Page 2,812«..1020..2,8112,8122,8132,814..2,8202,830..»

Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

Posted: March 12, 2012 at 7:35 pm

CLEARWATER, FL--(Marketwire -03/12/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transplantation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

More:
Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of ...

Posted in Stem Cell Research | Comments Off on Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Posted: March 12, 2012 at 7:35 pm

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

Read more from the original source:
UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Posted in Stem Cell Research | Comments Off on UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Correcting human mitochondrial mutations

Posted: March 12, 2012 at 7:35 pm

Public release date: 12-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears March 12, 2012 in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

Link:
Correcting human mitochondrial mutations

Posted in Stem Cell Research | Comments Off on Correcting human mitochondrial mutations

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Posted: March 12, 2012 at 7:35 pm

Newswise UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their stemness, said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells, Banerjee said. Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders.

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjees lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone, Shim said. All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there.

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells, Shim said. However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions.

See the article here:
Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Posted in Stem Cell Research | Comments Off on Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Posted: March 12, 2012 at 2:32 pm

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

Read the original post:
UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Posted in Cell Medicine | Comments Off on UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Posted: March 12, 2012 at 2:32 pm

Newswise UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their stemness, said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells, Banerjee said. Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders.

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjees lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone, Shim said. All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there.

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells, Shim said. However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions.

The rest is here:
Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Posted in Cell Medicine | Comments Off on Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

Posted: March 12, 2012 at 2:31 pm

CLEARWATER, FL--(Marketwire -03/12/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transplantation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Read more:
Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of ...

Posted in Regenerative Medicine | Comments Off on Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

EMD Millipore and the Centre for Commercialization of Regenerative Medicine Collaborate to Optimize Conditions for …

Posted: March 12, 2012 at 11:22 am

BILLERICA, MASSACHUSETTS and TORONTO, ONTARIO--(Marketwire -03/12/12)- Editors Note: There is a photo associated with this press release.

EMD Millipore, the Life Science division of Merck KGaA, and the Centre for Commercialization of Regenerative Medicine (CCRM) today announced a collaboration to develop optimized conditions for bioreactor-based cultivation of stem cells.

This joint project will focus on the development of a proprietary monitoring and control methodology, enabling robust growth of adherent human pluripotent stem cells in EMD Millipore's Mobius CellReady stirred tank bioreactor. Ultimately, the project will deliver a commercially available kit containing reagents and associated methodologies for bioreactor culture of stem cells on microcarriers.

"As the demand for stem cells used in drug discovery and clinical applications grows, effectively translating the promise of stem cells into therapeutic reality will require large-scale, industrialized production under tightly controlled conditions," states Robert Shaw, Commercial Director of EMD Millipore's Stem Cell Initiative. "At this time, production is typically achieved using stacks of 2D tissue culture vessels, which is an expensive and labor intensive process. This joint project will address those challenges and facilitate optimized, large-scale cultivation of stem cells which can accelerate the progress of therapies into the clinic."

"When CCRM was created, we had industry partnerships like this in mind," says Michael May, CEO of the Centre for Commercialization of Regenerative Medicine. "We are delighted to have EMD Millipore as our first project partner. Their production expertise and technologies will help CCRM to develop products that will benefit industry, academia, and the patient community. We appreciate that EMD Millipore has commissioned us to undertake this project and recognizes our strength in bioprocessing engineering."

CCRM will be employing EMD Millipore's Mobius CellReady stirred tank bioreactor in its product development facility at the University of Toronto's Banting Institute. The work began on February 27, 2012.

For more information, please visit http://www.millipore.com and http://www.ccrm.ca.

About EMD Millipore

EMD Millipore is the Life Science division of Merck KGaA of Germany and offers a broad range of innovative, performance products, services and business relationships that enable our customers' success in research, development and production of biotech and pharmaceutical drug therapies. Through dedicated collaboration on new scientific and engineering insights, and as one of the top three R&D investors in the Life Science Tools industry, EMD Millipore serves as a strategic partner to customers and helps advance the promise of life science.

Headquartered in Billerica, Massachusetts, the division has around 10,000 employees, operations in 67 countries and 2010 revenues of $2.2 billion. EMD Millipore is known as Merck Millipore outside of the U.S. and Canada.

Read the original:
EMD Millipore and the Centre for Commercialization of Regenerative Medicine Collaborate to Optimize Conditions for ...

Posted in Regenerative Medicine | Comments Off on EMD Millipore and the Centre for Commercialization of Regenerative Medicine Collaborate to Optimize Conditions for …

New transplant method may allow kidney recipients to live life free of anti-rejection medication

Posted: March 12, 2012 at 4:10 am

ScienceDaily (Mar. 11, 2012) New ongoing research published March 7 in the journal Science Translational Medicine suggests organ transplant recipients may not require anti-rejection medication in the future thanks to the power of stem cells, which may prove to be able to be manipulated in mismatched kidney donor and recipient pairs to allow for successful transplantation without immunosuppressive drugs. Northwestern Medicine and University of Louisville researchers are partnering on a clinical trial to study the use of donor stem cell infusions that have been specially engineered to "trick" the recipients' immune system into thinking the donated organ is part of the patient's natural self, thus gradually eliminating or reducing the need for anti-rejection medication.

