Page 2,753«..1020..2,7522,7532,7542,755..2,7602,770..»

From stem cell to brain cell: New technique mimics the brain

Posted: May 26, 2012 at 9:18 am

ScienceDaily (May 24, 2012) A new technique that converts stem cells into brain cells has been developed by researchers at Lund University. The method is simpler, quicker and safer than previous research has shown and opens the doors to a shorter route to clinical cell transplants.

By adding two different molecules, the researchers have discovered a surprisingly simple way of starting the stem cells' journey to become finished brain cells. The process mimics the brain's natural development by releasing signals that are part of the normal development process. Experiments in animal models have shown that the cells quickly adapt in the brain and behave like normal brain cells.

"This technique allows us to fine-tune our steering of stem cells to different types of brain cells. Previous studies have not always used the signals that are activated during the brain's normal development. This has caused the transplanted cells to develop tumours or function poorly in the brain," says Agnete Kirkeby, one of the authors of the study.

Since the method effectively imitates the brain's own processes, it reduces the risk of tumour formation, one of the most common obstacles in stem cell research. The quick, simple technique makes the cells mature faster, which both makes the transplant safer and helps the cells integrate better into the brain. The results of the study bring stem cell research closer to transplant trials in the human brain.

"We have used the new protocol to make dopamine neurons, the type of neuron that is affected by Parkinson's disease, and for the first time, we are seriously talking about these cells as being good enough to move forward for transplantation in patients. The next step is to test the process on a larger scale and to carry out more pre-clinical safety tests," explains Malin Parmar, research team leader.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Lund University, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

See more here:
From stem cell to brain cell: New technique mimics the brain

Posted in Stem Cells | Comments Off on From stem cell to brain cell: New technique mimics the brain

New drug destroys human cancer stem cells without affecting healthy ones

Posted: May 25, 2012 at 11:17 pm

Washington, May 25 : A study led by an Indian origin scientist has discovered a drug that successfully kills cancer stem cells in the human while avoiding the toxic side-effects of conventional cancer treatments.

Unlike chemotherapy and radiation, the drug - thioridazine - appears to have no effect on normal stem cells, according to the scientists at McMaster University.

"The unusual aspect of our finding is the way this human-ready drug actually kills cancer stem cells; by changing them into cells that are non-cancerous," said Mick Bhatia, the principal investigator for the study and scientific director of McMaster's Stem Cell and Cancer Research Institute in the Michael G. DeGroote School of Medicine.

The finding holds the promise of a new strategy and discovery pipeline for the development of anticancer drugs in the treatment of various cancers. The research team has identified another dozen drugs that have good potential for the same response.

To test more than a dozen different compounds, McMaster researchers pioneered a fully automated robotic system to identify several drugs, including thioridazine.

Bhatia's team found thioridazine works through the dopamine receptor on the surface of the cancer cells in both leukemia and breast cancer patients.

This means it may be possible to use it as a biomarker that would allow early detection and treatment of breast cancer and early signs of leukemia progression, he said.

The research team's next step is to investigate the effectiveness of the drug in other types of cancer. In addition, the team will explore several drugs identified along with thioridazine.

The research has been published in the science journal CELL. (ANI)

More from health-news:

More here:
New drug destroys human cancer stem cells without affecting healthy ones

Posted in Stem Cell Videos | Comments Off on New drug destroys human cancer stem cells without affecting healthy ones

UC San Diego researchers receive new CIRM funding

Posted: May 25, 2012 at 11:17 pm

Public release date: 25-May-2012 [ | E-mail | Share ]

Contact: Scott LaFee slafee@ucsd.edu 619-543-6163 University of California - San Diego

Five scientists from the University of California, San Diego and its School of Medicine have been awarded almost $12 million in new grants from the California Institute for Regenerative Medicine (CIRM) to conduct stem cell-based research into regenerating spinal cord injuries, repairing gene mutations that cause amyotrophic lateral sclerosis and finding new drugs to treat heart failure and Alzheimer's disease.

The awards mark the third round of funding in CIRM's Early Translational Awards program, which supports projects that are in the initial stages of identifying drugs or cell types that could become disease therapies. More than $69 million in awards were announced yesterday, including funding for first-ever collaboratively funded research projects with China and the federal government of Australia.

"With these new awards, the agency now has 52 projects in 33 diseases at varying stages of working toward clinical trials," said Jonathan Thomas, JD, PhD and CIRM governing board chair. "Californians should take pride in being at the center of this worldwide research leading toward new cures. These projects represent the best of California stem cell science and the best international experts who, together, will bring new therapies for patients."

