Page 2,818«..1020..2,8172,8182,8192,820..2,8302,840..»

Stem cells could let kidney recipients skip rejection drugs

Posted: March 7, 2012 at 10:05 pm

Date: Wednesday Mar. 7, 2012 1:03 PM PT

Researchers in the U.S. say they may have found a way to allow kidney patients to ditch the powerful immune suppressing drugs that they need to take for life to prevent organ rejection.

The key lies in borrowing some stem cells from the donor's bone marrow. The cells are then engineered to "trick" the immune system of the recipient into thinking the new organ is an original part of the body.

"Essentially, it tricks the donor and recipient's immune system to accept each other," study author Dr. Suzanne Ildstad, a professor of Transplantation Research from the University of Louisville, told CTV News.

Transplant recipients usually are forced to take multiple immune-suppressing pills for life to prevent their own immune systems from rejecting the new organ. Kidney recipient Susan McKenzie tells CTV she takes eight pills a day. The pills not onlycome with a host of toxic side effects that boost her risk of heart disease and cancer, they interfere with her daily life.

"The really difficult part of it is that your immune sysytem is suppressed so you catch everything that is going around," she says.

"Your susceptibility to illness and infection is a big problem and of course, if you do get ill or have an infection ,you do have a risk of your kidney rejecting."

This new approach uses a special mix of bone marrow cells including blood-producing stem cells, and another type of cell named "facilitating cells. They also filter out certain cells that can cause a life-threatening disorder named "graft-versus-host disease."

The transplant recipients must then undergo radiation and chemotherapy to suppress their own immune system and allow it to accept the donated stem cells.

So far, teams from Northwestern Medicine and University of Louisville have tested the treatment on eight kidney transplant recipients. Two and a half years later, five of the patients have now been taken off immune-suppressing medication, the researchers reported Wednesday in the journal Science Translational Medicine.

Read more:
Stem cells could let kidney recipients skip rejection drugs

Posted in Stem Cell Videos | Comments Off on Stem cells could let kidney recipients skip rejection drugs

Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Posted: March 7, 2012 at 10:05 pm

A new type of stem cell-seeded patch has shown promising results in promoting healing after a heart attack, according to a study released today in the journal STEM CELLS Translational Medicine.

Durham, NC (PRWEB) March 07, 2012

Ischemic heart disease, caused by vessel blockage, is a leading cause of death in many western countries. Studies have shown the potential of stem cells in regenerating heart tissue damaged during an attack. But even as the list of candidate cells for cardiac regeneration has expanded, none has emerged as the obvious choice, possibly because several cell types are needed to regenerate both the hearts muscles and its vascular components.

Aside from the choice of the right cell source for tissue regeneration, the best way to deliver the stem cells is up for debate, too, as intravenous delivery and injections can be inefficient and possibly harmful. While embryonic stem cells have shown great promise for heart repairs due to their ability to differentiate into virtually any cell type, less than 10 percent of injected cells typically survive the engraftment and of that number generally only 2 percent actually colonize the heart.

In order for this type of treatment is to be clinically effective, researchers need to find ways to deliver large numbers of stem cells in a supportive environment that can help cells survive and differentiate.

In the current cardiopatch study, conducted by researchers from the Faculty of Medicine of the Geneva University in collaboration with colleagues at the Ecole Polytechnique Federale de Lausanne (EPFL), cardiac-committed mouse embryonic stem cell (mESC) were committed toward the cardiac fate using a protein growth factor called BMP2 and then embedded into a fibrin hydrogel that is both biocompatible and biodegradable. The cells were loaded with superparamagnetic iron oxide nanoparticles so they could be tracked using magnetic resonance imaging, which also enabled the researchers to more accurately assess regional and global heart function.

The patches were engrafted onto the hearts of laboratory rats that had induced heart attacks. Six weeks later, the hearts of the animals receiving the mESC-seeded patches showed significant improvement over those receiving patches loaded with iron oxide nanoparticles alone. The patches had degraded, the cells had colonized the infarcted tissue and new blood vessels were forming in the vicinity of the transplanted patch. Improvements reached beyond the part of the heart where the patch had been applied to manifest globally.

