said it had already recruited a supervising midwife for the centre and that the collectors would be in place within a month.

The centre, the first of its kind in the West Midlands, is expected to open in September.

Guy Parkes, from the Anthony Nolan charity, said a collection unit at a hospital cost more than 200,000 a year to run.

He said: "Instead of being incinerated, which is what usually happens, the cord is passed to one of our collectors who extracts the blood and that is sent to our centre in Nottingham where the stem cells are extracted."

The harvested stem cells have to be frozen to minus 180C for storage.

One in every 100 umbilical cords saved will be used to transplant stem cells, according to Mr Parkes.

A Worcestershire mother is raising money for the centre, after her son, who has leukaemia, was treated with stem cells from the US.

See the original post:
Umbilical cord donor unit to open

Posted in Stem Cells | Comments Off on Umbilical cord donor unit to open

Verastem to Present Scientific Data at the 2012 ASCO Annual Meeting

Posted: May 29, 2012 at 1:24 pm

CAMBRIDGE, Mass.--(BUSINESS WIRE)--

Verastem, Inc., (VSTM) a biopharmaceutical company focused on discovering and developing drugs to treat breast and other cancers by targeting cancer stem cells, announced the presentation of preclinical data at the American Society of Clinical Oncology Annual Meeting being held June 1 through June 5, 2012, in Chicago, IL.

Verastem will present data on novel biomarkers that may enable improved discrimination of cancer stem cells from other cancer cells and normal tissue. Verastem will describe the use of multiple methodologies, including RNA signatures and alternative splicing biomarkers, to detect cancer stem cells. These biomarkers identified Triple Negative Breast Cancer tumors that were likely to recur following standard chemotherapy. Resistance to standard treatment is one of the defining characteristics of cancer stem cells.

Verastem is developing diagnostics to identify patients whose tumors have a high percentage of cancer stem cells. These diagnostics may also be used to monitor a patients response to treatment.

The schedule for the Verastem poster presentation is as follows:

Date & Time: Saturday June 2, 8:00 AM to 12:00 PM (CDT) Poster Title: Use of gene expression and alternative splicing signatures to discriminate breast cancer stem cells from fibroblasts Abstract Number: 1057 Location: McCormick Place South (Hall A2) Session: Breast Cancer - Triple-negative/Cytotoxics/Local Therapy

About Verastem, Inc.

Verastem, Inc. (VSTM) is a biopharmaceutical company focused on discovering and developing drugs to treat breast and other cancers by targeting cancer stem cells. Cancer stem cells are an underlying cause of tumor recurrence and metastasis. Verastem is translating discoveries in cancer stem cell research into new medicines for the treatment of major cancers such as breast cancer. For more information please visit http://www.verastem.com.

Forward-looking statements:

Any statements in this press release about our strategy, future operations, future financial position, future expectations and plans and prospects for the Company, and other statements containing the words anticipate, believe, estimate, expect, intend, may, plan, predict, project, target, potential, will, would, could, should, continue, and similar expressions, constitute forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995. Forward-looking statements in this press release include statements about the identification of potential biomarkers for use in patient selection and evaluation of therapeutic response. Actual results may differ materially from those indicated by such forward-looking statements as result of various important factors, including the unproven nature of our approach to the discovery and development of product candidates that target cancer stem cells, our reliance on our proprietary compound screening technology for drug discovery, our strategy to acquire or in-license additional compounds and product candidates and the uncertainties inherent in preclinical testing and clinical trials, among other factors discussed in the Risk Factors section of the Company's Quarterly Report on Form 10-Q for the quarterly period ended March 31, 2012, which is on file with the Securities and Exchange Commission. In addition, the forward-looking statements included in this press release represent the Companys views only as of the date hereof. The Company anticipates that subsequent events and developments will cause the Companys views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Companys views as of any date subsequent to the date hereof.