The five new UC San Diego awards are:

With a $1.8 million award, Lawrence Goldstein, PhD, professor in the Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute Investigator and director of the UC San Diego Stem Cell Program, and colleagues will continue their work developing new methods to find and test drug candidates for Alzheimer's disease (AD). Currently, there is no effective treatment for AD. The researchers screen novel candidates using purified human brain cells made from human reprogrammed stem cells. Already, they have discovered that these human brain cells exhibit a unique biochemical behavior that indicates early development of AD in a dish.

Mark H. Tuszynski, MD, PhD, professor of neurosciences and director of the Center for Neural Repair at UC San Diego, and colleagues seek to develop more potent stem cell-based treatments for spinal cord injuries. By combining grafts of neural stem cells with scaffolds placed at injury sites, the researchers have reported substantial progress in restoring functional improvement in impaired animal models. The new $4.6 million grant will fund work to identify the optimal human neural stem cells for preclinical development and, in an unprecedented step, test this treatment in appropriate preclinical models of spinal cord injury, providing the strongest validation for human translation.

Amyotrophic lateral sclerosis or ALS (Lou Gehrig's disease) is a progressive neurological condition that is currently incurable. Gene Yeo, PhD, assistant professor in the Department of Cellular and Molecular Medicine, and colleagues will use a $1.6 million grant to exploit recent discoveries that specific mutations in RNA-binding proteins cause neuronal dysfunction and death. They will use neurons generated from patient cells containing the mutations to identify the unique RNA "signature" of these doomed neurons and screen for drug-like compounds that bypass the mutations to correct the RNA signature to obtain healthy neurons.

Eric David Adler, MD, an associate clinical professor of medicine and cardiologist, studies heart failure, including the use of stem cells to treat it. His $1.7 million award will fund research into Danon disease, a type of inherited heart failure that frequently kills patients by their 20s. Adler and colleagues will turn stem cells created from skin cells of patients with Danon disease into heart cells, then screen hundreds of thousands of drug candidates for beneficial effects. The most promising drugs will subsequently be tested on mice with a genetic defect similar to Danon disease, with the ultimate goal of identifying a suitable candidate for human clinical trials. The research may have broader applications for other conditions with similar pathogenesis, such as cancer and Parkinson's disease.

Read the original:
UC San Diego researchers receive new CIRM funding

Posted in Stem Cell Treatments | Comments Off on UC San Diego researchers receive new CIRM funding

UCI stem cell researcher to receive $4.8 million in state funding

Posted: May 25, 2012 at 11:17 pm

Public release date: 24-May-2012 [ | E-mail | Share ]

Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine

Irvine, Calif., May 24, 2012 A UC Irvine immunologist will receive $4.8 million to create a new line of neural stem cells that can be used to treat multiple sclerosis.

The California Institute for Regenerative Medicine awarded the grant Thursday, May 24, to Thomas Lane of the Sue & Bill Gross Stem Cell Research Center at UCI to support early-stage translational research.

CIRM's governing board gave 21 such grants worth $69 million to 11 institutions statewide. The funded projects are considered critical to the institute's mission of translating basic stem cell discoveries into clinical cures. They are expected to either result in candidate drugs or cell therapies or make significant strides toward such treatments, which can then be developed for submission to the Food & Drug Administration for clinical trial.

Lane's grant brings total CIRM funding for UCI to $76.65 million.

"I am delighted that CIRM has chosen to support our efforts to advance a novel stem cell-based therapy for multiple sclerosis," said Peter Donovan, director of the Sue & Bill Gross Stem Cell Research Center.

MS is a disease of the central nervous system caused by inflammation and loss of myelin, a fatty tissue that insulates and protects nerve cells. Current treatments are often unable to stop the progression of neurologic disability most likely due to irreversible nerve destruction resulting from myelin deficiencies. The limited ability of the body to repair damaged nerve tissue highlights a critically important and unmet need for MS patients.

In addressing this issue, Lane who also directs UCI's Multiple Sclerosis Research Center will target a stem cell treatment that will not only halt ongoing myelin loss but also encourage the growth of new myelin that can mend damaged nerves.

"Our preliminary data are very promising and suggest that this goal is possible," said Lane, a Chancellor's Fellow and professor of molecular biology & biochemistry. "Research efforts will concentrate on refining techniques for production and rigorous quality control of transplantable cells generated from high-quality human pluripotent stem cell lines, leading to the development of the most therapeutically beneficial cell type for eventual use in patients with MS."