Marisa Jaconi, PhD, of the Geneva University Department of Pathology and Immunology, and Jeffrey Hubbell, PhD, professor of bioengineering at the EPFL, were leaders on the investigative team. Their findings could make a significant impact on how heart patients are treated in the future. Altogether our data provide evidence that stem-cell based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction, said Jaconi.

###

The full article, Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats, can be accessed at: http://www.stemcellstm.com/content/early/recent.

Read the original post:
Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Posted in Stem Cell Research | Comments Off on Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

International Stem Cell Corporation to Present at the Roth Conference on March 14

Posted: March 7, 2012 at 10:05 pm

CARLSBAD, Calif.--(BUSINESS WIRE)--

International Stem Cell Corporation (OTCBB:ISCO.OB - News) today announced that Co-Chairman Kenneth Aldrich and President and Chief Operating Officer Kurt May will be presenting at the 24th Annual Roth Conference on Wednesday, March 14, 2012 at 1:00 p.m. Pacific time. The conference is being held March 11-14 at the Ritz Carlton Hotel in Dana Point, California.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and cell-based skin care products through its subsidiary Lifeline Skin Care. More information is available at http://www.internationalstemcell.com.

To subscribe to receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

See more here:
International Stem Cell Corporation to Present at the Roth Conference on March 14

Posted in Stem Cell Research | Comments Off on International Stem Cell Corporation to Present at the Roth Conference on March 14

Stem cell research allows for mismatched kidney transplants

Posted: March 7, 2012 at 10:05 pm

Donating a kidney may save a person's life - but only if the conditions are precise.

Kidney donors must be related and immunologically matched to their donors and even then, the recipient must take a lifetime of anti-rejection medications, which dont guarantee the organ won't be rejected.

But a new clinical trial from Northwestern Memorial Hospital in Chicago, Ill. has shown how stem cells can be used to trick a recipients immune system into believing the new organ has been part of that persons body all along.

The breakthrough has the potential to eliminate both the risks associated with kidney transplantation and the need for anti-rejection medications within one year after surgery.

Its the holy grail of transplantation, said lead author Dr. Joseph Leventhal, transplant surgeon at Northwestern Memorial Hospital and associate professor of surgery and director of kidney and pancreas transplantation at Northwestern University Feinberg School of Medicine in Chicago, Ill. This notion of being able to achieve tolerance through donor derived cells has been around for more than 50 years, but its translation to the clinic has been quite elusive. This article details the first successful attempt of this in mismatched and unrelated kidney recipients.

The research was published Wednesday in the journal Science Translational Medicine, and it is the first study of its kind in which the donor and recipient were not related and did not have to be immunologically matched. Only 25 percent of siblings are immunologically identical, severely limiting the possibility of being a kidney donor.

The procedure worked by extracting a little bit more from the kidney donor than just their kidney. They also donated part of their immune system. About one month before surgery, bone marrow stem cells were collected from the donor and then enriched with facilitating cells becoming stem cells that will ultimately fool the donors immune system allowing the transplant to succeed.

One day after the kidney transplant occurs, the facilitating cell-enriched stem cells are also transplanted in the recipient, which then prompts the formation of stem cells in the bone marrow. This then causes specialized immune cells similar to the donors immune cells to develop, creating a dual bone marrow system environment, so both the donors immune system and the recipients immune system function inside the persons body.

Leventhal said that the ultimate goal is for the recipient to initially take anti-rejection medications but then slowly wean off of them within a year. According to Leventhal, the drugs come with their own share of negative side effects.

The foundation of clinical transplantation revolves around the use of medicines and suppressive drugs to control the immune system, Leventhal said. These drugs have been very successful in reducing the rates of loss of organs due to acute rejection where side effects include increase risk of infection and cancer, and metabolic side effects, such as the increase risk of hypertension and bone disease. But the drugs themselves are potentially harmful to the organs we transplant. Despite our ability to reduce rates of acute rejection, most individuals go on to lose organs because of chronic (long-term) rejection.

