Page 351«..1020..350351352353..360370..»

AbbVie Half Breaks Up with Alector on Alzheimer’s – BioSpace

Posted: July 11, 2022 at 2:07 am

Courtesy of Smith Collection/Gado/Getty Images

AbbViehas ended its collaboration deal withAlectorto develop one of two potential Alzheimer's Disease drugs.

The antibody drug in question, AL-003, was designed to target the receptor CD33, a checkpoint receptor found in the brain's immune cells. AbbVie signed a co-development and option agreement with Alector in October 2017. The goal was to tap into the latter's unique approach to utilizing the immune system to fight neurodegeneration. For that deal, Alector received $205 million upfront, with the potential to gain as much as $20 million.

In afilingwith the Securities and Exchange Commission, the decision to terminate came after the two firms jointly conducted a review of their next steps for the drug. On June 30, AbbVie gave written notice that it was no longer interested in pursuing AL-003.

The document does not provide any details on why AbbVie is discontinuing. That company has also yet to make an official statement regarding the matter.

Alector's sharesdropped7 cents to close at $11.49 per share shortly after the SEC filing was made public.

However, the relationship isn't totally severed between the pair as they are still working to develop AL002, which is focused on targeting triggering receptors expressed on myeloid cells 2 (TREM2) also for Alzheimer's Disease. Interest in AL002 is based on positive results from the INVOKE-2 Phase II clinical trial, which looked into the safety and efficacy of the drug in slowing disease progression in people living with Alzheimer's.

AL002 is an investigational, humanized monoclonal antibody whose role in potentially treating Alzheimer's was first identified in large-scale genome-wide association studies. Researchers found that reducing TREM2's functionality may contribute to AD progression and other types of dementia. By increasing TREM2 in the brain, there may be a way to target multiple pathologies linked to the disorder instead of just focusing on one pathology type.

"Loss of TREM2 activity has been shown through human genetics to be one of the notable risk factors for developing Alzheimer's disease. AL002 is a first-in-class TREM2 targeting antibody in Phase 2 clinical development for [the disorder]," Robert Paul, M.D., Ph.D., chief medical officer of Alectorsaidin an earlier statement.

In the same press release, Michael Gold, M.D., vice president of development neurosciences at AbbVie, added, "Alzheimer's is a devastating disease that robs a person of their identity, and a family of their loved one. We are hopeful that AL002 may one day be a treatment option for the millions of people diagnosed with this disease."

See more here:
AbbVie Half Breaks Up with Alector on Alzheimer's - BioSpace

Posted in Human Genetics | Comments Off on AbbVie Half Breaks Up with Alector on Alzheimer’s – BioSpace

The human identification market size is projected to reach – GlobeNewswire

Posted: July 11, 2022 at 2:07 am

New York, July 04, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Human Identification Market Forecast to 2028 - COVID-19 Impact and Global Analysis By Product and Services, Technology, Application, and End User" - https://www.reportlinker.com/p06289913/?utm_source=GNW

However, high cost of instruments used for genomic studies are expected to hamper the growth of the human identification market.Human Identification is a branch of science that deals with the analysis of genetic materials, helping identify an individual based on genetics. Human identification has various applications in forensics, paternity test, and others.Government entities worldwide have strengthened their support for the field of human identification due to its potential, demand, and varied applications in various industries.Many forensic science disciplines, including DNA analysis, are undergoing a transformation in the US and the world.

New approaches are being created, validated, and implemented to help criminal investigations. Investigators face challenges regarding the validity and accuracy of older and current methods.Forensic DNA analysis can help reunite families, particularly in cases where children separate from their parents at an early age.The Forensic Project, funded by the Bureau of Democracy of the US Department of State, intends to increase the use of this evaluation technique to assist families separated during riots and violent incidents.

The Center for Human Identification (CHI) at the University of North Texas Health Science Center at Fort Worth is a world-renowned hub for forensic DNA testing as it receives funding from the state of Texas and various federal government agencies.The Forensic Unit helps the Texas Department of Public Safety (DPS) reduce the backlog of sexual assaults.In addition, the Forensic Unit gets federal funds from the National Institute of Justice (NIJ) of the US Department of Justice (DOJ) to handle cases in Texas.

These grants allow the unit to provide free DNA testing services (autosomal and Y chromosome STR typing) to many law enforcement agencies in North Texas counties. Thus, increasing government support and initiatives for forensics programs are driving the human identification market.Moreover, many forensic research projects focus on developing novel analytical instruments, assessment techniques for trace amounts of evidence, and proteomic analysis techniques with unique sampling procedures, allowing hair-, skin-, and bone-based identification.Several portable equipment types have been manufactured for extensive analysis in the on-site field.

Portable forensic instruments prove to be useful in transporting unstable, perishable, or hazardous compounds to the laboratory, which are further expected to propel the market during the forecast period.Additionally, scientists sequence a DNA sample and provide investigators information on the probable characteristics of suspects, such as hair, eye, and skin color, to identify them.Age and biological background can also be predicted using newer approaches.

The personnel can also use biosensors to analyze the minute traces of bodily fluids found in fingerprints to identify the suspect. Data detected using such samples include age, medications, gender, and lifestyle.Furthermore, a smartphone-based sensor has been developed to evaluate a saliva sample through immunochromatography; the tests can also be run away from a lab.Geolocating a suspect or victim using stable isotopes of water is another advanced technique in forensic sciences.

Scientists can determine the samples origin by isolating the isotopes in a water sample found on a suspect or victim. Thus, advancements based on modern technologies and smart sampling methods are generating new trends in the market.The global human identification market is analyzed on the basis of products and services, technology, application, and end user.Based on products and services, the market is segmented into consumables, instruments, services, and software.

Further, the consumables segment is classified into electrophoresis kits and reagents, DNA amplification kits and reagents, DNA quantification kits and reagents, DNA extraction kits and reagents, and rapid DNA analysis kits and reagents.The consumables lasers segment led the market in 2021.

It is anticipated to register the highest CAGR during the forecast period.Based on technology, capillary electrophoresis, polymerase chain reaction, nucleic acid purification and extraction, automated liquid handling, microarrays, next-generation sequencing, and rapid DNA analysis.The capillary electrophoresis segment held the largest market share in 2021.

However, the next-generation sequencing segment is anticipated to register the highest CAGR during the forecast period.Based on application, the market is segmented into forensic applications, paternity identification, and other applications.The forensic applications segment held the largest market share in 2021.

It is also expected to register the highest CAGR during the forecast period.Based on end user, the market is segmented into forensic laboratories, research and academic centers, and government institutes.The forensic laboratories segment held the largest market share in 2021.

It is also anticipated to register the highest CAGR during the forecast period.COVID-19 Impact Analysis: Human Identification MarketThe COVID-19 pandemic in the regions had a mixed impact on the growth of the human identification market.Various companies have shut down their productions, hence are unable to manufacture to meet the rising demand.

The COVID19 pandemic has significantly negatively impacted the global economies.Health services are highly prioritized globally to serve patients affected by COVID-19.

The routine health care services have remained suspended. Market players operating in the human identification market were focused on developing and producing COVD-19 testing kits, which reduced the productive utilization of human identification products.Due to the pandemic, many governments-imposed lockdowns to prevent the spread of the virus, which resulted in a significant reduction in crime rates.Additionally, the lack of proper standard operating procedures for criminal investigation during the pandemic has significantly reduced the demand for human identification products.

On the other hand, the shortage of definitive therapy offers significant opportunities for the genome editing-related market as the US FDA has recently approved the use of plasma therapy for critically ill COVID 19 patients. Furthermore, the active involvement of the governments and the associated market players in exploring opportunities for genome editing-related products and services is expected to drive such developments in the human identification market over the next few years.National Institute of Justice (NIJ), Institute Genetics Nantes Atlantique (IGNA), Forensic Capability Network, International Centre for Theoretical Physics (ICTP), and International Atomic Energy Agency (IAEA) are among the primary and secondary sources referred to while preparing the report on the human identification market.Read the full report: https://www.reportlinker.com/p06289913/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Read more here:
The human identification market size is projected to reach - GlobeNewswire

Posted in Human Genetics | Comments Off on The human identification market size is projected to reach – GlobeNewswire

Global wheat production can be doubled to feed millions and save land, say scientists – Sky News

Posted: July 11, 2022 at 2:07 am

Scientists believe that global wheat production could be doubled by accessing into the crop's "untapped genetic potential".

By using modern techniques such as speed breeding and gene editing, the international team behind the new research say that it would be possible to cultivate new varieties of wheat tailored to each region that they're grown in.

Depending on their genes, different varieties of wheat capture water, sunlight and nutrients in different ways. The scientists propose that with an optimal genome wheat crops would be able to deliver a higher yield of grain per acre.

