Page 2,774«..1020..2,7732,7742,7752,776..2,7802,790..»

Devangshu Datta: Towards an HIV cure

Posted: May 5, 2012 at 3:11 pm

Devangshu Datta: Towards an HIV cure Advances in genetic engineering techniques may finally help us win the battle against this global scourge Devangshu Datta / New Delhi May 04, 2012, 00:53 IST

Since AIDS, or acquired immune deficiency syndrome, was identified in 1981, there has been only one medically-certified cure. That occurred under unusual circumstances and it gave researchers an important clue about new ways to attack the disease. Recent advances in genetic engineering techniques have aided in this process. Some studies offer new hope of a cure for the 35 million estimated to be infected worldwide.

No disease inspires as much superstitious dread. So far, AIDS is estimated to have killed over 30 million people and it infects millions every year. It is especially prevalent in Sub-Saharan Africa.

HIV is transmitted through the exchange of body fluids. Common causes of infection (not necessarily in order) include unprotected sex, blood transfusions, sharing needles and so on. The associations with promiscuity and drug addiction make it hard to implement policies to stop HIV-spread. What works best is a combination of sex education and drug awareness programmes, coupled with easy availability of condoms and disposable needles. But in conservative societies like India, people object to sex education. Some religions also discourage the use of condoms.

Someone infected with HIV (HIV-positive) may survive years, without symptoms. The virus attacks a class of white blood cells called CD4 T-cells. It inserts itself into the cell and replicates. T-cells are part of the natural immune system. Once AIDS develops owing to HIV taking over T-cells, the immune system shuts down. Most AIDS patients die of cancer, pneumonia, or some other infection.

The new approaches involve inserting immune genes into HIV-positive patients, through genetic engineering of stem cells. Every researcher is cautious about claims of cures. The characteristic long symptom-less periods and HIVs ability to hide can be cruelly deceptive. HIV-positive people are also vulnerable to quacks. Many charlatans, including a cross-dresser who teaches yoga on Indian television, have claimed at various times to have found AIDS cures.

Some people have natural genetic immunity for various reasons. Advances in understanding of genomes have helped identify some of the causes of immunity. Researchers have known for a while that a mutated gene called CCR5 Delta 32 offers natural immunity to HIV.

The mutation is rare and found only in a few northern Europeans. The normal CCR5 gene, which most people possess, is the receptor HIV uses to enter T-cells. HIV cannot use the Delta-32 mutated gene and, hence, cannot replicate in a host who has two copies of the CCR5 Delta 32 gene (one inherited from each parent). Even one copy of Delta 32 seems to offer some protection. Only about one per cent of northern Europeans possess both copies.

In 2007, Timothy Ray Brown, an American resident in Berlin, was HIV-positive and also under treatment for leukaemia. Leukaemia causes an abnormal increase in white blood cells and a drop in red cells. Blood cells are produced by bone marrow. One drastic treatment is a bone marrow stem cell transplant from a healthy person. This helps regenerate healthy blood with a good haemoglobin ratio, and a new immune system. Its dangerous since the patients entire immune system must be destroyed prior to the transplant.

Browns doctors at the Charite University Medicine Berlin, Kristina Allers and Gero Hutter, found a compatible donor who belonged to that rare one per cent with the Delta-32 mutation. Five years later, after the transplant procedures, the Berlin Patient, as Brown is called in medical journals, is still HIV-free and doctors concur that this is a functional cure.

Read more here:
Devangshu Datta: Towards an HIV cure

Posted in Genetic Engineering | Comments Off on Devangshu Datta: Towards an HIV cure

Lewis speaks on gene therapy at Lexington Community Education event

Posted: May 5, 2012 at 3:11 pm

Tales of biotechnology advances are unlikely to raise a lump in the throat or bring a tear to the eye on their own. Thats what makes Ricki Lewiss recent talk at Lexington Community Education so clever and engrossing. Lewis wrapped a lecture on human genetics and gene therapy in the genuinely moving stories of children whose lives were altered -- some for good, some for bad -- since the field was born in the early 1990s.

