Page 2,757«..1020..2,7562,7572,7582,759..2,7702,780..»

Could Stem Cells Cure MS?

Posted: May 23, 2012 at 8:12 pm

A growth factor isolated from human stem cells shows promising results in a mouse model of multiple sclerosis.

Human mesenchymal stem cells (hMSCs) have become a popular potential therapy for numerous autoimmune and neurological disorders. But while these bone marrow-derived stem cells have been studied in great detail in the dish, scientists know little about how they modulate the immune system and promote tissue repair in living organisms.

Now, one research team has uncovered a molecular mechanism by which hMSCs promote recovery in a mouse model of multiple sclerosis (MS).

According to research, published online Sunday (May 20) in Nature Neuroscience, a growth factor produced by hMSCs fights MS in two ways: blocking a destructive autoimmune response and repairing neuronal damage. The finding could help advance ongoing clinical trials testing hMSCs as a therapy for MS.

The researchers have identified a unique factor that has surprisingly potent activity mediating neuron repair, said Jacques Galipeau, a cell therapy researcher at Emory University in Atlanta, Georgia, who was not involved in the research. The magnitude of the effect on a mouse model of MS is a big deal.

MS is an autoimmune disease in which the immune system attacks myelin sheaths that surround and protect nerve cells. The attack leaves nerves exposed and unable to send signals to the brain and back, resulting in the loss of motor skills, coordination, vision, and cognitive abilities. There is no cure for MS, and most current therapies work to simply suppress the immune system, preventing further neuronal damage. None have demonstrated an ability to also repair damaged myelin and promote recovery.

In 2009, Robert Miller and colleagues at Case Western Reserve University in Cleveland, Ohio, demonstrated that hMSCs dramatically reversed the symptoms of multiple sclerosis in a mouse model of the disorder. The animals got better, recalled Miller. The team hypothesized that the stem cells suppress the immune response and promote remyelination.

But Miller wanted to know exactly what the cells were doing. To find out, his team isolated the medium on which the hMSCs were grown to determine if the cells or something they secreted was responsible for the observed recovery. The medium alone was enough to induce recovery in mice, pointing to the latter.

To find out exactly which molecule or molecules in the medium were responsible, the researchers separated the proteins in the fluid based on the molecular weight and injected each isolate into mice exhibiting symptoms of MS. The mid-weight solution, of proteins with masses between 50 and 100 kilodaltons (kDa), caused recovery. That eliminated a huge number of potential candidates, said Miller.

The researchers then narrowed the field again with a literature search for a molecule that fit their criteria: secreted by hMSCs, 50-100 kDa in size, and involved in tissue repair. They identified hepatocyte growth factor (HGF), a cytokine made by mesenchymal cells that has been shown to promote tissue regeneration and cell survival in numerous experiments. Sure enough, HGF alone was enough to promote recovery in the MS mouse models, and blocking the receptor for HGF in those mice blocked recovery. The team also demonstrated that HGF suppresses immune responses in vivo and accelerates remyelination of neurons in vitro. Finally, they saw that HGF causes remyelination in rats with a lesion on their spinal cord.

Read this article:
Could Stem Cells Cure MS?

Posted in Stem Cells | Comments Off on Could Stem Cells Cure MS?

Stem-cell-growing surface enables bone repair

Posted: May 23, 2012 at 8:12 pm

Public release date: 23-May-2012 [ | E-mail | Share ]

Contact: Kate McAlpine kmca@umich.edu 734-763-4386 University of Michigan

ANN ARBOR, Mich.University of Michigan researchers have proven that a special surface, free of biological contaminants, allows adult-derived stem cells to thrive and transform into multiple cell types. Their success brings stem cell therapies another step closer.

To prove the cells' regenerative powers, bone cells grown on this surface were then transplanted into holes in the skulls of mice, producing four times as much new bone growth as in the mice without the extra bone cells.

An embryo's cells really can be anything they want to be when they grow up: organs, nerves, skin, bone, any type of human cell. Adult-derived "induced" stem cells can do this and better. Because the source cells can come from the patient, they are perfectly compatible for medical treatments.

In order to make them, Paul Krebsbach, professor of biological and materials sciences at the U-M School of Dentistry, said, "We turn back the clock, in a way. We're taking a specialized adult cell and genetically reprogramming it, so it behaves like a more primitive cell."

Specifically, they turn human skin cells into stem cells. Less than five years after the discovery of this method, researchers still don't know precisely how it works, but the process involves adding proteins that can turn genes on and off to the adult cells.