Read more: Billions of pounds of Ukrainian wheat cannot be exported amid food crisis in developing countries

The study, led by the UK's Rothamsted Research, used existing data on how different genes contribute to individual plant traits "such as size, shape, metabolism and growth".

They ran millions of simulations to effectively design the perfect wheat plants suited to their local environments. Comparing these to locally adapted cultivars, they found in all cases that current wheat varieties were underperforming for grain yield.

Read more: Ukraine war - 'Humanitarian disasters' if wheat exports are stopped, says OECD

Dr Mikhail Semenov, one of the study's leads, said: "Current wheat cultivars are, on average, only at the half-way point with respect to the yields they could produce given the mismatches between their genetics and local wheat growing conditions.

"Global wheat production could be doubled by the genetic improvement of local wheat cultivars - without increasing global wheat area," he added.

Fellow study lead Dr Nimai Senapati said that improving this "genetic yield gap" would both help feed the world's growing population and reduce the pressure to convert wild habitats to farmland.

Humans have farmed wheat for millennia and the impact on our species has been enormous - agriculture is often described as the first revolutionary step in human civilisation as it led to settlements and evolved social structures.

Today wheat is the most widely grown crop in the world and second only to rice in terms of human consumption, with global harvests in the region of 750 million tons.

Please use Chrome browser for a more accessible video player

The new study published in the journal Nature Food looks at 53 wheat growing regions across 33 countries, covering all of the global wheat growing environments.

The team first calculated the potential yield from 28 commonly grown wheat varieties at each of these sites, assuming the best cultivation conditions were in place for each one.

The harvests this delivered varied enormously, with less than four tons per hectare in Australia and Kazakhstan, with 14 tons per hectare in New Zealand.

But these were improved by replacing the local cultivars with the idealised varieties of wheat favouring particular traits, such as "tolerance and response to drought and heat stresses, the size and orientation of the light-capturing upper leaves, and the timing of key life cycle events".

According to the study, by optimising these key traits, the global average genetic yield gap could be closed by 51% - meaning global wheat production could be doubled.

"Not unsurprisingly, the countries with the lowest current yields could gain the most from closing their genetic yield gaps," said Dr Senapati.

"That said, even improvements in those countries with a medium genetic yield gap of 40 to 50%, but with a large proportion of global wheat harvest area - such as the leading producers India, Russia, China, USA, Canada, and Pakistan - would have a substantial effect on global wheat production due to the larger wheat cultivation areas involved."

According to the researchers, before this study it was not known how large the genetic yield gaps were at a country and global level.

They say this concept of a genetic yield gap contrasts with the existing and more traditional view of a yield gap which compares harvests to how they could have performed under optimal management "as a result of factors such as pest or diseases, lack of nutrients, or sowing or harvesting at the wrong time".

"Our analysis suggests that such genetic yield gaps due to sub-optimal genetic adaptation could, in relative terms, be as large as the traditional yield gap due to imperfect crop and soil management," said Dr Semenov.

"Wheat was first domesticated about 11,000 years ago, but despite this and not to mention the sequencing of its entire genome in 2018 the crop is still some way from being at its 'genetic best'," he added.

Here is the original post:
Global wheat production can be doubled to feed millions and save land, say scientists - Sky News

Posted in Human Genetics | Comments Off on Global wheat production can be doubled to feed millions and save land, say scientists – Sky News

After conquering sickle cell and multiple sclerosis, it was COVID-19 that claimed her – Lynchburg News and Advance

Posted: July 11, 2022 at 2:06 am

Jennifer Nsenkyire had been cured of sickle cell disease via stem cells.

After a lifetime of sickness, Jennifer Nsenkyire was cured of two separate and debilitating diseases with a stem cell transplant, and those who knew her rejoiced.

That included family in West Africa, where she was born, and the friends and support system she found in Fredericksburg, her second home. After the transplant freed her from the pain shed experienced since a toddler with sickle cell disease a hereditary blood disorder Nsenkyire became active with the Fredericksburg Area Sickle Cell Association, or FASCA. She worked to educate others about the ailment and how those with it could find help and support.

She was always so very, very kind and helpful to other clients, those who continued to suffer with the disease and are not eligible for transplant because of age, said Janice Davies, FASCAs co-founder. She had a presence that really resonated with everybody.

Nsenkyire shared her medical story with others through programs and videos to the point National Institutes of Health officials described her experience as one in a million, said FASCA member Myra Dicks. Nsenkyire also had battled multiple sclerosis until her transplant and, as a child, dealt with osteomyelitis, a bone infection that temporarily left her unable to walk.

People are also reading

Then, in the strange way life sometimes works, it was yet another disease that took the life of the soft-spoken 49-year-old from Ghana. Nsenkyire contracted COVID-19 earlier this year and died on April 25.

The most ironic thing is she had been through all of that, and then to have something like COVID take her away, it was hard, Davies said.

It was heartbreaking, Dicks added.

As is customary in Ghana, family members held several celebrations of her life, culminating with a memorial service at the NIHs offices in Bethesda, Maryland, in late June. While those who knew her mourn her loss, they also celebrate the mark she left on the world.

She had this infectious smile that lit up the room when she walked in, you all know that, Fran Boyle said to the crowd gathered at Strong Tower Church for her funeral service.

Boyle was Nsenkyires host mother when she first arrived in 1995 to attend George Mason University in Fairfax. Boyle wanted to host international students, and Nsenkyire wanted to be paired with a Christian family, and Boyle said she loved her immediately.

There were plenty of ups and downs with her health, Boyle said, as the sickle cell disease caused swelling in her arms and legs, along with numerous pain crises. Thats when red blood cells, which have turned from their normal round shape to something resembling sickles, block blood flow through tiny vessels to the chest, abdomen and joints. A crisis causes varying intensities of pain that can last for hours or days.

Boyle recalled walking the hospital floors with Nsenkyires parents, Edward and Rose Nsenkyire, who divided their time between continents until they eventually settled in the United States, and her sisters, Pamela Asamoah and Clara Nsenkyire, who both live in the Fredericksburg area. Nsenkyire also has a brother, Dennis, in New Jersey.

Shed been through so much, said her sister, Clara Nsenkyire. It was crisis upon crisis.

As Jennifer Nsenkyire was treated at NIH, medical officials mentioned a transplant, using stem cells from family members that most closely matched her own. When the family gathered with NIH doctors for a consultation, they heard about potential side effects and werent sure which way to go, her sister said.

She was so brave, Clara Nsenkyire said. She said, Even if it doesnt help me, it will help somebody else.

Plus, Jennifer Nsenkyire wished she could live one day without the pain of sickle cell disease, her sister said. She opted for the transplant, using her mothers stem cells, and it was successful. After the 2010 operation, she was free of both sickle cell and MS, and she recorded her thoughts and experiences, both in YouTube videos and books she wrote.

She longed for a cure and for others to be free of pain as she was.

A cure would be, being able to live life with no pain, being able to live a productive life, being able to shake off the stigma that people have about sickle cell disease, she said in a video. Being able to live fearlessly, being able to live a normal life, thats all we all want at the end of the day. Its time to rewrite the story of sickle cell. Add your voice.

That she did, said Pastor Jeffrey Smith of Strong Tower Church, who said hers was a life that was lived so well and so elegantly before us.

In spite of the challenges and difficulties she experienced, she always had this strength of spirit, this tenacity, this perseverance, he said. She had this ongoing optimism and faith that would never die.

See the rest here:
After conquering sickle cell and multiple sclerosis, it was COVID-19 that claimed her - Lynchburg News and Advance

Posted in New Jersey Stem Cells | Comments Off on After conquering sickle cell and multiple sclerosis, it was COVID-19 that claimed her – Lynchburg News and Advance

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

Posted: July 11, 2022 at 2:05 am

Introduction

Stem cells are highly specialized cell types with an impressive ability to self-renew, able to transform into one or even more specific cell types that play a significant role in the regulation and tissue healing process.17 To self-renew, a stem divides into two identical daughter stem cells and a progenitor cell and the embryonic and adult cells contain stem cells.1,2,8

Curing patients with serious medical conditions has been the focus of all disciplines of medical research for many years. Stem cell treatment has evolved into a highly exciting and progressed field of scientific research. Major advances have recently been introduced in fundamental and translational stem-cell-based treatment studies. As stem cell research progressed, many therapeutic options were investigated. The development of therapeutic procedures has sparked a great deal of interest.1,9 Humanity has known for many years that it is possible to regenerate lost tissue. Recently, the regenerative medicine research has taken hold, defying the tremendous scientific advances in the molecular biology sciences only. Technological advances provide limitless opportunities for transformational and potentially restorative therapies for many of humanitys most illnesses. A variety of human organs have successfully yielded stem cells. Besides this, the cell therapy is rapidly bringing good advancements in the healthcare system, intending to restore and possibly replace injured tissue, as well as organs, and ultimately restore the functional capacity of the body.2,10,11