The rest is here:
Stem cell research allows for mismatched kidney transplants

Posted in Stem Cell Research | Comments Off on Stem cell research allows for mismatched kidney transplants

If Canada’s game is hockey, its science is stem cells

Posted: March 7, 2012 at 7:01 pm

alan bernstein From Wednesday's Globe and Mail Published Wednesday, Mar. 07, 2012 2:00AM EST

Most Canadians are unaware that two of their own a lanky physics whiz from Alberta and a rumpled Shakespeare-quoting MD from Toronto made a discovery 50 years ago that transformed the understanding of human biology and opened new doors to the treatment of cancer and other diseases.

Toiling away in labs atop Torontos old Princess Margaret Hospital, James Edgar Till and Ernest Armstrong (Bun) McCulloch proved that a single rare cell could produce the red blood cells, white blood cells and platelets needed to make blood, while simultaneously reproducing itself. Dr. Till and Dr. McCulloch originally called the cell a colony-forming unit. Today, its better known as a stem cell.

A great new book, Dreams and Due Diligence, by Joe Sornberger, tells the story. Still, that so few of us know let alone celebrate the fact that the stem cell is a Canadian discovery is baffling. Canada founded the entire field of stem-cell science. We have done much of the heavy lifting for decades: discovering neural stem cells, skin stem cells and cancer stem cells. If hockey is Canadas game, stem-cell science is Canadas science. Not knowing about Dr. Till and Dr. McCulloch is not knowing about Maurice Richard and Wayne Gretzky.

The way it happened didnt help. Their original paper was published in an obscure journal, Radiation Research, in 1961. Public interest went viral only after American James Thomson isolated human embryonic stem cells in 1998, which simultaneously raised hopes that stem cells could be used to repair any damaged cell in the body and ethical concerns that doing so would encourage the destruction of human embryos.

In 2002, the Canadian Institutes of Health Research developed guidelines for all stem-cell research carried out in Canada with its funds. These guidelines have become the gold standard for other countries, including the United States.

Whats even more remarkable is that Canada does such groundbreaking research on a dime. The all in investment in stem-cell research in Canada public, private and charitable funding is about $75-million. This support is provided by Canadians through taxes, donations to health charities and the generosity of community leaders individuals such as Robert and Cheryl McEwen of Toronto and the late Harley Hotchkiss of Calgary. But we still seriously lag behind California, which, with roughly the same population as Canada, has committed $3-billion over 10 years for stem-cell research.

How much further Canadas star scientists can go, however, is in doubt. According to the Stem Cell Network, there are 40 to 50 early-phase clinical trials using transplanted cells ready to roll out over the next four years. All are currently unfunded.

Prime Minister Stephen Harper has said his government will continue to make the key investments in science and technology but bemoaned Canadas less-than-optimal results for those investments. Stem-cell research has already proved itself a sound investment: Dr. Till and Dr. McCullochs work formed the basis of the bone marrow transplantation program at Princess Margaret Hospital that alone has saved thousands of lives. But it will take more than government funding: Private industry and private citizens also need to support life-saving research.

Canadians have good reason to be proud of our countrys contributions to health research and medicine. Two stand out as landmarks: the discovery of insulin in the 1920s and the discovery of stem cells in the 1960s. On Wednesday, at a dinner that brings together many of the countrys leading figures in business, the arts, entertainment, sports and science, the Canadian Stem Cell Foundation will be launched. The event will look back at that great discovery 50 years ago and look forward to ensure that Canadians continue to contribute to stem-cell research and its application to human disease.

Here is the original post:
If Canada's game is hockey, its science is stem cells

Posted in Stem Cells | Comments Off on If Canada’s game is hockey, its science is stem cells

Will StemCells Walk The Talk?