Read the original:
UCI stem cell researcher to receive $4.8 million in state funding

Posted in Stem Cell Treatments | Comments Off on UCI stem cell researcher to receive $4.8 million in state funding

Calgary scientists make stem cell breakthrough

Posted: May 25, 2012 at 11:17 pm

Date: Friday May. 25, 2012 9:27 AM ET

CALGARY Calgary scientists say they have revolutionized stem cell production and have found a way to create the super cells without the risk of cancer.

A pair of researchers at the University of Calgary have created a device that allows them to produce millions of cells which can then be reprogrammed to make stem cells.

Dr. Derrick Rancourt and Dr. Roman Krawetz say they have perfected a new bioreactor technology that allows them to make millions of pluripotent stem cells much more quickly than ever before.

Pluripotent stem cells come from two main sources; embryos and adult cells that have been reprogrammed by scientists.

Scientists turn on four specific genes to reprogram the cells into stem cells which results in pluripotent stem cells or iPS cells.

Pluripotent stem cells have the potential to differentiate into almost any cell in the body.

"The even better news is, we made these stem cells without introducing the cancer gene at all," says Rancourt, co-author of the research, published in the May issue of the prestigious journal Nature Methods. "These stem cells are an outstanding alternative to embryonic stem cells."

Up until now, scientists were limited in their research because it usually takes one million adult cells to make a single stem cell and the resulting stem cells are much more likely to cause cancer.

"Scientists can make a whole mouse from iPS cells," says Krawetz. "The challenge they face is, within two years, the mouse gets cancer."

More here:
Calgary scientists make stem cell breakthrough

Posted in Stem Cell Research | Comments Off on Calgary scientists make stem cell breakthrough

Khalil's Picks (25 May 2012)

Posted: May 25, 2012 at 11:17 pm

Today, we have some awesome writings from seven (a factor of 42) equally awesome young or early-career science writers. Read about the science of oppressive urban environments, open science, the worlds first stem cell drug and more All here.

Rachel Nuwer, freelance science journalist, writes about a new research which aims to curtail oppressive urban environments in big cities, in Txchnologist. Oh, trees help.

Researchers Seek to Measure the Oppressiveness of Streetscapes

In the urban canyons, pedestrians shuffle in shadowed gullies carved between skyscrapers. Enclosed by hundreds of stories of steel and concrete, the hapless passersby feel the buildings loom over them like dark sentries. It may sound like a scene from Blade Runner, but some researchers are concerned that mega-cities like New York, Tokyo or Hong Kong darken more than pedestrian walkways. The built environment, some believe, may be an additional source of anxiety in an urbanites day-to-day life, as much as pressure from work and relationships.

Brett Szmajda, an editorial intern at Cosmos, writes about a speech-analysis software that can assess your stress levels for Cosmos Online.

Software to monitor your working memory

A nifty piece of software can now monitor workers and pick up on subtle cues about when they are not coping. The BrainGauge software, announced by Australian scientists at the CeBIT information and technology conference in Sydney, detects stress levels from vocal tones, and may improve worker retention rates in intense work environments such as air-traffic control, emergency services and call centres.

Victoria Charlton, at Imperial College London, UK, has a new blog post in her impressive I, Science blog, Science Means Business. This time, Victoria takes a look at open science. Her post starts with this sentence: Giving the public access to the research that they fund is about much more than eliminating journal pay-walls. A lede which will get you to read the whole post, Im sure.

Access Denied

Open access is a hot topic right now. For months, academics have been taking an uncharacteristic interest in the detailed financials of the publishing world, and, for many scientists, the fight for our right to party no, sorry, to access largely incomprehensible journal articles has taken on a revolutionary tone. Rumour has it, the mathematicians are revolting. (Against Dutch publisher Reed Elsevier, that is.) Now dont get me wrong, Im not against open access. Quite the opposite, actually. But, heretical though this may sound coming from a tax-paying science graduate and bona-fide member of the public, I do think were in danger of losing sight of the bigger picture on this one. Please, hear me out.

Read the original:
Khalil's Picks (25 May 2012)

Posted in Stem Cell Research | Comments Off on Khalil's Picks (25 May 2012)

UC San Diego Scientists Net $12 Million For Stem Cell Research

Posted: May 25, 2012 at 11:17 pm

Five UC San Diego scientists have received almost $12 million combined from the California Institute for Regenerative Medicine to pay for stem cell-based research, the university announced today.

A team led by Lawrence Goldstein, of the Department of Cellular and Molecular Medicine and director of the UC San Diego Stem Cell Program, was given $1.8 million to continue looking for new methods to find and test possible medications for Alzheimer's disease, according to UCSD. They use reprogrammed stem cells in their work.