Before stem cells can be used to make repairs in the body, they must be grown and directed into becoming the desired cell type. Researchers typically use surfaces of animal cells and proteins for stem cell habitats, but these gels are expensive to make, and batches vary depending on the individual animal.

"You don't really know what's in there," said Joerg Lahann associate professor of chemical engineering and biomedical engineering.

For example, he said that human cells are often grown over mouse cells, but they can go a little native, beginning to produce some mouse proteins that may invite an attack by a patient's immune system.

See more here:
Stem-cell-growing surface enables bone repair

Posted in Stem Cells | Comments Off on Stem-cell-growing surface enables bone repair

Can Stem Cells Repair Heart Tissue?

Posted: May 23, 2012 at 8:12 pm

People who suffer from heart failure could someday be able to use their own skin stem cells to regenerate their damaged heart tissue, according to a new Israeli study.

Researchers took stem cells from the skin of two patients with heart failure and genetically programmed them to become new heart muscle cells. They then transplanted the new cells into healthy rats and found that the cells integrated with cardiac tissue that already existed.

The study, published in European Heart Journal, marks the first time ever that scientists could use skin cells from people with heart failure and transform damaged heart tissue this way.

The newly generated cells turned out to be similar to embryonic stem cells, which can potentially be programmed to grow into any type of cell.

"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born," Dr. Lior Gepstein, lead researcher and a senior clinical electrophysiologist at Rambam Medical Center in Haifa, Israel, said in a news release.

The findings open up the possibility, the authors wrote, that people can use their own skin cells to repair their damaged hearts, which could prevent the problems associated with using embryonic stem cells.

"This approach has a number of attractive features," said Dr. Tom Povsic, an interventional cardiologist at Duke University Medical Center. "We can get the cells that you start with from the patient himself or herself. It avoids the ethical dilemma associated with embryonic stem cells and it removes the possibility of rejection of foreign stem cells by the immune system." Povsic was not involved with the Israeli study.

Another advantage of using skin cells is that other types of cells taken from patients themselves, such as bone marrow cells, could potentially lead to the development of unhealthy tissue.

"If a patient is already sick with heart disease, one of the reasons it may develop is that stem cells weren't able to repair the heart the way they should," Povsic added. Skin cells, he explained, are generally healthy.

"It is very exciting and very interesting, but we are far away from taking this to patients," said Dr. Marrick Kukin, director of the Heart Failure Program at St. Luke's-Roosevelt Hospital who was also not involved in the Israeli study.

Continue reading here:
Can Stem Cells Repair Heart Tissue?

Posted in Stem Cells | Comments Off on Can Stem Cells Repair Heart Tissue?

Stem Cells Curb Chronic Pain in Mice

Posted: May 23, 2012 at 8:12 pm

May 23, 2012 12:00pm

Replacing dead or dysfunctional nerve cells with new, healthy ones derived from stem cells eases chronic pain in mice, a new study found.

Researchers from the University of California, San Francisco coaxed mouse embryonic stem cells into becoming mature nerve cells that could bridge gaps in the circuitry that triggers neuropathic pain.

One of the major causes of neuropathic pain is the loss of inhibitory control at the level of the spinal cord because of nerve loss or dysfunction, said study author Allan Basbaum, chairman of UCSFs department of anatomy. The idea was to replace or repopulate the spinal cord cells that provide that inhibition.

The same stem cells, destined to become inhibitory neurons that dampen the signals that cause pain, were previously shown to improve symptoms in a mouse model of epilepsy, Basbaum said. The question was whether we could take the exact same cells and put them in the spinal cord.

Before injecting the cells into the spinal cords of mice with neuropathic pain, the researchers labeled them with a fluorescent tracer to track the connections they made.

We were able to show how these cells integrate beautifully, Basbaum said, describingthe waythe transplanted cells looked and behaved like the mouses own.

Not only did the cells set up shop in the spinal cord, sending and receiving signals through a complex network of neurons, they also eased the neuropathic pain.

In four weeks, the animals condition completely disappeared, Basbaum said, adding that transplanted control cells that lacked the inhibitory properties of the stem-cell-derived neurons failed to ease the pain.

The clinical significance is that we think were actually modifying the disease, not just treating the symptoms, Basbaum said, adding that drugs currently used to ease neuropathic pain fail to treat the underlying problem. Instead of taking a drug to suppress the pain, were trying to normalize the circuit that was damaged by the disease or the injury. The cells repopulate, they integrate, and basically they treat the disease.