Posted: March 7, 2012 at 7:01 pm

3/7/2012 5:12 AM ET (RTTNews) - Stem cells have set the scientific world agog because it has been proposed as candidates to treat a myriad of diseases ranging from alzheimer's to arthritis, blindness, burns, cancer, diabetes, heart disease, liver disorders, multiple sclerosis, parkinson's, spinal cord injury and stroke.

Engaged in the development of novel stem cell therapeutics targeting diseases of the central nervous system and liver is clinical-stage company StemCells Inc. (STEM: News ).

For readers who are new to this Palo Alto, California-based company, here's what to expect in the coming months...

StemCells' lead product candidate is HuCNS-SC cells, a highly purified composition of human neural stem cells, currently in clinical development for spinal cord injury and for Pelizaeus-Merzbacher Disease, or PMD, a fatal myelination disorder in children.

A phase I/II clinical trial of HuCNS-SC cells in chronic spinal cord injury was initiated by the company last March. The trial, which is the world's first neural stem cell trial in spinal cord injury, is designed to enroll patients with thoracic (chest-level) neurological injuries with progressively decreasing severity of injury in three sequential cohorts.

The first patient in the trial was successfully transplanted with the company's proprietary HuCNS-SC adult neural stem cells last September, and enrollment in the first cohort of the spinal cord injury trial was completed last December. Following transplantation, the patients are being evaluated regularly over a 12-month period in order to monitor and evaluate the safety and tolerability of the HuCNS-SC cells.

The trial, which is currently open for enrollment for the remaining cohorts, is being conducted in Switzerland at the Balgrist University Hospital, University of Zurich.

In November 2011, Geron Corp. (GERN), the first company to get FDA approval for a clinical trial of an embryonic stem cell-based therapy, abandoned its phase I stem cell trial in patients paralyzed by spinal cord injuries - largely because of financial reasons.

The difference between the spinal cord injury trials of StemCells and Geron lies in the type of stem cells being evaluated. While Geron used human embryonic stem cells to treat spinal cord injuries in its trial, StemCells is using tissue-derived "adult" (non-embryonic) stem cells in its trials.

Yet another trial of StemCells that is underway is a phase I trial evaluating the safety and preliminary efficacy of HuCNS-SC cells as a treatment for Pelizaeus-Merzbacher Disease that primarily affects infants and young children.

Read more:
Will StemCells Walk The Talk?

Posted in Stem Cells | Comments Off on Will StemCells Walk The Talk?

Human stem cells ‘help blind rat’

Posted: March 7, 2012 at 7:01 pm

7 March 2012 Last updated at 11:47 ET By James Gallagher Health and science reporter, BBC News

Stem cells taken from the back of a human eye have restored some vision to blind rats, according to researchers.

They say the findings could help treat blindness, caused by glaucoma, if similar results can be repeated in humans.

The study, published in the journal Stem Cells Translational Medicine, used the cells to form new nerves in the eye.

These hooked up with the existing nerves, restoring sight.

Glaucoma can lead to blindness and is caused by a build-up of pressure within the eye. This kills retinal ganglion cells, the nerves which take information from the retina and pass it onto the brain.

Researchers at University College London and Moorfields Eye Hospital believe they have regenerated the retinal ganglion cells using human stem cells.

With permission from families, cell samples were taken from eyes which had been donated for cornea transplants.

It is a significant step towards our ultimate goal of finding a cure for glaucoma and other related conditions

Very rare cells in the eye, Muller glia stem cells, were collected. These were grown in the laboratory and converted into retinal ganglion cells.

The rest is here:
Human stem cells 'help blind rat'

Posted in Stem Cells | Comments Off on Human stem cells ‘help blind rat’

Internationally Recognized Leukemia Physician and Researcher to Lead Sylvester Comprehensive Cancer Center

Posted: March 7, 2012 at 6:59 pm

MIAMI--(BUSINESS WIRE)--

Stephen D. Nimer, M.D., one of the worlds premier leukemia and stem cell transplant researchers and clinicians, has been named the new director of the Sylvester Comprehensive Cancer Center.