"The preliminary results from this ongoing study are exciting and may have a major impact on organ transplantation in the future," said Joseph Leventhal, MD, PhD, transplant surgeon at Northwestern Memorial Hospital and associate professor of surgery and director of kidney and pancreas transplantation at Northwestern University Feinberg School of Medicine. "With refinement, this approach may prove to be applicable to the majority of patients receiving the full spectrum of solid organ transplants."

Leventhal authored the study along with Suzanne Ildstad, MD, director of the Institute of Cellular Therapeutics at the University of Louisville. It is the first study of its kind where the donor and recipient do not have to be related and do not have to be immunologically matched. Previous studies involving stem cell transplants for organ recipients have included donors and recipients who are siblings and are immunologically identical, something that only occurs in about 25 percent of sibling pairs.

"Being a transplant recipient is not easy. In order to prevent rejection, current transplant recipients must take multiple pills a day for the rest of their lives. These immunosuppressive medications come with serious side effects with prolonged use including high blood pressure, diabetes, infection, heart disease and cancer, as well as direct damaging effects to the organ transplant," said Ildstad. "This new approach would potentially offer a better quality of life and fewer health risks for transplant recipients."

In a standard kidney transplant, the donor agrees to donate their kidney. In the approach being studied, the individual is asked to donate part of their immune system as well. The process begins about one month before the kidney transplant, when bone marrow stem cells are collected from the blood of the kidney donor using a process called apheresis. The donor cells are then sent to the University of Louisville to be processed, where researchers enrich for "facilitating cells" believed to help transplants succeed. During the same time period, the recipient undergoes pre-transplant "conditioning," which includes radiation and chemotherapy to suppress the bone marrow so the donor's stem cells have more space to grow in the recipient's body.

Once the facilitating cell-enriched stem cell product has been prepared, it is transported back to Northwestern, where the recipient undergoes a kidney transplant. The donor stem cells are then transplanted one day later and prompt stem cells to form in the marrow from which other specialized blood cells, like immune cells, develop. The goal is to create an environment where two bone marrow systems exist and function in one person. Following transplantation, the recipient takes anti-rejection drugs which are decreased over time with the goal to stop a year after the transplant.

"This is something I have worked for my entire life," said Ildstad, who pioneered the approach and is known for her discovery of the "facilitating" cell.

Less than two years after her successful kidney transplant, 47-year-old mother and actress Lindsay Porter of Chicago, is living a life that most transplant recipients dream of -- she is currently free of anti-rejection medications and says at times, she has to remind herself that she had a kidney transplant. "I hear about the challenges recipients have to face with their medications and it is significant. It's almost surreal when I think about it because I feel so healthy and normal." Doctors are hopeful that Porter will not need immunosuppressive drugs long-term, given her progress thus far.

In order to qualify for this type of experimental kidney transplant, the donor and recipient pairs must be blood-type compatible and have a negative cross-match, which means that testing has been done to confirm the recipient does not have antibodies in the blood that would cause rejection of the kidney.

The clinical trial is ongoing. Researchers are also planning a second clinical trial, which would offer similar treatment for subjects who have already undergone a living donor kidney transplant.

Read more:
New transplant method may allow kidney recipients to live life free of anti-rejection medication

Posted in Stem Cells | Comments Off on New transplant method may allow kidney recipients to live life free of anti-rejection medication

Coriander oil (cilantro) can be used to treat food poisoning and drug-resistant infections

Posted: March 11, 2012 at 3:57 pm

By Jonathan Benson

Food-borne illness outbreaks and the growing prevalence of antibiotic-resistant "superbugs" are two very serious societal problems for which researchers say they are actively looking for viable solutions. But one such solution found right in nature is coriander oil, which has been found to kill a number of different bacterial strains, as well as aid in digestion and treat the symptoms of food poisoning.

Dr. Fernanda Domingues and her colleagues from the University of Beira Interior in Portugal tested the effects of coriander oil, an essential oil extracted from the seeds of the coriander plant, also known as cilantro, on twelve different bacterial strains, including Escherichia coli (E. coli), Salmonella enterica, and methicillin-resistant Staphylococcus aureus (MRSA), the infamous hospital superbug. Read more...

AyurGold for Healthy Blood

Source:
http://feeds.feedburner.com/integratedmedicine

Posted in Integrative Medicine | Comments Off on Coriander oil (cilantro) can be used to treat food poisoning and drug-resistant infections

Page 2,812«..1020..2,8112,8122,8132,814..2,8202,830..»