As in her book, The Forever Fix: Gene Therapy and the Boy Who Saved It, Lewis talked about the children impacted by rare diseases and the scientists who labored to get closer to a forever fix, a cure that would repair problems at the genetic level.

Lewis is the author of the science textbook Human Genetics: Concepts and Applications, now in its 10th edition and used worldwide, Discovery: Windows on the Life Sciences, and the novel Stem Cell Symphony, about using rock music to activate stem cells in the brain to cure disease. She holds a Ph.D in genetics from Indiana University, and is currently a genetic counselor and teaches at the Alden March Bioethics Institute of Albany Medical College.

She began the lecture with the story of 8-year-old Corey Haas, who in 2008, only four days after undergoing gene therapy to cure his hereditary blindness, screamed in pain when visible sunlight impacts his eyes for the first time.

Lewis uses Coreys story, and how he came to be one of the early beneficiaries of gene therapy, to tell the story of the birth of that miraculous treatment.

Corey was in the right place and the right time, she said. His blindness was treatable but the treatment was experimental.

Gene therapy involves the placement of a gene that a person cant make in their own body into virus cell which is implanted in the body. In Coreys case, his eyes were unable to use Vitamin A, which is necessary for the eye to take in and process light. A virus delivered DNA wrapped in a protein to correct faulty instructions in the affected body part, Lewis said.

Lewis also discussed the story of Jesse Gelsinger, a teenager whose death during gene therapy trials nearly brought the experimental treatment to a close while it was still in its infancy. While Gelsingers story was a tragic failure, Lewis said that scientists were committed to learning from their errors and moving the field further.

One of the most famous children Lewis discussed was David Vetter the so-called Bubble Boy of the 1970s, depicted in the film The Boy in the Plastic Bubble, starring John Travolta. Vetter died of an immunological disease in 1984 at age 30, but the condition is now treatable through gene therapy.

By treating rare diseases such as Vetters, Lewis explained that researchers will learn what they need to treat more common diseases in the future.

Go here to read the rest:
Lewis speaks on gene therapy at Lexington Community Education event

Posted in Gene therapy | Comments Off on Lewis speaks on gene therapy at Lexington Community Education event

Stem cell mutation triggers fibroid tumors

Posted: May 5, 2012 at 3:10 pm

Washington, May 5 : Researchers have for the first time identified the molecular cause of fibroid uterine tumors, which affect millions of women causing irregular bleeding, anemia, pain and infertility.

Despite the high prevalence of the tumors, which occur in 60 percent of women by age 45, the molecular trigger has been unknown.

Now, a new Northwestern Medicine preclinical research has identified a single stem cell that develops a mutation, starts to grow uncontrollably and activates other cells to join its frenzied expansion, as the key player of the disease.

'It loses its way and goes wild,' said Serdar Bulun, M.D., the chair of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital.

'No one knew how these came about before. The stem cells make up only 1 and a half percent of the cells in the tumor, yet they are the essential drivers of its growth,' he explained.

The stem cell initiating the tumor carries a mutation called MED12. Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone.

For the study, researchers examined the behaviour of human fibroid stem cells when grafted into a mouse, a novel model initiated by Northwestern scientist Takeshi Kurita, a research associate professor of obstetrics and gynecology.

The most important characteristic of fibroid stem cells is their ability to generate tumors. Tumors originating from the fibroid stem cell population grew 10 times larger compared to tumors initiated with the main cell population, suggesting a key role of these tumor stem cells is to initiate and sustain tumor growth.

'Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies,' said Bulun, also the George H. Gardner Professor of Clinical Gynecology.