See the rest here:
Stem Cells Curb Chronic Pain in Mice

Posted in Stem Cells | Comments Off on Stem Cells Curb Chronic Pain in Mice

CNBC interview on prospects for regenerative medicine under Obama administration – Video

Posted: May 23, 2012 at 8:12 pm

22-05-2012 16:27 Introduced by CNBC anchor Larry Kudlow, science and medicine reporter Mike Huckman conducts an interview with Dr. Michael West, founder of Geron and CEO of BioTime, about the prospects for the regenerative medicine field and stem cell research under President Obama, shortly after Obama's inauguration.

Go here to see the original:
CNBC interview on prospects for regenerative medicine under Obama administration - Video

Posted in Regenerative Medicine | Comments Off on CNBC interview on prospects for regenerative medicine under Obama administration – Video

Chronic Pain Is Relieved by Cell Transplantation in Lab Study

Posted: May 23, 2012 at 8:11 pm

UCSF Scientists Aim to Use Embryonic Stem Cells for Treatment

Newswise Chronic pain, by definition, is difficult to manage, but a new study by UCSF scientists shows how a cell therapy might one day be used not only to quell some common types of persistent and difficult-to-treat pain, but also to cure the conditions that give rise to them.

The researchers, working with mice, focused on treating chronic pain that arises from nerve injury -- so-called neuropathic pain.

In their study, published in the May 24, 2012 issue of Neuron, the scientists transplanted immature embryonic nerve cells that arise in the brain during development and used them to make up for a loss of function of specific neurons in the spinal cord that normally dampen pain signals.

A small fraction of the transplanted cells survived and matured into functioning neurons. The cells integrated into the nerve circuitry of the spinal cord, forming synapses and signaling pathways with neighboring neurons.

As a result, pain hypersensitivity associated with nerve injury was almost completely eliminated, the researchers found, without evidence of movement disturbances that are common side effects of the currently favored drug treatment.

Now we are working toward the possibility of potential treatments that might eliminate the source of neuropathic pain, and that may be much more effective than drugs that aim only to treat symptomatically the pain that results from chronic, painful conditions, said the senior author of the study, Allan Basbaum, PhD, chair of the Department of Anatomy at UCSF.

Although pain and hypersensitivity after injury usually resolve, in some cases they outlast the injury, creating the condition of chronic pain. Many types of chronic pain are induced by stimuli that are essentially harmless such as light touch but that are perceived as painful, according to Basbaum.

Chronic pain due to this type of hypersensitivity is often a debilitating medical condition. Many people suffer from chronic neuropathic pain after a bout of shingles, years or decades after the virus that causes chicken pox has been vanquished. Chronic pain is not merely prolonged acute pain, Basbaum said.

Those who suffer from chronic pain often get little relief, even from powerful narcotic painkillers, according to Basbaum. Gabapentin, an anticonvulsant first used to treat epilepsy, now is regarded as the most effective treatment for neuropathic pain. However, it is effective for only roughly 30 percent of patients, and even in those people it only provides about 30 percent relief of the pain, he said.

Read the original post:
Chronic Pain Is Relieved by Cell Transplantation in Lab Study

Posted in Cell Therapy | Comments Off on Chronic Pain Is Relieved by Cell Transplantation in Lab Study

IntelliCell BioSciences Announces Collaborative Agreement with the University of Florida on Stem Cell and Tissue …

Posted: May 23, 2012 at 8:10 pm

NEW YORK, May 22, 2012 /PRNewswire/ --IntelliCell BioSciences, Inc.("Company") (SVFC.PK) announced today that it has entered a sponsored research agreement with the Institute for Cell Engineering and Regenerative Medicine (ICERM) at the University of Florida. A portion of the collaborative work will be to explore the physiological characteristics of the adult autologous vascular cells that are also referred to as stromal vascular fraction cells which form the basis of the IntelliCell product. The company also intends to explore combination therapies with patent pending bio-engineered products under development. The Company believes that the IntelliCell product is an efficient cellular delivery platform for a variety of therapeutic applications and will look to partner with technology developers.

Said Jon Dobson, Ph.D., Professor of biomedical engineering and biomaterials at the University of Florida, "We are pleased to be working with IntelliCell. Their technology is innovative and appears to hold promise for future regenerative medicine applications. The use of adult autologous (your own) stem cells to repair and regenerate tissues are of great interest to personalized medicine researchers." Professor Dobson is a leading researcher in bionanotechnology and nanomedicine applications and apart from regenerative medicine, his work also spans across fields as diverse as gene therapy, stem cell therapy and tumor targeting. He is also the Director of the newly formed Institute for Cell Engineering and Regenerative Medicine at the University of Florida.