The stem cells can be obtained from various sources of Adult (Adult body tissues), Embryonic (Embryos), Mesenchyma (Connective tissue or stroma), and Induced pluripotent stem [ips] cells (Skin cells or tissue-specific cells).3,68,1215

Due to various stem cells cellular characteristics, the therapeutic clinical possibilities of stem-cell-based treatment are considered promising. These cells can regrow and restore various types of body tissues, for this reason, they are recognized as precursor cells to all kinds of cells.15 The following are the distinguishing features: 1. Self-renewal- Divide without distinction to generate an infinite supply, 2. Multi-potency- One mature cell may distinguish more than one, 3. Pluripotency- Create all sorts of cells except for embryonic membrane cells, 4. Toti- potency- Produce various sorts of cells, including embryonic stem cells.1,2,6,7,16

Stem cells are essential human cells that really can self-renew and make a distinction into particular mature cell types.3,6 The different types of stem cells are embryonic, induced pluripotent, and adult kind of cell types. They all share the important feature of self-renewal, and the ability to discern themselves. It should be mentioned that, the stem cells are not homogeneous, but instead appear in a progressive order. Totipotent stem cells are the most basic and immature stem cells. The above cells can form a complete embryo and also extra-embryonic tissue. This one-of-a-kind efficiency is only present for a short period, starting with ovum development and completing whenever the embryo achieves the 4 to 8 cell phases. Having followed that, cells that divide until they approach the blastocyst, about which point they end up losing their totipotency and acquire a pluripotent character trait, at which cells can only distinguish through each embryonic germ stack. After a few divisions, the pluripotency character trait starts to fade and the distinguishing ability has become more lineage constrained, where its cells are becoming multipotent, indicating they could only transform into the cells connected to a cell or tissue of origin.10 Many researchers believe that adult stem cells should be used in stem cell therapies.6,17

The stem cells can be transformed into a wide range of specialized functional cell types.3,18 In response to injury or maturation, those same stem cells can propagate in massive quantities.19 Adult, embryonic, and induced pluripotent stem cells are examples of stem cell-based therapies.14,15,1921 The stem cells, due to their capability to distinguish the specific cell types requisite for a diseased tissue regeneration, can provide an effective solution, while tissue and organ transplantation are considered necessary.10 The sophistication of stem cell-based treatment interventions, on the other hand, probably leads researchers to seek stable, credible, and readily available stem cell sources capable of converting into numerous lineages. As an outcome, it is critical to exercise caution when selecting the type of stem cells to be used in therapeutic trials.12,14,22

Only with the explosive growth of basic stem cell research in recent years, the comparatively recent study sector of Translational Research had also grown exponentially, starting to build on major research knowledge and insight to advance new therapies. Once the necessary regulatory clearances have been obtained, the clinical translation process can start. Translational research is important because it acts as a filtration system, ensuring that only safe and effective therapeutic approaches start making it to the clinic.23 Recent research illustrating, the successful application of stem cell transplantation to patient populations suggests that, such restorative approaches have been used to address a wide variety of complicated ailments of future concerns.19,24

Currently, clinical trials are available for a variety of stem cell-based treatments based on adult stem cells. To date, the WHO International Clinical Experiments Registration process has recorded more than 3000 experiments involved based on adult stem cells. Furthermore, preliminary trials involving novel and intriguing pluripotent stem cell therapies have been registered. These studies findings will assist the ability to comprehend and the timeframes required to obtain effective treatments and it will contribute to a better knowledge of the different disorders or abnormalities.10

The role of stem cells in modern medicine is vital, both for their widespread application in basic research and for the opportunities they provide for developing new therapeutic strategies in clinical practice.6,16 In recent times, the number of studies involving stem cells has expanded tremendously. Globally, thousands of studies claiming to use stem cells in experimental therapies have now been in the investigation field. This may give the impression that such treatments have already been shown to be extremely effective in the context of healthcare. Despite some promising results, the vast majority of stem cell-based therapeutic applications are still in the experimental stage itself.6,25

The stem cells are a valuable resource for understanding organogenesis as well as the bodys continual regenerative capacity. These cells have brought up enormous anticipations among doctors, investigators, patients, and the public at large because of their ability to distinguish into a variety of cell types.25 These cells are necessary for living beings for a variety of reasons and can play a distinguishable role. Several stem cells can play all cell types roles, and when stimulated effectively, they can also repair damaged tissue. This capability has the potential to save lives as well as treat human injuries and tissue destruction. Moreover, different kinds of stem cells could be used for several purposes, including tissue formation, cell deficiency therapeutic interventions, and stem cell donation or retrieval.3,6,26

New research demonstrating that the successful application of stem cell treatments to patients has expressed hope that such regenerative strategies might very well one day is being used to address a wide variety of problematic ailments. Furthermore, clinical trials incorporating stem cell-based therapeutics have advanced at an alarming rate in recent years. Some of these studies had a significant impact on a wide range of medical conditions.10 As a regenerative medicine strategy, cell-based treatment is widely regarded as the most fascinating field of study in advanced science and medicine. Such technological innovation paves the way for an infinite number of transformational and potentially curable solutions to some of humanitys most pressing survival issues. Moreover, it is gradually becoming the next major concern in medical services.11

Modern data, which shows that the successful stem cell transplantation in beneficiaries has raised hopes on the certain rejuvenating approaches, will one day be used to treat many different types of challenging chronic conditions.24 Preliminary data from highly innovative investigations have documented that the prospective advancement of stem cells provides a wide range of life-threatening ailments that have so far eluded current medical therapy.2,10,11 Furthermore, clinical trials involving stem cell-based therapies have advanced at an unprecedented rate. Many of these studies had a significant impact on various disorders.19 Despite the increasing significance of articles concerning viable stem cell-based treatments, the vast majority of clinical experiments have still yet to receive full authorization for stem cell treatments confirmation.11,12,27

Even though the first case of AIDS were noted nearly 27 years ago, and the etiologic agent was noticed 25 years ago, still for the effective control of the AIDS pandemic continues to remain elusive.28 The HIV epidemic started in 1981 when a new virus syndrome defined by a weakened immune system was revealed in human populations across the globe. AIDS showed up to have a substantial reduction in CD4+ cell counts and also elevated B-cell multiplication.15,2831

The agent that causes AIDS, later named HIV, is a retroviral disease with a genomic structural system made up of 2 identical single-stranded RNA particles.3234 According to the Centres for Disease Control and Prevention, with over 1.1 million Americans are presently infected with the virus.31 Compromised immune processes in HIV and AIDS, as well as partial immune restoration, barriers are confirmed for HIV disease eradication. Innovative developmental strategies are essential to maximizing virus protection and enabling the host immune response to eliminate the virus.35

The progression of HIV infection in humans is divided into the following stages of acute infection, chronic infection, and AIDS.15,36 During the acute infection phase, the circulation has a high viral replication, is extremely infectious, that may or may not demonstrate flu-like clinical signs. In the chronic stage, the viral load is lesser than in the acute stage, and individuals are still infectious but may be symptomless. The patient has come to the end stage of AIDS whenever the CD4+ cell count begins to fall below 200 cells/mm or even when opportunistic infections are advanced.15,36

There are currently two types of HIV isolated HIV-1 and HIV-2.15,37,38 However, HIV-1 is the most common cause of AIDS throughout the world, while HIV-2 is only found in a few areas of an African country. Although both virions can cause AIDS, HIV-2 infection is much more likely to occur in central nervous system disorder.15 Besides this, HIV-2 seems to be less infectious than HIV-1, and HIV-2 infection induces AIDS to develop more slowly. Even though both HIV-1 and HIV-2 have a comparable genetic structure comprised of group-specific antigen, polymerase, and envelope genes, their genome organizational structures are differed.15,3739

HIV infiltrates immune cell types, CD4+ T cell types, and monocytes, resulting in a drop in T-cell counts below a critical level and the failure of cell-mediated immune function.15,40 The glycoprotein (gp120) observed in the virion envelope comes into contact with the CD4 particle with high affinity, allowing HIV to infect T cells. By interacting with their co-receptors, CXCR4 and CCR5, the virus infiltrates T cells and monocytes. The retrovirus uses reverse transcriptase to convert its RNA into DNA after attaching it to and entering the host cell. These newly replicated DNA copies then exit the host cell and infect other cells.15,40,41

HIV-1 is a retrovirus and belongs to a subset of retroviruses known as lentiviruses.38,42 Infection is the most common global health concern around the world.15 It has destroyed the millions of peoples health and continues to wreak havoc on the individual health of millions more. The pandemic of HIV-1 is the most devastating plague in the history of humans, as well as a significant challenge in the areas of medicine, public health, and biological science of research activities.34,43 Antiretroviral therapy is the only treatment that is commonly used. This is not a curative treatment; it must be used for the rest of ones life.15 Although antiretroviral therapy has reduced significantly HIV intensity and transmission, the virus has not been eradicated, and its continued presence can lead to additional health issues.44