Nimer, the Alfred P. Sloan Chair in Cancer Research at Memorial Sloan-Kettering Cancer Center, will assume the key University of Miami Miller School of Medicine and UHealth-University of Miami Health System post this spring, bringing 30 years of pioneering research and clinical experience and an unquenchable passion for improving the lives of patients with cancer, and their families.

The focus will not be solely on taking care of the cancer, it will be on taking care of the patient, said Nimer, whose patient-centered philosophy has won him as much acclaim as his clinical and laboratory accomplishments. That means trying to understand as fully as possible each patients cancer the biology driving the cancer, and the impact of the cancer on the patients life in order to develop a personalized therapeutic approach suited to each individual.

Pascal J. Goldschmidt, M.D., Senior Vice President for Medical Affairs and Dean of the Miller School, and CEO of UHealth, said Nimer, who headed the Division of Hematologic Oncology at Sloan-Kettering for a dozen years, is the ideal physician-scientist to lead Sylvester into its third decade and to designation as one of the nations official comprehensive cancer centers by the NIHs National Cancer Institute.

Stephen possesses a unique combination of outstanding clinical skills and visionary scientific acumen in cancer research that will lead Sylvester to become the next top comprehensive cancer center in the U.S., Dean Goldschmidt said. He brings a true patient-centered approach to clinical care and leading-edge research that makes a real difference for our fellow humans. Cancer patients across South Florida and around the world will benefit from his expertise and leadership.

Dr. Nimer will be a spectacular leader for the Sylvester Comprehensive Cancer Center, said UM President Donna E. Shalala.This is a momentous development for the Miller School, the University of Miami, and all of South Florida.

Joseph Rosenblatt, M.D., who has served as interim director of Sylvester, said Dr. Nimers arrival will allow Sylvester to find its rightful place among the worlds premier cancer centers, and his leadership will usher in a new era for our cancer center, which I and our faculty anticipate with great enthusiasm.

Nimer, currently vice chair for faculty development at Sloan-Ketterings Department of Medicine, plans to develop and expand a number of services at Sylvester, including programs for breast cancer, lung cancer, prostate cancer and hematological malignancies, among others. He also plans to recruit more than 30 new scientists and physicians, develop key core facilities and expand the clinical and laboratory research capabilities.

He specifically hopes to recruit experts in areas such as bone marrow transplantation, mouse models of human cancer, and molecular diagnostics, as well as additional surgeons skilled in complex, curative and restorative procedures, such as breast reconstruction. He also will expand efforts in cancer prevention, screening and early diagnosis and in identifying those factors that predispose people to develop cancer.

The rest is here:
Internationally Recognized Leukemia Physician and Researcher to Lead Sylvester Comprehensive Cancer Center

Posted in Cell Medicine | Comments Off on Internationally Recognized Leukemia Physician and Researcher to Lead Sylvester Comprehensive Cancer Center

Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Posted: March 7, 2012 at 6:59 pm

A new type of stem cell-seeded patch has shown promising results in promoting healing after a heart attack, according to a study released today in the journal STEM CELLS Translational Medicine.

Durham, NC (PRWEB) March 07, 2012

Ischemic heart disease, caused by vessel blockage, is a leading cause of death in many western countries. Studies have shown the potential of stem cells in regenerating heart tissue damaged during an attack. But even as the list of candidate cells for cardiac regeneration has expanded, none has emerged as the obvious choice, possibly because several cell types are needed to regenerate both the hearts muscles and its vascular components.

Aside from the choice of the right cell source for tissue regeneration, the best way to deliver the stem cells is up for debate, too, as intravenous delivery and injections can be inefficient and possibly harmful. While embryonic stem cells have shown great promise for heart repairs due to their ability to differentiate into virtually any cell type, less than 10 percent of injected cells typically survive the engraftment and of that number generally only 2 percent actually colonize the heart.