The paper has been published in the journal PLoS ONE. (ANI)

Originally posted here:
Stem cell mutation triggers fibroid tumors

Posted in Cell Medicine | Comments Off on Stem cell mutation triggers fibroid tumors

UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

Posted: May 5, 2012 at 3:10 pm

Public release date: 4-May-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

In an effort to identify the underlying causes of neurological disorders that impair motor functions such as walking and breathing, UCLA researchers have developed a novel system to measure the communication between stem cell-derived motor neurons and muscle cells in a Petri dish.

The study provides an important proof of principle that functional motor circuits can be created outside of the body using stem cell-derived neurons and muscle cells, and that the level of communication, or synaptic activity, between the cells could be accurately measured by stimulating motor neurons with an electrode and then measuring the transfer of electrical activity into the muscle cells to which the motor neurons are connected.

When motor neurons are stimulated, they release neurotransmitters that depolarize the membranes of muscle cells, allowing the entry of calcium and other ions that cause them to contract. By measuring the strength of this activity, one can get a good estimation of the overall health of motor neurons. That estimation could shed light on a variety of neurodegenerative diseases such as spinal muscular atrophy and amyotrophic lateral sclerosis, or Lou Gehrig's disease, in which the communication between motor neurons and muscle cells is thought to unravel, said study senior author Bennett G. Novitch, an assistant professor of neurobiology and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

The findings of the study appear May 4, 2012 in PLoS ONE, a peer-reviewed journal of the Public Library of Science.

"Now that we have this method to measure the strength of the communications between motor neurons and muscle cells, we may be able to begin exploring what happens in the earliest stages of motor neuron disease, before neuronal death becomes prevalent," Novitch said. "This can help us to pinpoint where things begin to go wrong and provide us with new clues into therapeutic interventions that could improve synaptic communication and promote neuronal survival."

Novitch said the synaptic communication activity his team was able to create and measure using mouse embryonic stem cell-derived motor neurons and muscle cells looks very similar what is seen in a mouse, validating that their model is a realistic representation of what is happening in a living organism.

"That gives us a good starting point to try to model what happens in cells that harbor genetic mutations that are associated with neurodegenerative diseases,. To do that, we had to first define an activity profile of normal synaptic communication," he said. "Some research suggests that a breakdown in this communication can be an early indication of disease progression or possibly an initiating event. Neurons that cannot effectively transmit information to muscle cells will eventually withdraw their contacts, causing both the neurons and muscle cells to degenerate over time. Hopefully, we can now create disease models that will allow us to study what is happening."

In this study, Novitch and his team, led by Joy Umbach, an associate professor of molecular and medical pharmacology, used mouse embryonic stem cells to create the motor neurons and previously established lines of muscle precursors to produce muscle fibers. They put both cells together in a Petri dish, and the cells were cultured in such a way to encourage communication. Novitch said the team wanted to see if they would naturally form synaptic contacts and whether or not there was neural transmission between them.

See the rest here:
UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

Posted in Cell Medicine | Comments Off on UCLA scientists measure communication between stem cell-derived motor neurons and muscle cells

University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Posted: May 5, 2012 at 3:10 pm

MIAMI--(BUSINESS WIRE)--

The University of Miami Miller School of Medicines Interdisciplinary Stem Cell Institute (ISCI) today announced that it received a $10 million grant from The Starr Foundation, one of the largest private foundations in the United States. The grant will support ISCI in broadening its preclinical and clinical research on stem cells, and help accelerate its pipeline of translational research and programs for a wide range of debilitating conditions including cardiac disease, cancer, wound healing, stroke, glaucoma and chronic kidney and gastrointestinal diseases.

This is a momentous and transformative gift for the Interdisciplinary Stem Cell Institute, said Joshua M. Hare, M.D., F.A.C.C., F.A.H.A., Louis Lemberg Professor of Medicine at the University of Miami Miller School of Medicine and director of ISCI. We are so gratified that the level of science being conducted here was recognized by this very generous grant from The Starr Foundation. With this award, we join the ranks of the other major top-tier universities funded by The Starr Foundation. This support, along with our growing NIH funding, technology transfer, and other philanthropic efforts guarantees the stability of ISCI through the end of the decade, and will allow us to continue to push the boundaries of regenerative medicine with the goal of improving human health.