Infection with the human immunodeficiency virus necessitates entry into target cells, such as through adhesion of the viral envelope to CD4 receptor sites.43 Cellular antiviral responses fail to eliminate the virus, resulting in a gradual depletion of CD4+ T cells and, finally, a severely compromised immune functioning system. Unfortunately, there is no cure for the virus that destroys immunity.4447 In advanced HIV infection, memory T-cell depletion primarily affects cellular and adaptive immune responses, with a minor impact on innate immune responses.48 Globally, 37.7 million people were living with HIV in 2020, and with 1.5 million individuals are infected with the virus.49 The advancement of stem cell therapy and the conduct of implemented clinical trials have revealed that stem cell treatment has high hopes for a range of medical conditions and implementations.15

Stem cell treatment has shown impressive outcomes in HIV management and has the potential to have significant implications for HIV treatment and prevention in the future. In HIV patients, stem cell therapy helps to suppress the viral load even while enabling antiretroviral regimens to be tapered. Interestingly, this practice led to a significant improvement in procedure outcomes soon after starting antiretroviral treatment.15 Stem cell transplantation can alleviate a wide variety of diseases that are currently incurable. They could also be used to create a novel anti-infection therapy strategic plan and to enhance the treatment of immunologic conditions such as HIV infection. HIV wreaks havoc on immune system cells.30,50

The virus infects and replicates within T-helper cells (T-cells), which are white immune system cells. T-cells are also referred to as CD4 cells. HIV weakens a persons immune system over time by pulverizing more CD4 cells and multiplying itself. More pertinently, if the individual has been unable to obtain anti-retroviral medicine, he will progressively fail to control the infectious disease and illnesses.3,15,42

Despite 36 years of scientific research, investigators are still trying to cure human HIV and its potential problem, AIDS.3,5153 HIV continues to face unconquerable dangers to human survival. This virus has developed the potential to avoid anti-retroviral therapy and tends to result in victim death.52 Investigators are still looking for effective and all-encompassing treatment for HIV and its complexity, AIDS.54 This massive amount of data revealed potential AIDS treatment targets.55 Thousands of research projects have yielded a great deal of information on the elusive AIDS life cycle to date.5456 These massive amounts of data supplied possible targets for AIDS treatment.33,55,56 In HIV-infected patients, using stem cell therapy can augment the process of keeping the viral load stagnant by permitting antiretroviral regimens to be tapered.15

Overall, stem cell-based strategies for HIV and AIDS treatment have recently emerged and have become a key area of research. Ideally, effective stem cell-based therapeutic approaches might have several benefits.30 Clinical studies encompassing stem cell therapy have shown substantial therapeutic effects in the treatment of various autoimmune, degenerative, and genetic problems.15,25 Substantial progress has been developed in the treatment of HIV infection using stem cell-based techniques.30

Successfully treated, clinical studies have shown that total tissue recovery is feasible.15,57 In the early 1980s, the first stem cell transplants were accomplished on HIV-positive patients who were unsure of their viral disease. Following the above preliminary aspects, many HIV-positive patients with concurrent malignant tumours or other hematologic disorders underwent allogeneic stem cell transplantation around the world.42 After ART became a common treatment option for patients,58,59 the procedures prognosis improved dramatically. In addition, a retrospective study of 111 HIV+ transplant patients demonstrated a mildly lower overall survivorship performance in comparison to an HIV-uninfected comparison group.60

Earlier, the primary problem for people living with HIV and AIDS was immunodeficiency caused by a loss of productive T-cells. Some clinicians intended to replenish lost lymphocytes through adoptive cell transplants in the initial days before efficacious antiretroviral therapy options were available. Immunologically, it is relatively simple in an isogeneic condition, as illustrated on HIV-positive individuals with just a correlating identical twin who received T-lymphocytes and stem cell transfusions to rebuild the weak immune status of the patient.60 Cell therapy transfusion may be used to remove resting virion genomes from CD4+ immune cells and macrophages mostly through genome-editing or cytotoxic anti-viral cells.15,60 Cell technology and stem cell biological reprogramming developments have made a significant contribution to novel strategies that may give confidence to HIV healing process.3 However, human embryonic stem cells can be distinguished into significant HIV target cells, according to several research findings.30,61,62

Initially, stem cell transplantation was believed to influence the clinical significance of HIV infection, but viral regulation was not accomplished in the discipline. Moreover, improvements in stem cell transplants utilizing synthetic or natural resistant cell resources, in combination with novel genetic manipulative tactics or the advancement of cytotoxic anti-HIV effector cells, have significantly accelerated this sector of HIV cell management.60 Multiple techniques are being introduced to overcome HIV, either through protecting cells from infectious disease or by continuing to increase immune responses to the viral infection.30 The various methods are as follows: Bone marrow stem cells Therapies, Autologous stem cell transplantations, Hematopoietic stem cell transplantation, Genetical modifications of Hematopoietic stem cells (HSCT), HSCT and HAART therapeutic approach, Human umbilical cord mesenchymal stem cell transplantation, Mesenchymal stem/stromal cells (MSCs) applications, CCR5 Delta32/Delta32 Stem-Cell Transplantation, CRISPR and stem cell applications, Induced Pluripotent Stem Cells applications.

According to the findings, circulating replicative HIV remains the most significant threat to effective AIDS therapy. As a result, a method for conferring resistance to circulating HIV particles is required. The effective viral burden in the human body would be significantly reduced if it were possible to defeat reproducing HIV particles.43,44 For the treatment of AIDS, a restorative approach that relies on bone marrow stem cells has been suggested.52 The proposed treatment method captures and eventually destroys circulating HIVs using receptor-integrated red blood cells. Red blood cell membranes can be equipped with the CD4 receptor and the C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4 co-receptors, which will selectively bind circulating HIV particles.15,30,32,33,43,44,46,6365

The term autologous pertains to blood-forming stem cells obtained from the patient for use as a source of fresh blood cells followed by high-dose chemotherapeutic agents.66 Lymphoma is still the biggest cause of mortality in HIV patients. Autologous stem cell recovery or transplantation with high-dose treatments has long been supported as a treatment for certain types of cancer in HIV-negative patients, including leukaemia and lymphoma. Individuals over the age of 65, as well as those with health problems such as HIV, were excluded from initial transfusion experiments. Moreover, the treatment regimen mortality of transplantation has also been reduced significantly due to its use of peripheral blood stem cells rather than bone marrow and the use of newer marginal conditioning therapeutic strategies. HIV-infected clients may be able to utilize enough stem cells for an autologous transplant advancement in HIV management. High-dose Autologous stem cell transplant (ASCT) treatments are better than conventional treatment in people with relapsed non-Hodgkin lymphoma, according to randomized trial evidence. Similarly, studies on HIV-negative people with Hodgkin Lymphoma have shown that ASCT would provide patients with repetitive illness with long-term progression-free survival.66,67 Even so, the clinical trial on Allogeneic Hematopoietic Cell Transplant for HIV Patients with Hematologic Malignancies report was explained as, the cell-associated HIV DNA and inducible infectious virus were not detectable in the blood of patients who attained complete chimerism.68

The study on long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates report findings was Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a potential innovative approach for the treatment of numerous human disorders. This report shows that genome-edited HSPCs engraft and contribute to multilineage repopulation following autologous transplantation in a clinically relevant large animal model, which is an important step toward developing stem cell-based genome-editing therapeutics for HIV and possibly other illnesses.69

Research on comprehensive virologic and immune interpretation in an HIV-infected participant again just after allogeneic transfusion and analytical interruption of antiretroviral treatment findings are the instance of HIV-1 cure having followed allogeneic stem cell transplantation (allo-SCT), resulting allo-SCTs in HIV-1 positive participants have failed to cure the disease. It describes adjustments in the HIV reservoir in a single chronically HIV-infected client who had undergone allo-SCT for acute lymphoblastic leukaemia treatment and was obtaining suppressive antiretroviral treatment.