Read more:
Verastem to Present Scientific Data at the 2012 ASCO Annual Meeting

Posted in Stem Cells | Comments Off on Verastem to Present Scientific Data at the 2012 ASCO Annual Meeting

Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure

Posted: May 29, 2012 at 1:24 pm

SAN DIEGO, May 29, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc. announced today that its strategic partner in Mexico, Grupo Angeles Health Services, has received approval from Mexico's regulatory agency, COFEPRIS, for a Phase I/II single-blind randomized clinical trial for chronic heart failure. COFEPRIS is the Mexican equivalent of the United States FDA. The clinical trial, to be conducted at multiple hospital sites throughout Mexico, will utilize Stemedica's adult allogeneic ischemia tolerant mesenchymal stem cells (itMSC) delivered via intravenous infusion. The trial will involve three safety cohorts at different dosages, followed by a larger group being treated with the maximum safe dosage. The COFEPRIS approval is the second approval for the use of Stemedica's itMSCs. COFEPRIS approved Stemedica's itMSCs in 2010 for a clinical trial for ischemic stroke. These two trials are the only allogeneic stem cell studies approved by COFEPRIS.

Grupo Angeles is a Mexican company that is 100% integrated into the national healthcare development effort. The company is comprised of 24 state-of-the-art hospitals totaling more than 2,000 beds and 200 operating rooms. Eleven thousand Groupo Angeles physicians annually treat nearly five million patients a year. Of these, more than two million are seen as in-patients. In just over two decades, Groupo Angeles has radically transformed the practice of private medicine in Mexico and contributed decisively to reform in the country's health system. Grupo Angeles hospitals conduct an estimated 100 clinical trials annually, primarily with major global pharmaceutical and medical device companies.

"We are pleased that we will be working with the largest and most prestigious private medical institution in Mexico to study Stemedica's product for this indication. If successful, our stem cells may provide a treatment option for the millions of patients, both in Mexico and internationally, who suffer from this condition," said Maynard Howe, PhD, CEO of Stemedica Cell Technologies, Inc.

Roberto Simon, MD, CEO of Grupo Angeles Health Services, noted, "We are proud to be the first organization to bring regulatory-approved allogeneic stem cell treatment to the people of Mexico. We envision that this type of treatment may well become a standard for improving cardiac status for chronic heart failure patients and are pleased to be partnering with Stemedica, one of the leading companies in the field of regenerative medicine."

Nikolai Tankovich, MD, PhD, President and Chief Medical Officer of Stemedica commented, "For the more than five million North Americans who suffer from chronic heart failure, this is an important trial. Our ischemia tolerant mesenchymal stem cells hold the potential to improve ejection fraction--the amount of blood pumped with each heart beat--and therefore, dramatically improve quality of life."

For more information about Stemedica please contact Dave McGuigan at dmcguigan(at)stemedica(dot)com. For more information about Grupo Angeles and the chronic heart failure trial please contact Paulo Yberri at pyberri(at)angelesehealth(dot)com.

About Stemedica Cell Technologies, Inc. Stemedica Cell Technologies, Inc.(http://www.stemedica.com) is a specialty bio-pharmaceutical company committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trials for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The Company is headquartered in San Diego, California.

This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/stemedica-clinical-trial/chronic-heart-failure/prweb9550806.htm

Originally posted here:
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure

Posted in Stem Cells | Comments Off on Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure

Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)

Posted: May 29, 2012 at 1:24 pm

ARLINGTON HEIGHTS, Ill., May 29, 2012 (GLOBE NEWSWIRE) -- Adipose stem cells (ACSs)--stem cells derived from fat--are a promising source of cells for use in plastic surgery and regenerative medicine, according to a special review in the June issue of Plastic and Reconstructive Surgery(R), the official medical journal of the American Society of Plastic Surgeons (ASPS).

But much more research is needed to establish the safety and effectiveness of any type of ASC therapy in human patients, according to the article by ASPS Member Surgeon Rod Rohrich, MD of University of Texas Southwestern Medical Center, Dallas, and colleagues. Dr. Rohrich is Editor-in-Chief of Plastic and Reconstructive Surgery.

Adipose Stem Cells--Exciting Possibilities, but Proceed with Caution

The authors present an up-to-date review of research on the science and clinical uses of ASCs. Relatively easily derived from human fat, ASCs are "multipotent" cells that can be induced to develop into other kinds of cells--not only fat cells, but also bone, cartilage and muscle cells.