Stem cells and regenerative medicine are poised to transform the way we practice medicine, cure disease and treat injuries. To realize this potential, the University of Miami Miller School of Medicine is performing world-leading research at ISCI, said Pascal J. Goldschmidt, M.D., Senior Vice President for Medical Affairs and Dean of the Miller School of Medicine, and Chief Executive Officer of the University of Miami Health System. We are extremely proud of this recognition by The Starr Foundation that ISCI, and the Miller School of Medicine, are leading the way for stem cell and regenerative medicine breakthroughs.

Donna E. Shalala, President of the University of Miami, said the grant from the foundation will have long-reaching implications for future medicine. The team at ISCI is making new discoveries on a number of fronts and this substantial support from The Starr Foundation propels that work forward, both in the laboratory and in clinical trials.

For more on the grant, click here.

Read the original here:
University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Posted in Cell Medicine | Comments Off on University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Stem cell therapy to battle HIV?

Posted: May 5, 2012 at 3:10 pm

(SACRAMENTO, Calif.) -- UC Davis Health System researchers are a step closer to launching human clinical trials involving the use of an innovative stem cell therapy to fight the virus that causes AIDS.

In a paper published in the May issue of the Journal of Virology, the UC Davis HIV team demonstrated both the safety and efficacy of transplanting anti-HIV stem cells into mice that represent models of infected patients. The technique, which involves replacing the immune system with stem cells engineered with a triple combination of HIV-resistant genes, proved capable of replicating a normally functioning human immune system by protecting and expanding HIV-resistant immune cells. The cells thrived and self-renewed even when challenged with an HIV viral load.

"We envision this as a potential functional cure for patients infected with HIV, giving them the ability to maintain a normal immune system through genetic resistance," said lead author Joseph Anderson, an assistant adjunct professor of internal medicine and a stem cell researcher at the UC Davis Institute for Regenerative Cures. "Ideally, it would be a one-time treatment through which stem cells express HIV-resistant genes, which in turn generate an entire HIV-resistant immune system."

To establish immunity in mice whose immune systems paralleled those of patients with HIV, Anderson and his team genetically modified human blood stem cells, which are responsible for producing the various types of immune cells in the body.

Building on work that members of the team have pursued over the last decade, they developed several anti-HIV genes that were inserted into blood stem cells using standard gene-therapy techniques and viral vectors (viruses that efficiently insert the genes they carry into host cells). The resulting combination vector contained:

These engineered blood stem cells, which could be differentiated into normal and functional human immune cells, were introduced into the mice. The goal was to validate whether this experimental treatment would result in an immune system that remained functional, even in the face of an HIV infection, and would halt or slow the progression toward AIDS.

The results were successful on all counts.

"After we challenged transplanted mice with live HIV, we demonstrated that the cells with HIV-resistant genes were protected from infection and survived in the face of a viral challenge, maintaining normal human CD4 levels," said Anderson. CD4+ T-cells are a type of specialized immune cell that HIV attacks and uses to make more copies of HIV.

"We actually saw an expansion of resistant cells after the viral challenge, because other cells which were not resistant were being killed off, and only the resistant cells remained, which took over the immune system and maintained normal CD4 levels," added Anderson.

The data provided from the study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validated its potential application in future human clinical trials. The team has submitted a grant application for human clinical trials and is currently seeking regulatory approval, which is necessary to move on to clinical trials.

Go here to read the rest:
Stem cell therapy to battle HIV?

Posted in Cell Therapy | Comments Off on Stem cell therapy to battle HIV?