Dr. Steven Victor, CEO of IntelliCell, added "This is a very exciting time for regenerative medicine companies. We are looking forward to long and productive research collaboration with the University of Florida and Professor Dobson. IntelliCell believes that important contributions for better medicine will result from research collaborations with our university research colleagues." Robert Sexauer, Executive Vice President, ICBS Research, stated that "we would like to take a thought leadership position by working closely with those at the vanguard of regenerative medicine development."

About IntelliCell BioSciences

IntelliCell is a pioneering regenerative medicine company focused on the expanding regenerative medical markets using adult autologous vascular cells (SVC's) derived from the blood vessels in the adult adipose tissue. IntelliCell Biosciences has developed its own patent pending protocol to separate adult autologous vascular cells from adipose tissue without the use of enzymes. IntelliCell will also be seeking to develop technology licensing agreements with technology developers, universities, and international business entities.

About University of Florida

The University of Florida is one of the nation's largest public universities. A member of the Association of American Universities, UF receives more than $619 million annually in sponsored research funding. Through its research and other activities, UF contributes more than $8.76 billion a year to Florida's economy and has a total employment impact of more than 100,000 jobs statewide. http://www.ufl.edu.University of Florida Research: Working for Florida.

Forward-LookingStatements

Certain statements set forth in this press release constitute "forward-looking statements." Forward-looking statements include, without limitation, any statement that may predict, forecast, indicate, or imply future results, performance or achievements, and may contain the words "estimate," "project," "intend," "forecast," "anticipate," "plan," "planning," "expect," "believe," "will likely," "should," "could," "would," "may" or words or expressions of similar meaning. Such statements are not guarantees of future performance and are subject to risks and uncertainties that could cause the company's actual results and financial position to differ materially from those included within the forward-looking statements. Forward-looking statements involve risks and uncertainties, including those relating to the Company's ability to grow its business. Actual results may differ materially from the results predicted and reported results should not be considered as an indication of future performance. The potential risks and uncertainties include, among others, the Company's limited operating history, the limited financial resources, domestic or global economic conditions, activities of competitors and the presence of new or additional competition, and changes in Federal or State laws. More information about the potential factors that could affect the Company's business and financial results is included in the Company's filings, available via the United States Securities and Exchange Commission.

Contacts:

Here is the original post:
IntelliCell BioSciences Announces Collaborative Agreement with the University of Florida on Stem Cell and Tissue ...

Posted in Cell Medicine | Comments Off on IntelliCell BioSciences Announces Collaborative Agreement with the University of Florida on Stem Cell and Tissue …

Prochymal – First Stem Cell Drug Approved

Posted: May 23, 2012 at 8:10 pm

Editor's Choice Main Category: Bones / Orthopedics Also Included In: Stem Cell Research Article Date: 22 May 2012 - 12:00 PDT

Current ratings for: 'Prochymal - First Stem Cell Drug Approved'

4.5 (2 votes)

Prochymal (remestemcel-L) is also the first drug to be approved for the treatment of acute graft-vs-host disease (GvHD) in children, a devastating complication of bone marrow transplantation that kills almost 80% of all affected children, many of which just weeks after they have been diagnosed.

GvHD is the leading cause of transplant-related mortality, caused by an immunologic attack. Severe GvHD can cause blistering of the skin, intestinal hemorrhage and liver failure and is extremely painful with a death rate of up to 80%. At present, the first-line standard therapies for GvHD are steroids. Given that the success rate of steroids is only 30 to 50%, the only other therapy if steroids fail is limited to immunosuppressive agents that are used off-label with little benefit and significant toxicities. Until the approval of Prochymal, there has not been any other therapy for GvHD.

Osiris Therapeutics Inc. was awarded authorization for Prochymal under Health Canada's Notice of Compliance with conditions (NOC/c). A NOC/c is an authorization to market a drug with the condition that the manufacturer undertakes additional studies to verify the clinical benefit. This pathway provides access to treatments for unmet medical conditions and has demonstrated its benefits outweigh its risks in clinical trials.