Adipose stem cells promote the development of new blood vessels (angiogenesis) and seem to represent an "immune privileged" set of cells that blocks inflammation. "Clinicians and patients alike have high expectations that ASCs may well be the answer to curing many recalcitrant diseases or to reconstruct anatomical defects," according to Dr. Rohrich and co-authors.

However, even as the number of studies using ASCs increases, there is continued concern about their "true clinical potential." The reviewers write, "For example, there are questions related to isolation and purification of ASCs, their effect on tumor growth, and the enforcement of FDA regulations."

Dr. Rohrich and co-authors performed an in-depth review to identify all known clinical trials of ASCs. So far, most studies have been performed in Europe and Korea; reflecting stringent FDA regulations, only three ASC studies have been performed in the United States to date.

Many Different Uses, But Little Experience So Far

Most ASC clinical trials to date have been performed in plastic surgery--a field with "unique privileged access to adipose tissues." Plastic surgeon-researchers have used ASCs for several types of soft tissue augmentation, such as breast augmentation (including after implant removal) and regeneration of fat in patients with abnormal fat loss (lipodystrophy). Studies exploring the use of ASCs to promote healing of difficult wounds have been reported as well. They have also been used as a method of soft tissue engineering or tissue regeneration, with inconclusive results.

In other specialties, ASCs have been studied for use in treating certain blood and immunologic disorders, heart and vascular problems, and fistulas. Some studies have explored the use of ASCs for generating new bone for use in reconstructive surgery. A few studies have reported promising preliminary results in the treatment of diabetes, multiple sclerosis, and spinal cord injury. No serious adverse events related to ASCs were reported in either group of studies.

More here:
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)

Posted in Regenerative Medicine | Comments Off on Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)

Biostem U.S., Corp. Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted: May 29, 2012 at 1:23 pm

More Topics: Choose a Sector Accounting Firms Advertising/Media/Communications Capital CEO/Board General Business Health/Biotech Internet/Technology Investment Firms Law Firms Mergers & Acquisitions Money Managers People Private Companies Public Companies Venture Capital

Posted May 29, 2012

Philip A. Lowry

Highly Recognized Bone Marrow Stem Cell Transplant Specialist Added to Existing Member Expertise in Maternal Fetal Medicine, Cardiology, and Pathology

CLEARWATER, FL -- Biostem U.S., Corporation, (OTCQB: HAIR) (PINKSHEETS: HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

Read more here:
Biostem U.S., Corp. Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted in Cell Medicine | Comments Off on Biostem U.S., Corp. Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted: May 29, 2012 at 1:23 pm

CLEARWATER, FL--(Marketwire -05/29/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

About Biostem U.S., Corporation

Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell-related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Read more here:
Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Posted in Cell Therapy | Comments Off on Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

Posted: May 29, 2012 at 1:23 pm

SUNRISE, Fla., May 29, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News) announced today that it will offer another laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine, on Saturday/Sunday June 23-24, 2012. Attendees will participate in hands on, in depth training in laboratory practices in stem cell science at Bioheart, Inc.'s corporate headquarters and clean room in Sunrise, Florida. The course was designed for Laboratory technicians, Students, Physicians and Physician Assistants.

"Attendees will graduate from this one-of-a-kind course with an extensive understanding of stem cell science laboratory practices," said Kristin Comella, Chief Scientific Officer, Bioheart, Inc. "Previous attendees described the course as incredibly well orchestrated providing comprehensive know how for laboratory start up."

An emerging field with tremendous opportunities, adult stem cell research has been shown to regenerate and repair injured or diseased structures via the release of bioactive tissue growth factors and cytokines. This is the second time that The Ageless Regenerative Institute has partnered with Bioheart, Inc. to provide hands-on training in a stem cell laboratory. This course provides instruction regarding how to grow stem cells and perform quality control testing in an actual cGMP facility following FDA regulations.

The course goals and objectives include reviewing stem cell types and characteristics; learning cell culture including plating, trypsinization and harvesting, and cryopreservation; learning quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, sterility; and learning and performing cGMP functions including clean room maintenance, gowning and environmental monitoring.

For information on costs and to register, visit http://www.agelessregen.com or email: info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

More:
Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 ...

Posted in Cell Therapy | Comments Off on Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

Page 2,748«..1020..2,7472,7482,7492,750..2,7602,770..»