University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Posted: May 4, 2012 at 2:12 pm

MIAMI--(BUSINESS WIRE)--

The University of Miami Miller School of Medicines Interdisciplinary Stem Cell Institute (ISCI) today announced that it received a $10 million grant from The Starr Foundation, one of the largest private foundations in the United States. The grant will support ISCI in broadening its preclinical and clinical research on stem cells, and help accelerate its pipeline of translational research and programs for a wide range of debilitating conditions including cardiac disease, cancer, wound healing, stroke, glaucoma and chronic kidney and gastrointestinal diseases.

This is a momentous and transformative gift for the Interdisciplinary Stem Cell Institute, said Joshua M. Hare, M.D., F.A.C.C., F.A.H.A., Louis Lemberg Professor of Medicine at the University of Miami Miller School of Medicine and director of ISCI. We are so gratified that the level of science being conducted here was recognized by this very generous grant from The Starr Foundation. With this award, we join the ranks of the other major top-tier universities funded by The Starr Foundation. This support, along with our growing NIH funding, technology transfer, and other philanthropic efforts guarantees the stability of ISCI through the end of the decade, and will allow us to continue to push the boundaries of regenerative medicine with the goal of improving human health.

Stem cells and regenerative medicine are poised to transform the way we practice medicine, cure disease and treat injuries. To realize this potential, the University of Miami Miller School of Medicine is performing world-leading research at ISCI, said Pascal J. Goldschmidt, M.D., Senior Vice President for Medical Affairs and Dean of the Miller School of Medicine, and Chief Executive Officer of the University of Miami Health System. We are extremely proud of this recognition by The Starr Foundation that ISCI, and the Miller School of Medicine, are leading the way for stem cell and regenerative medicine breakthroughs.

Donna E. Shalala, President of the University of Miami, said the grant from the foundation will have long-reaching implications for future medicine. The team at ISCI is making new discoveries on a number of fronts and this substantial support from The Starr Foundation propels that work forward, both in the laboratory and in clinical trials.

For more on the grant, click here.

Read this article:
University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Posted in Cell Medicine | Comments Off on University of Miami’s Interdisciplinary Stem Cell Institute Awarded $10 Million Grant from Starr Foundation

Fibrocell Science Technology Leads to Discovery of Two Rare Adult Stem Cell-Like Subpopulations in Human Skin

Posted: May 3, 2012 at 3:12 pm

EXTON, Pa.--(BUSINESS WIRE)--

In collaboration with Fibrocell Science, Inc., (OTCBB:FCSC.OB), researchers at the University of California, Los Angeles (UCLA) have identified two rare adult stem cell-like subpopulations in adult human skin, a discovery that may yield further ground-breaking research in the field of personalized medicine for a broad range of diseases. Using technology developed by Fibrocell Science, Inc. the researchers were able to confirm the existence of these two types of cells in human skin cell cultures, potentially providing a source of stem cell-like subpopulations from skin biopsies, which are quicker to perform, relatively painless and less invasive than bone marrow and adipose tissue extractions, which are the current methods for deriving adult stem cells for patient-specific cellular therapies.

The findings, which are reported in the inaugural issue of BioResearch Open Access, pertain to two subtypes of cells: SSEA3-expressing regeneration-associated (SERA) cells, which may play a role in the regeneration of human skin in response to injury and mesenchymal adult stem cells (MSCs), which are under investigation (by many independent researchers) for their ability to differentiate into the three main types of cells: osteoblasts (bone cells), chondrocytes (cartilage cells) and adipocytes (fat cells). Finding these specialized cells within the skin cell cultures is important because rather than undergoing a surgical organ or tissue transplantation to replace diseased or destroyed tissue, patients may one day be able to benefit from procedures by which stem cells are extracted from their skin, reprogrammed to differentiate into specific cell types and reimplanted into their bodies to exert a therapeutic effect. Research in this area is ongoing.