To estimate the size of the HIV-1 reservoir and describe viral phylogenetic and phenotypic modifications in immune cells, the investigators just used leukapheresis to obtain peripheral blood mononuclear cells (PBMCs) from a 55-year-old man with chronic HIV infection prior and after allo-SCT. Once HIV-1 was found to be unrecognizable by numerous tests, including the PCR measurement techniques both of overall and fully integrated HIV-1 DNA, recompilation virus precise measurement by significant cell input quantifiable viral outgrowth assay, and in situ hybridization of intestine tissue, the client accepted to an analytic treatment interruption (ATI) with recurrent clinical observing on day 784 post-transplantation. He continued to remain aviremic off ART until ATI day 288, once a reduced virus rebound of 60 HIV-1 copies/mL resulted, which expanded to 1640 HIV-1 copies/mL five days later, urging ART reinitiation. Rebounding serum HIV-1 action sequences were phylogenetically distinguishable from pro-viral HIV-1 DNA discovered in circulating PBMCs before transplantation. It was indicated that allo-SCT tends to result in significant reductions in the magnitude of the HIV-1 reservoir and a >9-month ART-free cessation from HIV-1 multiplication.34

The Impact of HIV Infection on Transplant Outcomes after Autologous Peripheral Blood Stem Cell Transplantation: A Retrospective Study of Japanese Registry Data reported as ASCT is a successful treatment option for HIV-positive patients with non-Hodgkin lymphoma and multiple myeloma (MM). HIV infection was associated with an increased risk of overall mortality and relapse after ASCT for NHL in a study population.70

The procedure of delivering hematopoietic stem cells mostly through intravenous infusion to restore normal haematopoiesis or treat cancer is known as hematopoietic stem cell transplantation.71 There has recently been a rise in the desire to develop strategies for treating HIV/AIDS diseases employing human hematopoietic stem cells,30 along with this Hutter and Zaia were evaluated the background of Haematopoietic stem cell transplantation (HSCT) in HIV-infected individuals.42

Attempts to use HSCT as a technique for immunologic restoration in AIDS patients or as a therapeutic intervention for malignant tumours were initially insufficient. Regretfully, in the absence of sufficient ART, HSCT seemed to have no impact on the evolution of HIV infection, and the majority of the patients ended up dead of rapidly deteriorating immunosuppression or reoccurring lymphoma or leukaemia. A specific instance report described how an un-associated, matched donor supplied allogeneic HSCT to a patient with refractory lymphoma. The virus was unrecognizable by isolating or PCR of peripheral blood mononuclear cells commencing on day 32 after transplantation. Although HIV-1 was unrecognizable by cultural environment or PCR of several tissues examined at mortem, the patient died of recurring lymphoma on day 47. Another client who obtained both allogeneic HSCT and zidovudine had similar results, with HIV-1 becoming unnoticeable in the blood by PCR analysis. In some other particular instances, a 25-year-old woman with AIDS who obtained an allogeneic HSCT from a corresponding, unfamiliar donor after controlling with busulfan and cyclophosphamide and ART with zidovudine and IFN-2 regimen continued to live for 10 months before falling victim to adult respiratory distress. However, PCR testing of autopsy tissues revealed that they were HIV-1 negative.72

Recent research discovered significant progress towards the clinical application of stem cell-based HIV therapeutic interventions, principally illustrating the opportunity to effectively undertake a large-scale phase two HSC-based gene therapy experiment. In this investigation, the research team used autologous adult HSCs that had been transduced to a retroviral vector that usually contains a tat-vpr-specific anti-HIV ribozyme to develop cells that were less vulnerable to productive infection,73 whereas vector-containing cells have been discovered for extended periods (more than 100 weeks in most people) and CD4+ T cell gets counted were significantly high within anti-HIV ribozyme treating people group compared with the placebo group, the impacts on viral loads were minimal. The studys success, even so, is based on the realization that a stem cell-based strategy like this is being used as a more conventional and efficacious therapeutic approach.30 Some other latest clinical studies used a multi-pronged RNA-based strategic plan which included a CCR5-targeted ribozyme, an shRNA targeting tat/rev transcripts, and a TAR segment decoy.74

These crucial research findings are explained on lentiviral-based gene therapy vectors that can genetically manipulate both dividing and non-dividing HSCs and are less likely to cause cellular changes than murine retro-viral-based vectors. Long-term engraftment and multipotential haematopoiesis have been demonstrated in vector-containing and expressing cells, according to the researchers. Whereas the antiviral effectiveness was not reviewed, the results demonstrate the strategys protection, which helps to expand well for the possibility of a lentiviral-based approach in the upcoming years.30

A further approach, with a different emphasis, has been started up in the hopes of trying to direct immune function to target specific HIV to overcome barriers to attempting to clear the virus from the patient's body. These strategies use gene treatment innovations on peripheral blood cells to biologically modify cells so that they assert a receptor or chimeric particle that enables them to especially target a specific viral antigen,75 deception of HIV-infected peoples peripheral blood T cells raises issues to be addressed, such as the effects of ongoing HIV infection and ex vivo modification on the capabilities and lifetime of peripheral blood cells. Further to that, the above genetically manipulated cells would demonstrate their endogenous T cell receptors, and the representation of the newly introduced receptor could outcome in cross-receptor pairing, resulting in self-reactive T cells. Most of these deficiencies could be countered by enabling specific developmental strategies to take place that can start generating huge numbers of HIV-specific cells in a renewable, consistent way that can restore defective natural immune activity against HIV.30

One strategy being recognized is the application of B cells obtained from HSCs to demonstrate anti-HIV neutralizing specific antibodies. While animal studies have shown that neutralizing antibodies could protect against infection, and extensively neutralizing antibodies have been noticed in some HIV-infected persons, safety from a single engineered antibody might be exceptional.76,77 Realizing antibody binding and virus neutralization may assist in the development of chimeric receptors or single-chain therapeutic antibodies with recognition domains for other techniques that identify cellular immunity against HIV-infected cells.78,79 Thereby, genetically modifying HSCs to generate B cells that produce neutralizing anti-HIV specific antibodies, or engineering HSCs to enable multipotential haematopoiesis of cells that express a chimeric cellular receptor usually contains an antibody recognition domain, indicate one arm of an HSC-based engineered immunity process.30

A further technique of using HSCs that were genetically altered with molecularly cloned T-cell receptors or chimeric molecules particular to HIV to yield antigen-specific T cells. The basic difference in this strategy is that the cells produced from HSCs after standard advancement in the bone marrow and thymus are made subject to normal central tolerance modalities and are antigen-specific naive cells, and therefore do not have the ex-vivo manipulation and impaired functioning or exhaustion problems that other external cell modification methods would have. In this context, the latest actual evidence research using a molecularly cloned T cell receptor particular to an HIV-1 Gag epitope in the aspect of HLA-A*0201 revealed that HSC altered in this ability can progress into fully functioning, mature HIV specialized CD8+ T cells in human thymic tissue that conveys the acceptable constrained HLA-A*0201 particles.80 This explores the possibility of genetically engineering HSCs with a molecularly cloned receptor and signifies a step toward a better understanding and application of initiated T cell responses, which would probably result in the eradication of HIV infection from the body, similar to the natural immune function of other virus infections and pathogenic organisms.30

In an allogeneic transplantation, donor stem cells replace the patients cells.66 Allogeneic hematopoietic stem cell transplantation (HSCT) has appeared as one of the most potent treatment possibilities for many people who suffer from hemopoietic system carcinomas and non-malignant ailments.81 Both HIV-cured people have received HSCT utilizing CCR5 132 donor cells.82,83 This implies that HIV eradication necessitates a decrease in the viral reservoir through the myeloablative procedures,8486 Having followed that, immune rebuilding with HIV-resistant cells was carried out to prevent re-infection.45 The possibility of adoptive transfer of ex vivo-grown, virus-specific T-cells to prevent and control infectious diseases (eg, Cytomegalovirus and EBV) in immunocompromised patients helps to make adoptive T-cell treatment a feasible strategy to inhibit HIV rebound having followed HSCT.81,87,88

The Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study, the researchers investigated the efficacy and safety of 2LTRZFP in human CD34+ HSPCs. Researchers used a lentiviral vector to transduce 2LTRZFP with the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs. The study findings suggest that the anti-HIV-1 integrase scaffold is an enticing antiviral molecule that could be utilised in human CD34+ HSPC-based gene therapy for AIDS patients.89

The fundamental element of HIV management is stem cell genetic modification, which involves genetically enhanced patient-derived stem cells to overcome HIV infection. In this sector, numerous experimental studies, in vitro as well as in vivo examinations, and positive outcomes for AIDS patients have been conducted.65,74 Genetic engineering for HIV-infected individuals can provide a once-only intervention that minimizes viral load, restores the immune system, and minimizes the accumulated toxicities concerned with highly active antiretroviral therapy (HAART).73 HSCs can be genetically altered, permitting for the addition of exogenous components to the progeny that protects them from direct infectious disease and/or enables them to target a specific antigen. Besides that, HSC-based strategies can enhance multilineage hemopoietic advancement by re-establishing several arms of the immune function. Eventually, as HSCs can be produced autologously, immunologic tolerance is typically high, enabling effective engraftment and subsequent distinction into the fully functioning mature hematopoietic cells.30

The utilization of human HSCs to rebuild the immune function in HIV disease is one application that tries to preserve newly formed cells from HIV infection, while another attempts to develop immune cells that attack HIV infected cells. While each initiative has many different aspects at the moment, they represent huge attention to HIV/AIDS therapies that, most likely when integrated with the other therapeutic approaches, would result in the body trying to overcome the obstacles needed for the virus to be effectively cleaned up.30