In order for this type of treatment is to be clinically effective, researchers need to find ways to deliver large numbers of stem cells in a supportive environment that can help cells survive and differentiate.

In the current cardiopatch study, conducted by researchers from the Faculty of Medicine of the Geneva University in collaboration with colleagues at the Ecole Polytechnique Federale de Lausanne (EPFL), cardiac-committed mouse embryonic stem cell (mESC) were committed toward the cardiac fate using a protein growth factor called BMP2 and then embedded into a fibrin hydrogel that is both biocompatible and biodegradable. The cells were loaded with superparamagnetic iron oxide nanoparticles so they could be tracked using magnetic resonance imaging, which also enabled the researchers to more accurately assess regional and global heart function.

The patches were engrafted onto the hearts of laboratory rats that had induced heart attacks. Six weeks later, the hearts of the animals receiving the mESC-seeded patches showed significant improvement over those receiving patches loaded with iron oxide nanoparticles alone. The patches had degraded, the cells had colonized the infarcted tissue and new blood vessels were forming in the vicinity of the transplanted patch. Improvements reached beyond the part of the heart where the patch had been applied to manifest globally.

Marisa Jaconi, PhD, of the Geneva University Department of Pathology and Immunology, and Jeffrey Hubbell, PhD, professor of bioengineering at the EPFL, were leaders on the investigative team. Their findings could make a significant impact on how heart patients are treated in the future. Altogether our data provide evidence that stem-cell based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction, said Jaconi.

###

The full article, Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats, can be accessed at: http://www.stemcellstm.com/content/early/recent.

Read the rest here:
Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Posted in Cell Medicine | Comments Off on Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial

Posted: March 7, 2012 at 6:59 pm

ROCKVILLE, Md., March 7, 2012 /PRNewswire/ -- Neuralstem, Inc. (NYSE Amex: CUR) announced that the second patient to receive stem cells in the cervical (upper back) region of the spine was dosed on February 29th in the ongoing Phase I trial of its spinal cord neural stem cells in amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). Patient 14 is also the first woman to be treated in the trial. Stem cell transplantation into the cervical region of the spinal cord couldsupport breathing, a key function that is lost as ALS progresses. The first twelve patients in the trial received stem cell transplants in the lumbar (lower back) region of the spinal cord only.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"This cohort of patients represents another first for our trial, as we transplant cells directly into the gray matter of the spinal cord in the cervical region," said Karl Johe, PhD, Neuralstem's Chairman and Chief Scientific Officer. "We are delighted that the surgeries are progressing in a region that could have a significant impact on the quality of life for ALS patients. With the safe transplantation of our 14th patient, we are well are on our way to demonstrating the safety of our novel procedure."

About the Trial The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients has been underway since January 2010. The trial is designed to enroll up to 18 patients. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts. The trial has now progressed to the final six patients. Each is in the cervical (upper back) region of the spine. The entire 18-patient trial concludes six months after the final surgery.

About Neuralstem Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.

Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include schizophrenia, Alzheimer's disease and bipolar disorder.

For more information, please visit http://www.neuralstem.com and connect with us on Twitter and Facebook.

Cautionary Statement Regarding Forward Looking Information This news release may contain forward-looking statements made pursuant to the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. Investors are cautioned that such forward-looking statements in this press release regarding potential applications of Neuralstem's technologies constitute forward-looking statements that involve risks and uncertainties, including, without limitation, risks inherent in the development and commercialization of potential products, uncertainty of clinical trial results or regulatory approvals or clearances, need for future capital, dependence upon collaborators and maintenance of our intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in Neuralstem's periodic reports, including the annual report on Form 10-K for the year ended December 31, 2010 and the quarterly report on Form 10-Q for the period ended September 30, 2011.

Read more:
Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial

Posted in Cell Therapy | Comments Off on Fourteenth Patient Dosed in Neuralstem ALS Stem Cell Trial

Page 2,818«..1020..2,8172,8182,8192,820..2,8302,840..»