Finding these rare adult stem cell-like subpopulations in human skin is an exciting discovery and provides the first step towards purifying and expanding these cells to clinically relevant numbers for application to a variety of potential personalized cellular therapies for osteoarthritis, bone loss, injury and/or damage to human skin as well as many other diseases, said James A. Byrne, Ph.D., the studys lead author and Assistant Professor of Molecular and Medical Pharmacology at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. In addition to pursuing our own research investigations with Fibrocell Science using this method, we envision a time not too far in the future when we will be able to isolate and produce mesenchymal stem cells and SERA cells on demand from skin samples, which may allow other researchers in need of specialized cells to pursue their own lines of medical and scientific research.

We congratulate the UCLA researchers on the publication of their breakthrough data, which may ultimately lead to new patient-specific, personalized cellular therapies to treat various diseases, said David Pernock, Chairman and CEO of Fibrocell Science, Inc. Fibrocell Science is proud of our role in helping to establish the potential of dermal skin cells for the future of personalized, regenerative medicine. We look forward to continuing our relationship with UCLA and Dr. Byrnes team to advance this research.

Discovering Viable, Regenerative Cells in the Skin

Dr. Byrne and colleagues confirmed previous research identifying a rare population of cells in adult human skin that has a marker called the stage-specific embryonic antigen 3 (SSEA3). Dr. Byrne observed that there was a significant increase in the number of SSEA3 expressing cells following injury to human skin, supporting the hypothesis that the SSEA3 biomarker can be used to facilitate the identification and isolation of these cells with tissue-regenerative properties.

Using Fibrocells proprietary technology, the researchers collected cells from small skin samples, cultured the cells in the lab, and purified them via a technique known as fluorescence-activated cell sorting (FACS). Under FACS, cells in suspension were tagged with fluorescent markers specific for undifferentiated stem cells. This method allowed the researchers to separate the rare cell subpopulations from other types of cells.

Dr. Byrne and colleagues also observed a rare subpopulation of functional MSCs in human skin that existed in addition to the SERA cells.

Being able to identify two sub-populations of rare, viable and functional cells that behave like stem cells from within the skin is an important finding because both cell types have the potential to be investigated for diverse clinical applications, said Dr. Byrne.

Visit link:
Fibrocell Science Technology Leads to Discovery of Two Rare Adult Stem Cell-Like Subpopulations in Human Skin

Posted in Cell Medicine | Comments Off on Fibrocell Science Technology Leads to Discovery of Two Rare Adult Stem Cell-Like Subpopulations in Human Skin

Cryo-Cell International Taps Leader in Stem Cell Therapy to Serve as Chief Scientific Officer

Posted: May 3, 2012 at 3:10 pm

OLDSMAR, Fla., May 3, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Cryo-Cell International, Inc. announced the appointment of Linda Kelley, Ph.D., as chief scientific officer. Dr. Kelley is responsible for overseeing Cryo-Cells state-of-the art laboratory, translational medicine initiatives and quality assurance program at its stem cell and cord blood banking facility in Oldsmar, Florida. She joins the company from the Dana Farber Cancer Institute at Harvard, where she was the director of the Connell OReilly Cell Manipulation Core Facility.

Dr. Kelley is an internationally recognized, cord blood stem cell scientist whose accomplishments have helped expand the scope of stem cell therapies from bone marrow transplantation to the treatment of heart, kidney, brain and other degenerative diseases. She was a member of the board of trustees of the Foundation for Accreditation of Cellular Therapy and chaired its Standards Committee. Dr. Kelley was one of 12 scientists selected by the Institute of Medicine of the National Academies of Science to serve on the panel that advised Congress on how to allocate $80 million in funding to optimally structure a national cord blood stem cell program.

While director of the Cell Therapy Facility at the University of Utah, she established that states first umbilical cord blood collection program that enabled families to donate their childrens cord blood to the national inventory. Dr. Kelley earned graduate and post-doctoral degrees in hematology and immunology at Vanderbilt University in Nashville, Tenn., where she also served as assistant professor in the Department of Medicine.