While HSC transplantation technique and processes are not accurately novel, as they are commonly and effectively used to address a wide variety of haematological diseases and malignant neoplasms,90 trying to combine them with a gene therapeutic strategy represents a unique and possibly potent therapeutic approach for HIV and AIDS-related ailments. As the results of HIV-infected patients who obtained autologous HSCT continued to improve, there was growing interest in genetically altered stem cells that were tolerant to HIV disease. Multiple logistical challenges have impeded the advancement of genetically modified hematopoietic stem cells as a conceivable therapeutic option for HIV/AIDS.72,73

UCLAs Eli and Edythe Broad Center for Restorative Medicine and Stem Cell Studies is one bit closer to constructing an instrument to arm the bodys immune system to attack and defeat HIV. Dr. Kitchen et al are the first ones to disclose the use of a chimeric antigen receptor (CAR), a genetically manipulated molecule, in blood-forming stem cells. In the experiment, the research team introduced a CAR gene into blood-forming stem cells, which were then moved into HIV-infected mice that had been genetically programmed. The scientists found that CAR-carrying blood stem cells efficiently transformed into fully functioning T cells that have the ability to kill HIV-infected cells in mice. The outcome was an 80-to-95 percentage reduction in HIV levels, suggesting that stem-cell-based genetic engineering with a CAR might be a viable and effective approach for treating HIV infection among humans. The CAR initiative, according to Dr. Kitchen, is much more able to adapt and ultimately more efficient, which can conceivably be used by others. If any further experiment showcases keep promising, the scientists expect that a practice based on their strategy will be accessible for clinical development within the next 510 years.91

HSCT and HAART therapeutic approaches in treating HIV/AIDS as the emergence of highly active antiretroviral therapy (HAART) in the 1990s improved survival rates of HIV infection, leading to a major dramatic drop in the occurrence of AIDS and AIDS-related mortalities. As an outcome, there is much less involvement with using HSCT as a therapy for HIV infection.28,33,43,67,86

A randomized clinical trial of human umbilical cord mesenchymal stem cell transplant among HIV/AIDS immunological non responders investigation, the researchers examined the clinical efficacy of transfusion of human umbilical cord mesenchymal stem cells (hUC-MSC) for immunological non-responder clients with long-term HIV disease who have an unmet medical need in the aspect of effective antiretroviral therapy. From May 2013 to March 2016, 72 HIV-infected participants were admitted in this stage of the randomized, double-blind, multi-center, placebo-controlled dose-determination investigation. They were either given a high dose of hUC-MSC of 1.5106/kg body weight as well as small doses of hUC-MSC of 0.5106/kg body weight, or a placebo application. During the 96-week follow-up experiment, interventional and immunological character traits were analysed. They found that hUC-MSC therapy was both safe and efficacious among humans. There was a significant rise in CD4+ T counts after 48 weeks of treatment in both the high-dose (P 0.001) and low-dose (P 0.001) groups, but no changes in the comparison group.92

One interesting invention made by a team of UC Davis investigators is the recognition of a particular form of stem cell that can minimize the quantity of the virus that tends to cause AIDS, thus dramatically increasing the bodys antiviral immune activity. Mesenchymal stem/stromal cells (MSCs) furnish an incredible opportunity for a creative and innovative, multi-pronged HIV cure strategic plan by augmenting prevailing HIV potential treatments. Even while no antivirals have been used, MSCs have been able to increase the hosts antiviral responses. MSC therapeutic approaches require specialized delivery systems and good cell quality regulation. The studys findings lay the proper scientific foundation for future research into MSC in the ongoing treatment of HIV and other contagious diseases in the clinical organization.35

Infection with HIV-1 necessitates the existence of both specific receptors and a chemokine receptor, particularly chemokine receptor 5 (CCR5).46 Resistance to HIV-1 infection is attained by homozygozygozity for a 32-bp removal in the CCR5 allele.93 In this investigation, stem cells were transplanted in a patient with severe myeloid leukaemia and HIV-1 infection from a donor who was homozygous to Chemokine receptor 5 delta 32. The client seemed to have no viral relapses after 20 months of transplantation and attempting to stop antiretroviral medicine. This finding highlights the essential role that CCR5 tries to play in HIV-1 infection maintenance.86

In comparison, additional HIV-1-infected people who have received allogeneic stem cell transplants with cells from CCR5 truly wild donors did not have long-term relapses from HIV-1 rebound, with 2 of these patients trying to report viral reoccurrence 12 as well as 32 weeks after analytic treatment interruption, respectively. Among these 2 patients, allogeneic stem cell transplantation probably reduced but did not eliminate latently HIV-infected cells, enabling persistent viral reservoirs to activate viral rebound. This viewpoint may not rule out the potential that allogeneic hematopoietic stem cell transplantation might result in a much more comprehensive or near-complete elimination of viral reservoirs, enabling long-term drug-free relapse of HIV-1 infection in some contexts.84 As just one report demonstrated a decade earlier, a curative treatment for HIV-1 remained elusive. The Berlin Patient has undergone 2 allogeneic hematopoietic stem cell transplantations to cure his acute myeloid leukaemia utilizing a potential donor with a homozygous genetic mutation in HIV coreceptor CCR5 (CCR532/32).15,34,46,64,65,72,82,84,86,9496 Other similar studies with CCR5 receptor targets are as follows: Automated production of CCR5-negative CD4+-T cells in a GMP compatible, clinical scale for treatment of HIV-positive patients,97 Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations,98 Conditional suicidal gene with CCR5 knockout.99

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 is a promising gene editing approach that can edit genes for gain-of-function or loss-of-function mutations in order to address genetic abnormalities. Despite the fact that other gene editing techniques exist, CRISPR/Cas9 is the most reliable and efficient proven method for gene rectification.100103

Genome engineering employing CRISPR/Cas has proven to be a strong method for quickly and accurately changing specific genomic sequences. The rise of innovative haematopoiesis research tools to examine the complexity of hematopoietic stem cell (HSC) biology has been fuelled by considerable advancements in CRISPR technology over the last five years. High-throughput CRISPR screenings using many new flavours of Cas and sequential and/or functional outcomes, in specific, have become more effective and practical.104,105

The power of the CRISPR/Cas system is that it can specifically and efficiently target sequences in the genome with just a single synthetic guide RNA (sgRNA) and a single protein. Cas9 is directed to the specific DNA sequence by the sgRNA, which causes double stranded breaks and activates the cells DNA repair processes. Non-homologous end joining can cause insertiondeletion (indel) substitutions at the target location, whereas homology-directed repair can use a template DNA to insert new genetic material.104,106

The possibility for CRISPR/Cas9 to be used in the hematopoietic system was emphasised as pretty shortly after it was initiated as a new genome editing method.106,107 The efficiency with which CRISPR-mediated alteration can be used to evaluate hematopoietic stem/progenitor and mature cell function via transplantation. As a result, hematopoietic research has significantly advanced with the implementation of these technologies. Whilst single-gene CRISPR/Cas9 programming is a significant tool for testing gene function in primary hematopoietic cells, high-throughput screenings potentially offer CRISPR/Cas9 an even greater advantage in hematopoietic research.104

While understanding human haematological disorders requires the ability to mimic diseases, the ultimate goal is to transfer this innovation into therapies. Despite significant advancements in CRISPR technology, there are still barriers to overcome before CRISPR/Cas9 can be used effectively and safely in humans. CRISPR has also been used to target CCR5 in CD34+ HSPCs in an effort to make immune cells resistant to HIV infection, as CCR5 is an important coreceptor for HIV infection.104

CRISPR is a modern genome editing technique that could be used to treat immunological illnesses including HIV. The utilization of CRISPR in stem cells for HIV-related investigation, on the other end, was ineffective, and much of the experiment was done in vivo. The new research idea is about increasing CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. The possible genes that enhance HIV resistance and stem cell engraftment should be explored more in the future studies. To strengthen HIV therapy or resistance, double knockout and knock-in approaches must be used to build a positive engraftment. In the future, CRISPR/SaCas9 and Ribonucleoprotein (RNP) administration should be explored in the further investigations.108 As well as some different title studies were explained the effectiveness of the CRISPR gene editing technology on the management of HIV/AIDS including: CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic,104 CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukaemia,109 Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,110 Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA,111 HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells,112 CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination,113 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection,114 CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Pro viral DNA Circles with Reformed Long Terminal Repeats,115 CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice,116 Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,117 Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line,118 CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection,119 CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.109