Dr. Mark Tuszynski, professor of neurosciences and director of the Center for Neural Repair, received $4.6 million to develop more potent stem cell-based treatments for spinal cord injuries.

Gene Yeo, assistant professor in the Department of Cellular and Molecular Medicine, was awarded $1.6 million to continue research into treatments for amyotrophic lateral sclerosis. His research hopes to take advantage of recent discoveries about ALS, or Lou Gehrig's disease, which center on mutations in RNA-binding proteins that cause dysfunction and death in neurons.

Dr. Eric David Adler, an associate clinical professor of medicine and cardiologist, was granted $1.7 million to screen potential drugs for Danon disease, a type of inherited heart failure that frequently kills patients by their 20s.

Yang Xu, a professor in the Division of Biological Sciences, was given $1.8 million to research the use of human embryonic stem cells to produce a renewable source of heart muscle cells that replace cells damaged or destroyed by disease, while overcoming biological resistance to new cells.

"With these new awards, the (institute) now has 52 projects in 33 diseases at varying stages of working toward clinical trials,'' said Jonathan Thomas, chairman of the CIRM governing board. "Californians should take pride in being at the center of this worldwide research leading toward new cures.''

CIRM was established in November 2004 with voter passage of the California Stem Cell Research and Cures Act. UC San Diego has received $112 million since CIRM began providing grants six years ago.

Visit link:
UC San Diego Scientists Net $12 Million For Stem Cell Research

Posted in Stem Cell Research | Comments Off on UC San Diego Scientists Net $12 Million For Stem Cell Research

City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells

Posted: May 25, 2012 at 11:17 pm

DUARTE, Calif.--(BUSINESS WIRE)--

City of Hope was granted a $5,217,004 early translational research award by the California Institute for Regenerative Medicine (CIRM) to support the development of a T cell-based immunotherapy that re-directs a patients own immune response against glioma stem cells. City of Hope has been awarded more than $49.7 million in grant support from CIRM since awards were first announced in 2006.

City of Hope is a pioneer in T cell immunotherapy research, helping to develop genetically modified T cells as a treatment for cancer. This strategy, termed adoptive T cell therapy, focuses on redirecting a patients immune system to specifically target tumor cells, and has the potential to become a promising new approach for treatment of cancer.

In this research, we are genetically engineering a central memory T cell that targets proteins expressed by glioma stem cells, said Stephen J. Forman, M.D., Francis and Kathleen McNamara Distinguished Chair in Hematology and Hematopoietic Cell Transplantation and director of the T Cell Immunotherapy Research Laboratory. Central memory T cells have the potential to establish a persistent, lifelong immunity to help prevent brain tumors from recurring.

The American Cancer Society estimates that more than 22,000 people in the U.S. will be diagnosed with a brain tumor this year, and 13,700 will die from the disease. Glioma is a type of brain tumor that is often difficult to treat and is prone to recurrence. Currently, less than 20 percent of patients with malignant gliomas are living five years after their diagnosis. This poor prognosis is largely due to the persistence of tumor-initiating cancer stem cells, a population of malignant cells similar to normal stem cells in that they are able to reproduce themselves indefinitely. These glioma stem cells are highly resistant to chemotherapy and radiation treatments, making them capable of re-establishing new tumors.

Researchers at City of Hope previously have identified several proteins as potential prime targets for the development of cancer immunotherapies, such as interleukin 13 receptor alpha 2, a receptor found on the surface of glioma cells, and CD19, a protein that is active in lymphoma and leukemia cells. Both investigational therapies are currently in phase I clinical trials. Forman is the principal investigator for the newly granted study which will develop a T cell that targets different proteins expressed by glioma stem cells. Christine Brown, Ph.D., associate research professor, serves as co-principal investigator, and Michael Barish, Ph.D., chair of the Department of Neurosciences, and Behnam Badie, M.D., director of the Brain Tumor Program, serve as co-investigators on the project.

Because cancer stem cells are heterogeneous, our proposed therapy will target multiple antigens to cast as wide a net as possible over this malignant stem cell population, said Brown.

While in this effort, we are targeting a neurological cancer, our approach will lead to future studies targeting other cancers, including those that metastasize to the brain, added Barish.

The CIRM grant will help us to build a targeted T cell therapy against glioma that can offer lasting protection, determine the best way to deliver the treatment, establish an efficient process to manufacture these T cells for treatment, and get approval for a human clinical trial, said Badie.

City of Hope is also a collaborative partner providing process development, stem cell-derived cell products and regulatory affairs support in two other CIRM-funded projects that received early translational research grants. Larry Couture, Ph.D., senior vice president of City of Hopes Sylvia R. & Isador A. Deutch Center for Applied Technology Development and director of the Center for Biomedicine & Genetics, is working with Stanford University and Childrens Hospital of Orange County Research Institute on their respective projects.