Andrew Daly, M.D., Clinical Associate Professor from the Department of Medicine and Oncology at the University of Calgary, Canada and leading researcher of Prochymal's phase 3 clinical program declared:

C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris announced:

Prochymal is an intravenous formulation of mesenchymal stem cells (MSCs), which are derived from the bone marrow of healthy adult donors aged between 18 and 30 years. The MSCs are selected from the bone marrow and grown in culture, producing up to 10,000 doses of Prochymal from a single donor. The drug is a true off-the-shelf stem cell product, which is stored frozen until it is needed. Prochymal is infused through a simple intravenous line without the need to type or immunosuppress the recipient. The drug is currently undergoing Phase 3 trials for refractory Crohn's disease, as well as undergoing clinical trials for the treatment of heart attacks and type-1 diabetes.

Health Canada granted the Prochymal's authorization for the management of acute GvHD in children who are unresponsive to steroids, based on the drug's results of clinical trials. Prochymal was recommended by an independent expert advisory panel, which was commissioned to assess the drugs safety and efficacy.

Read this article:
Prochymal - First Stem Cell Drug Approved

Posted in Cell Therapy, Stem Cell Therapy | Comments Off on Prochymal – First Stem Cell Drug Approved

Frozen cord could save a life

Posted: May 22, 2012 at 10:11 am

Tim and Padma Vellaichamy of Parramatta have had their new born child's umbilical cord stored cryogenically for future treatment. Pictured with their as yet unnamed three week old daughter. Picture: Adam Ward Source: The Daily Telegraph

IT'S current preservation for future regeneration - and now umbilical cord tissue is going on ice in Australia for the first time.

Usually discarded after birth, umbilical tissue from newborn babies is being collected and cryogenically frozen to be used one day for regenerative and stem cell medicine. And it doesn't just have potential for the babies involved, either. Experts say stem cells could also be used for family members who are genetically compatible.

It is hoped the cells will eventually be able to be used to repair damaged tissues and organs, with researchers investigating its uses for treating diseases like multiple sclerosis, cerebral palsy and diabetes, as well as for bone and cartilage repair.

Although cord blood storage has been available for many years, Cell Care Australia has added cord tissue storage in anticipation of new discoveries in the regenerative medicine field.

Cell Care Australia medical director associate professor Mark Kirkland said the storage process - already popular in the US, Europe and Southeast Asia - was long overdue for Australian shores.

"The science is developing around the world and we're really behind the rest of the world in providing parents the option to store these cells and we thought it was about time it was brought here," he said.

"It's finding a way to take what would otherwise be waste tissue and turning it into something of potential future value for not only your child but also potentially for other family members.'

Parramatta couple Tim and Padma Vellaichamy are among the first to use the service in Australia.

Mr Vellaichamy, 31, said he heard of the technology while working as a dentist in India and decided to store their daughter's cord cell tissue after birth three weeks ago.

See original here:
Frozen cord could save a life

Posted in Cell Medicine | Comments Off on Frozen cord could save a life

Stem cell medicine thrown umbilical rope

Posted: May 22, 2012 at 10:11 am

Tim and Padma Vellaichamy of Parramatta have had their new born child's umbilical cord stored cryogenically for future treatment. Pictured with their as yet unnamed three week old daughter. Picture: Adam Ward Source: The Daily Telegraph

IT'S current preservation for the future regeneration - and now umbilical cord tissue is going on ice in Australia for the first time.

Usually discarded after birth, umbilical tissue from newborn babies is being collected and cryogenically frozen to be used one day for regenerative and stem cell medicine. And it doesn't just have potential for the babies involved, either. Experts say stem cells could also be used for family members who are genetically compatible.

It is hoped the cells will eventually be able to be used to repair damaged tissues and organs, with researchers investigating its uses for treating diseases like multiple sclerosis, cerebral palsy and diabetes, as well as for bone and cartilage repair.

Although cord blood storage has been available for many years, Cell Care Australia has added cord tissue storage in anticipation of new discoveries in the regenerative medicine field.

Cell Care Australia medical director associate professor Mark Kirkland said the storage process - already popular in the US, Europe and Southeast Asia - was long overdue for Australian shores.

"The science is developing around the world and we're really behind the rest of the world in providing parents the option to store these cells and we thought it was about time it was brought here," he said.

"It's finding a way to take what would otherwise be waste tissue and turning it into something of potential future value for not only your child but also potentially for other family members.'

Parramatta couple Tim and Padma Vellaichamy are among the first to use the service in Australia.

Mr Vellaichamy, 31, said he heard of the technology while working as a dentist in India and decided to store their daughter's cord cell tissue after birth three weeks ago.

Originally posted here:
Stem cell medicine thrown umbilical rope

Posted in Cell Medicine | Comments Off on Stem cell medicine thrown umbilical rope

Page 2,757«..1020..2,7562,7572,7582,759..2,7702,780..»