As a leader in our field, Cryo-Cell is delighted to have someone of Dr. Kelleys caliber directing our laboratory and translational medicine initiatives. Her expertise will ensure that we continue to exceed the industrys quality standards and maintain our tradition of offering clients the absolute best in cord blood, cord tissue, and menstrual stem cell cryopreservation services, said David Portnoy, chairman and co-CEO at Cryo-Cell. Under her guidance, Cryo-Cell will be propelled to the forefront of regenerative medicine.

Kelley replaces Julie Allickson, Ph.D., who is joining the Wake Forest Institute for Regenerative Medicine (WFIRM), where she will manage translational research. WFIRM is led by Anthony Atala, M.D., a Cryo-Cell board member and preeminent stem cell scientist.

The opportunity to work in a cutting-edge facility with a staff that is exceptionally well trained was very attractive to me, said Dr. Kelley. But equally important in my decision to join Cryo-Cell, was the commitment that co-CEOs David and Mark Portnoy have made to support the advancement of regenerative medicine through partnerships with Stanford University and private research facilities. Cryo-Cell is unique among stem cell cryopreservation firms in that regard.

About Cryo-Cell International, Inc. Cryo-Cell International, Inc. was founded in 1989. In 1992, it became the first private cord blood bank in the world to separate and store stem cells. Today, Cryo-Cell has over 240,000 clients worldwide from 87 countries. Cryo-Cell's mission is to provide clients with state-of-the-art stem cell cryopreservation services and support the advancement of regenerative medicine. Cryo-Cell operates in a facility that is compliant with Good Manufacturing Practice and Good Tissue Practice (cGMP/cGTP). It is ISO 9001:2008 certified and accredited by the American Association of Blood Banks. Cryo-Cell is a publicly traded company, OTC:QB Markets Group Symbol: CCEL. Expectant parents or healthcare professionals who wish to learn more about cord blood banking and cord blood banking prices may call 1-800-STOR-CELL (1-800-786-7235) or visit http://www.cryo-cell.com/.

Forward-Looking Statement Statements wherein the terms "believes", "intends", "projects", "anticipates", "expects", and similar expressions as used are intended to reflect "forward-looking statements" of the Company. The information contained herein is subject to various risks, uncertainties and other factors that could cause actual results to differ materially from the results anticipated in such forward-looking statements or paragraphs, many of which are outside the control of the Company. These uncertainties and other factors include the success of the Company's global expansion initiatives and product diversification, the Company's actual future ownership stake in future therapies emerging from its collaborative research partnerships, the success related to its IP portfolio, the Company's future competitive position in stem cell innovation, future success of its core business and the competitive impact of public cord blood banking on the Company's business, the Company's ability to minimize future costs to the Company related to R&D initiatives and collaborations and the success of such initiatives and collaborations, the success and enforceability of the Company's menstrual stem cell technology license agreements and umbilical cord blood license agreements and their ability to provide the Company with royalty fees, the ability of the reproductive tissue storage to generate new revenues for the Company and those risks and uncertainties contained in risk factors described in documents the Company files from time to time with the Securities and Exchange Commission, including the most recent Annual Report on Form 10-K, Quarterly Reports on Form 10-Q and any Current Reports on Form 8-K filed by the Company. The Company disclaims any obligations to subsequently revise any forward-looking statements to reflect events or circumstances after the date of such statements.

Contact: David Portnoy Cryo-Cell International, Inc. 813-749-2100 dportnoy(at)cryo-cell(dot)com

This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/2012/5/prweb9469228.htm

Go here to read the rest:
Cryo-Cell International Taps Leader in Stem Cell Therapy to Serve as Chief Scientific Officer

Posted in Stem Cell Therapy | Comments Off on Cryo-Cell International Taps Leader in Stem Cell Therapy to Serve as Chief Scientific Officer

Genetically Modified T Cell Therapy Shown to be Safe, Lasting in Decade-Long Penn Medicine Study of HIV Patients

Posted: May 3, 2012 at 4:12 am

PHILADELPHIA HIV patients treated with genetically modified T cells remain healthy up to 11 years after initial therapy, researchers from the Perelman School of Medicine at the University of Pennsylvania report in the new issue of Science Translational Medicine. The results provide a framework for the use of this type of gene therapy as a powerful weapon in the treatment of HIV, cancer, and a wide variety of other diseases.