Read more from the original source:
City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells

Posted in Stem Cell Research | Comments Off on City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells

5 scientists receive stem-cell research grants

Posted: May 25, 2012 at 11:17 pm

Five scientists from the University of California, San Diego and its School of Medicine have been awarded almost $12 million in new grants from the California Institute for Regenerative Medicine (CIRM) to conduct stem cell-based research into regenerating spinal cord injuries, repairing gene mutations that cause amyotrophic lateral sclerosis and finding new drugs to treat heart failure and Alzheimer's disease.

The awards mark the third round of funding in CIRM's Early Translational Awards program, which supports projects that are in the initial stages of identifying drugs or cell types that could become disease therapies. More than $69 million in awards were announced yesterday, including funding for first-ever collaboratively funded research projects with China and the federal government of Australia.

"With these new awards, the agency now has 52 projects in 33 diseases at varying stages of working toward clinical trials," said Jonathan Thomas, JD, PhD and CIRM governing board chair. "Californians should take pride in being at the center of this worldwide research leading toward new cures. These projects represent the best of California stem cell science and the best international experts who, together, will bring new therapies for patients."

The five new UC San Diego awards are:

CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for stem cell research at California universities and research institutions and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities.

The May 24 grants bring UC San Diego's total to more than $112 million in CIRM funding since the first awards in 2006.

Visit link:
5 scientists receive stem-cell research grants

Posted in Stem Cell Research | Comments Off on 5 scientists receive stem-cell research grants

Fat stem cells may help treat kidney ailments

Posted: May 25, 2012 at 11:17 pm

Fat stem cells may help treat kidney ailments BS Reporter / Mumbai/ AhmedabadMarch 06, 2007 In a breakthrough in the stem cell research, scientist from Ahmedabad have developed a technique to encourage a new kind of stem cells called Mesenchymal stem cells generated from fat (adipose tissue) of donors, which can be used in treating kidney diseases. Mesenchymal stem cells generated from fat of donors hold great promise for the treatment of kidney diseases, claims H L Trivedi, director, Institute of Kidney Diseases and Research Center (IKDRC), Ahmedabad. We will soon patent the research, he added. The institute will soon convene a meeting of scientists working on the project and take a decision on securing the patent for the research. A team of scientists from the IKDRC, led by Trivedi, has clinically proved that when presented in the right physical context, certain growth factors encourage the survival and proliferation of fat mesenchymal stem cells grown outside the body. Trivedi says the research offers hope of cent per cent recovery for patients suffering from severe kidney diseases as the mesenchymal stem cells will nullify the rejection rate of the body, thus inducing the body to accept the newly transplanted kidney as part of its own body. Emphasising on the success of mesenchymal stem cells for kidney treatment, Trivedi further said mesenchymal stem cells were the best repair stem cells compared to other stem cells. The worlds first recipient of these kinds of stem cells is a kidney patient - Hetalben Mewada, a 30-year-old housewife from Palanpur in Gujarat, claims the scientist from IKDRC. Speaking about the financial aspect of the kidney treatment, Trivedi said, Mesenchymal stem cells using fat is simple and cheap. The latest invention would cut the cost of surgery drastically and make it affordable for the needy people. It will also reduce the chances of recurrence and complexity in the post surgery situation, he said. Mesenchymal stem cells are available in bone marrow and peripheral blood cells in smaller quantity, but the cells are not economically feasible. Mesenchymal stem cells can be easily derived from fat and is economically viable. Mesenchymal stem cells that are already in the fats are separated and grown through culturing technique in laboratory. IKDRCs scientists carried out a kidney transplant operation using Mesenchymal stem cells derived from fats along with adult hematopoietic stem cells infused into the transplanted kidney to create tolerance or acceptance by the patients. This eliminates the chance of rejection, and the patients would not need medication. Under this procedure, the mesenchymal stem cells act as a big brother to adult hematopoietic stem cells. Mesenchymal stem cells protect these hematopoietic stem cells and help their grafting into different organs by themselves getting grafted and making space for their younger siblings (adult hematopoietic stem cells) to live along with them in their vicinity. Fat stem cells may help treat kidney ailments BS Reporter / Mumbai/ Ahmedabad Mar 06, 2007, 22:52 IST

Link:
Fat stem cells may help treat kidney ailments

Posted in Stem Cell Research | Comments Off on Fat stem cells may help treat kidney ailments

Page 2,753«..1020..2,7522,7532,7542,755..2,7602,770..»