"We have 43 patients and they are all healthy," says senior author Carl June, MD, a professor of Pathology and Laboratory Medicine at Penn Medicine. "And out of those, 41 patients show long term persistence of the modified T cells in their bodies."

Early gene therapy studies raised concern that gene transfer to cells via retroviruses might lead to leukemia in a substantial proportion of patients, due to mutations that may arise in genes when new DNA is inserted. The new long-term data, however, allay that concern in T cells, further buoying the hope generated by work June's team published in 2011 showing the eradication of tumors in patients with chronic lymphocytic leukemia using a similar strategy.

"If you have a safe way to modify cells in patients with HIV, you can potentially develop curative approaches," June says. "Patients now have to take medicine for their whole lives to keep their virus under control, but there are a number of gene therapy approaches that might be curative." A lifetime of anti-HIV drug therapy, by contrast, is expensive and can be accompanied by significant side effects.

They also note that the approach the Penn Medicine team studied may allow patients with cancers and other diseases to avoid the complications and mortality risks associated with more conventional treatments, since patients treated with the modified T cells did not require drugs to weaken their own immune systems in order for the modified cells to proliferate in their bodies after infusion, as is customary for cancer patients who receive stem cell transplants.

To demonstrate the long-term safety of genetically modified T cells, June and colleagues have followed HIV-positive patients who enrolled in three trials between 1998 and 2002. Each patient received one or more infusions of their own T cells that had been genetically modified in the laboratory using a retroviral vector. The vector encoded a chimeric antigen receptor that recognizes the HIV envelope protein and directs the modified T cell to kill any HIV-infected cells it encounters.

As is standard for any trial, the researchers carefully monitored patients for any serious adverse events immediately after infusion -- none of which were seen. Additionally, because of the earlier concerns about long-term side effects, the U.S. Food and Drug Administration also asked the team to follow the patients for up to 15 years to ensure that the modified T cells were not causing blood cancers or other late effects. Therefore, each patient underwent an exam and provided blood samples during each of the subsequent years.

Now, with more than 500 years of combined patient safety data, June and colleagues are confident that the retroviral vector system is safe for modifying T cells. By contrast, June notes, the earlier, worrying side effects were seen when viral vectors were used to modify blood stem cells. The new results show that the target cell for gene modification plays an important role in long-term safety for patients treated. "T cells appear to be a safe haven for gene modification," June says.

The multi-year blood samples also show that the gene-modified T cell population persists in the patients' blood for more than a decade. In fact, models suggest that more than half of the T cells or their progeny are still alive 16 years after infusion, which means one treatment might be able to kill off HIV-infected cells for decades. The prolonged safety data means that it might be possible to test T cell-based gene therapy for the treatment of non-life threatening diseases, like arthritis.

"Until now, we've focused on cancer and HIV-infection, but these data provide a rationale for starting to focus on other disease types," June says. "What we have demonstrated in this study and recent studies is that gene transfer to T cells can endow these cells with enhanced and novel functions. We view this as a personalized medicine platform to target disease using a patient's own cells."

See the original post here:
Genetically Modified T Cell Therapy Shown to be Safe, Lasting in Decade-Long Penn Medicine Study of HIV Patients

Posted in Cell Medicine | Comments Off on Genetically Modified T Cell Therapy Shown to be Safe, Lasting in Decade-Long Penn Medicine Study of HIV Patients

Page 2,774«..1020..2,7732,7742,7752,776..2,7802,790..»