Induced pluripotent stem cells (iPSCs) have significantly advanced the field of regenerative medicine by allowing the generation of patient-specific pluripotent stem cells from adult individuals. The progress of iPSCs for HIV treatment has the potential to generate a continuous supply of therapeutic cells for transplantation into HIV-infected patients. The title of the study is reported on Generation of HIV-1 Resistant and Functional Macrophages from Hematopoietic Stem Cellderived Induced Pluripotent Stem Cells. In this investigation, researchers used human hematopoietic stem cells (HSCs) to produce anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into constantly growing iPSC lines using 4 reprogramming factors and a combination anti-HIV lentiviral vector comprising a CCR5 shRNA and a human/rhesus chimeric TRIM5 gene. After directing the anti-HIV iPSCs toward the hematopoietic lineage, a large number of colony-forming CD133+ HSCs were acquired. These cells were distinguished further into functional end-stage macrophages with a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages displayed good protection against HIV-1 infection. Researchers have clearly shown how iPSCs can establish into HIV-1 resistant immune cells and explain their prospective use in HIV gene and cellular therapies.120

Some other similar titles of the studies reported on the effectiveness of IPSCs on HIV/AIDS managements are as follows: Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA,121 Generation of HIV-1-infected patients gene-edited induced pluripotent stem cells using feeder-free culture conditions,122 A High-Throughput Method as a Diagnostic Tool for HIV Detection in Patient-Specific Induced Pluripotent Stem Cells Generated by Different Reprogramming Methods,123 Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells,124 Engineered induced-pluripotent stem cell-derived monocyte extracellular vesicles alter inflammation in HIV humanized mice,125 Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.126

Recently, one HIV patient appeared to be virus-free after having undergone a stem-cell transfusion in which their WBCs were changed with HIV-resistant variations.84 Timothy Ray Brown also noted as the Berlin patient, who is still virus-free, was the first individual to undertake stem-cell transplantation a decade earlier. The most recent patient, like Brown, had a type of leukaemia that was vulnerable to chemo treatments. They required a bone marrow transplantation, which involved removing their blood cells and replacing them with stem cells from a donor cell.5,31,34,41,127130 Rather than simply choosing a suitable donor, Ravindra Gupta et al chose one who already had 2 copies of a mutant within the CCR5 gene,128,131 which provides resistance to HIV infection.3

Additionally, this gene encodes for a specific receptor of white blood cells that are assisted in the bodys immunological responses. The transplant, according to Guptas team, completely replaced the clients White cells with HIV-resistant forms.41,83 Cells in the patients blood disrupted expressing the CCR5 receptor, making it unfeasible for the clients form of HIV to infect the above cells again. The scientists determined that the virus had been cleared from the patients blood after the transplantation. Besides that, after 16 months, the client has withdrawn antiretroviral treatment. The infection was not detected in the most recent follow-up, which occurred 18 months after the treatment was discontinued. Adam, also known as the London patient, was the second person to be cured of HIV as a result of a stem cell transfusion. This discovery is an important step forward in HIV research because it may aid in the detection of potential future therapeutic interventions. It must be noted, but even so, that this is not an extensively used HIV treatment. For HIV-infected patients, antiretroviral drugs have been the foremost therapeutic option.3,31,41,94,129,130 It also encourages many investigators and clinicians to look at the use of stem cells in the treatment of a wide range of serious medical conditions. The reprogramming abilities of stem cells, as well as their accessibility, have created a window of opportunity in medical research. The clinical utility of stem cells is forecast to expand rapidly in the coming years.

On Feb 15, 2022, scientific researchers confirmed that a woman had become the 3rd person in history to be successfully treated for HIV, the virus that causes AIDS, after just receiving a stem-cell transfusion that has used cells from cord blood. Within those transplant recipients, adult hematopoietic stem cells have been used; these are stem cells that eventually develop into all blood cell types, which include white blood cells, these are a vital component of the immune framework. Even so, the woman who had fairly recently been completely cured of HIV infection had a more unique experience than that of the 2 men who were actually cured before her.132

The clients physician, Dr. JingMei Hsu of Weill Cornell Medicine in New York, informed them that, she had been discharged from the hospital just 17 days after her procedure was performed, even with no indications of graft vs host ailment. The woman was HIV-positive but also had acute myeloid leukaemia, a blood cancer of the bone marrow that affects blood-forming cells. She had likely received cord blood as a successful treatment for both her cancer and HIV once her doctors decided on a potential donor well with HIV-blocking gene mutation. Cord blood comprises a high accumulation of hematopoietic stem cells; the blood is obtained during a childs birth and donated by the parents.132

The patients donor was partly nearly matched, and she received stem cells from a close family member to enhance her immune function after the transfusion. The procedure was performed on the woman in August of 2017. She chose to discontinue taking antiretroviral drugs, the standardized HIV intervention, 37 months upon her transfusion. After more than 14 months, there is no evidence of the viral infection or antibodies against it in her blood. Umbilical cord blood, in reality, is much more commonly accessible and simpler to try to match to beneficiaries than bone marrow. Perhaps, some research suggests that the method could be more available to HIV patients than bone marrow transplantation. Nearly 38 million people worldwide are infected with HIV. The potential for using partly matched umbilical cord blood transplantation increases the chances of choosing appropriate suitable donors for these clients considerably.132

It is really exciting to see the earlier terminally ill diseases of being effectively treated. In recent times, there has been a surge of focus on stem cell research.3 Stem cell therapy advancements in inpatient care are receiving a growing amount of attention.20 HIV/AIDS has been and remains a significant health concern around the world. Effective control of the HIV pandemic will necessitate a thorough understanding of the viruss transmission.32

Despite concerns about full compliance and adverse reactions, HAART has demonstrated to be able to succeed and is a sign specifically targeted form of treatment against HIV advancement. As illustrated by the first case of HIV infection relapse attained by bone marrow transplant, anti-HIV HPSC-based stem cell treatment and genotype technology have established a possible future upcoming technique to try to combat HIV/AIDS.

Investigators have conducted experiments with engineering distinct anti-HIV genetic traits trying to target different phases of HIV infection utilizing advanced scientific modalities. In numerous in vivo and in vitro animal studies, HSPCs and successive mature cells were secured from HIV infection by trying to target genetic factors in the infection. Anti-HIV gene engineering of HSPCs is safe and efficacious.15

The number of stem-cell-based research trials has risen in recent years. Thousands of studies claiming to use stem cells in experimental therapies have been registered worldwide. Despite some promising results, the majority of clinical stem cell technologies are still in their early life. These achievements have drawn attention to the possibility of the potential and advancement of various promising stem cell treatments currently in development.11

HIV remains a major danger to humanity. This virus has developed the ability to evade antiretroviral medication, resulting in the death of individuals. Scientists are constantly looking for a treatment for HIV/AIDS that is both effective and efficient.52 The 1st treatments in HIV+ clients were conducted in the early 1980s, even though they were cognizant of their viral disease. Following these early cases, allogeneic SCT was used to treat HIV+ patients with associated cancer or other haematological disorders all over the world. Stem cell transplantation developments have also stimulated the improvement of innovative HIV therapeutic approaches, especially for large goals like eradication and relapse.60

Numerous stem cell therapy progressions have been recognized with autologous and allogeneic hematopoietic stem cell transplantation, as well as umbilical cord blood mesenchymal stem cell transplant in AIDS immunologic non-responders. Whereas this sector continues to advance and distinguishing directives for these cells become much more effective, totipotent stem cells such as hESC and the recently reported induced pluripotent stem cells (iPSC) could be very useful for genetic engineering methods to counter hematopoietic abnormalities such as HIV disease.133135

Immunocompromised people are at a higher risk of catching life-threatening diseases. The perseverance of latently infected cells, which is formed by viral genome inclusion into host cell chromosomes, is a significant challenge in HIV-1 elimination. Stem cell therapy is producing impressive patient outcomes, illustrating not only the broad relevance of these strategies but also the huge potential of cell and gene treatment using adult stem cells and somatic derivative products of pluripotent stem cells (PSCs).

Stem cells have enormous regeneration capacity, and a plethora of interesting therapeutic uses are on the frontier. This is a highly interdisciplinary scientific field. Evolutionary biologists, biological technicians, mechanical engineers, and others that have evolved novel concepts and decided to bring them to medical applications are required to make important contributions. Further to that, recent advancements in several different research areas may contribute to stem cell application forms that are novel. Several hurdles must be conquered, however, in the advancement of stem cells. On the other hand, this discipline appears to be a promising and rapidly expanding research area.

Stem cell-based approaches to HIV treatment resemble an innovative approach to trying to rebuild the ravaged bodys immune system with the utmost goal of eliminating the virus from the body. We will probably see effective experiments from the next new generation of stem cell-based strategies shortly, which will start serving as a base for the further development and use of these techniques in a range of treatment application areas for other chronic diseases.

My immense pleasure was mentioned to family members and friends, who supported and encouraged me in every activity.

There was no funding for this work.

The authors declare that they have no conflicts of interest in relation to this work.

1. Zakrzewski W, Dobrzyski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5

2. Nadig RR. Stem cell therapy hype or hope? A review. J Conserv Dent JCD. 2009;12:131138. doi:10.4103/0972-0707.58329

3. Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:1726.

4. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:14421446. doi:10.1126/science.287.5457.1442

5. Pernet O, Yadav SS, An DS. Stem cellbased therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187201. doi:10.1016/j.addr.2016.04.027

6. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:310.

7. Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672701. doi:10.17305/bjbms.2021.5508

8. Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.

9. Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.

10. Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001

11. Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781782. doi:10.1016/j.stem.2018.05.017

12. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801811. doi:10.1038/s41556-019-0344-z

13. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:311. doi:10.1007/s12015-008-9010-8

14. Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:6575. doi:10.1016/j.exer.2018.07.019

15. Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3

16. Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828

17. Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837839. doi:10.1161/CIRCRESAHA.118.313664

18. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:6277. doi:10.1016/j.colsurfb.2017.07.051

19. Prez Lpez S, Otero Hernndez J. Advances in stem cell therapy. In: Lpez-Larrea C, Lpez-Vzquez A, Surez-lvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290313.

20. Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimers disease. Neural Regen Res. 2020;15:242250. doi:10.4103/1673-5374.265544

21. Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188196. doi:10.1089/hum.2017.224

22. Tadlock D Stem cell basics introduction; 19.

23. Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7

24. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335342. doi:10.1038/s41586-018-0089-z

Original post:
PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press

Posted in Stem Cell Therapy | Comments Off on PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

Diabetic foot treatment: Here’s all you need to know about stem cell therapy – Hindustan Times

Posted: July 11, 2022 at 2:05 am

Diabetes is nothing less than a pandemic as according to the World Health Organization, about 422 million people have diabetes worldwide. High blood sugar levels affect different organs and tissues of the body leading to a compromised quality of life for example, you might have experienced or heard of tingling sensation, numbness, or pain in the legs/feet of patients with diabetes which as per the health experts, occur due to nerve and blood circulation-related problems caused by the negative effects of high glucose levels on cells and tissues.

Foot-related problems occur commonly in patients with diabetes like if we hurt our toe/foot and have an open wound or cut, the nerve endings from the affected part send signals to the brain and cause pain. In case a person with uncontrolled and long-standing diabetes, the sensation of pain may not be transmitted properly due to nerve issues, leading to the patient ignoring the problem and in such cases, even a small cut can progress to a large size wound (as we know wound healing is affected in diabetic patients).

Infection can spread from the feet through the blood to other parts of the body as well and in the feet specifically, increased severity of the issue can lead to gangrene, ultimately necessitating amputation of the toes/foot. It is therefore important to look out for issues such as cuts, bruises, red spots, warm areas, swelling, blisters, corn, etc. in the feet to identify any issue at the earliest and initiate treatment.

From an advanced treatment perspective, Dr Pradeep Mahajan, Regenerative Medicine Researcher at Navi Mumbai's StemRx Bioscience Solutions Pvt Ltd, talked about regenerative medicine for diabetic foot in an interview with HT Lifestyle. He explained, Regenerative medicine is about using biological molecules to enhance the healing potential of the body. These molecules are cells, growth factors, exosomes, peptides, all of which function to enhance the function of other cells in the body, reduce inflammation, regulate the immune system, provide a constant pool of healthy cells, and clear tissue damage, among other functions.

He highlighted that the treatment for diabetic foot includes a combination of mesenchymal stem cells, growth factors that improve nerve health and blood vessel formation, oxygen therapy, as well as allied stimulation-based treatments. He said, We have seen successful outcomes in diabetic foot conditions following cell-based therapy. Patients experience relief from abnormal sensations in the feet, better wound healing and pain along with better control of diabetes.

Dr Mahajan added, When we target the pathology, we get more definitive treatment outcomes. Our patients with diabetic foot do not progress to develop gangrene. In fact, they even achieve better control of blood glucose levels, which prevents further complication and improves their quality of life. The key is a regenerative (not symptomatic) treatment along with lifestyle modifications.

Original post:
Diabetic foot treatment: Here's all you need to know about stem cell therapy - Hindustan Times

Posted in Stem Cell Therapy | Comments Off on Diabetic foot treatment: Here’s all you need to know about stem cell therapy – Hindustan Times

Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% – Digital Journal

Posted: July 11, 2022 at 2:05 am

Global Stem Cell ManufacturingMarket Is Expected To Reach USD 21.71 Billion By 2029 At A CAGR Of 9.1 percent.

Maximize Market Research has published a report on theGlobal Stem Cell Manufacturing Marketthat provides a detailed analysis for the forecast period of 2022 to 2029.

Global Stem Cell ManufacturingMarket Scope:

The report provides comprehensive market insights for industry stakeholders, including an explanation of complicated market data in simple language, the industrys history and present situation, as well as expected market size and trends. The research investigates all industry categories, with an emphasis on key companies such as market leaders, followers, and new entrants. The paper includes a full PESTLE analysis for each country. A thorough picture of the competitive landscape of major competitors in theGlobal Stem Cell Manufacturingmarket by goods and services, revenue, financial situation, portfolio, growth plans, and geographical presence makes the study an investors guide.

Request Free Sample:@https://www.maximizemarketresearch.com/request-sample/73762

Global Stem Cell Manufacturing Market Overview:

Observing stem cells evolve into cells in bones, the circulatory system, nerve cells, and other organs of the body may help scientists understand how illnesses and disorders occur. Stem cells can be programmed to generate particular cells that can be utilized in humans to grow and mend tissues that have been damaged or harmed by sickness. Stem cell therapy may assist people with spinal cord injuries, metabolic disorders, Parkinsons disease, amyotrophic lateral sclerosis, Alzheimers disease, cardiovascular disorders, brain hemorrhage, burns, malignancy, and rheumatoid arthritis. Stem cells can be used to create new tissue for transplant and genetic engineering. Doctors are always learning more about stem cells and how they might be used in transplant and cellular therapies.

Global Stem Cell ManufacturingMarketDynamics:

Stem cells are crucial in illness treatment and specialized research initiatives such as customized therapy and genetic testing. As public and commercial stakeholders throughout the world become more aware of stem cells therapeutic potential and the scarcity of therapeutic approaches for rare illnesses, they are increasingly focusing on the development of stem cell-based technology.

Specialized procedures are required for stem cell separation, refinement, and storage (such as expansion, differentiation, cell culture media preparation, and cryopreservation). Additionally, the production scale-up of stem cell lines and associated items is frequently accompanied by major technological challenges that impede the whole production process and result in large operational expenses. As a result, stem cell products are frequently more expensive than pharmaceutical medications and biopharmaceuticals.

Additionally, the growing popularity of tailored medications is driving the market growth. Scientists are researching novel procurement strategies that can be used to manufacture tailored medications. For example, iPSC treatments are created by taking a little amount of a patients plasma or skin cells and reprogramming them to make new cells and tissue for transplant. As a result, future tailored treatments can be produced using these cells.

Global Stem Cell ManufacturingMarketRegional Insights:

North America (particularly the United States) held the largest market share in 2021, owing to factors such as the availability of significant contenders active in creating stem cell treatments, enhanced medical facilities, significant R&D financial backing available, and favorable initiatives from healthcare organizations, as well as robust reimbursement. Because of government initiatives and serious scientific activity in the country, the United States leads the continentsGlobal Stem Cell Manufacturingmarket.

Healthcare organizations are promoting cellular therapies for rising ailments. Due to higher advancement of stem cell-based treatments, federal actions for creating regenerative medications, the creation of multiple stem cell banks, and the continents increasing clinical studies for genetic manipulation and medical technology, the APACGlobal Stem Cell Manufacturingmarket is expected to grow at the fastest rate during the forecast period.

Global Stem Cell ManufacturingMarketSegmentation:

By Product:

By Application:

By Technology:

By Therapy:

Global Stem Cell ManufacturingMarket Key Competitors:

To Get A Copy Of The Sample oftheGlobal Stem Cell ManufacturingMarket, Click Here:@https://www.maximizemarketresearch.com/market-report/global-stem-cell-manufacturing-market/73762/

About Maximize Market Research:

Maximize Market Research is a multifaceted market research and consulting company with professionals from several industries. Some of the industries we cover include medical devices, pharmaceutical manufacturers, science and engineering, electronic components, industrial equipment, technology and communication, cars and automobiles, chemical products and substances, general merchandise, beverages, personal care, and automated systems. To mention a few, we provide market-verified industry estimations, technical trend analysis, crucial market research, strategic advice, competition analysis, production and demand analysis, and client impact studies.

Contact Maximize Market Research:

3rd Floor, Navale IT Park, Phase 2

Pune Banglore Highway, Narhe,

Pune, Maharashtra 411041, India

[emailprotected]

See the original post:
Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal

Posted in Stem Cell Therapy | Comments Off on Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% – Digital Journal

Every 5 minutes someone in India is diagnosed with blood cancer or a blood disorder: Patrick Paul, CEO, DKMS BMST Foundation India – The Financial…

Posted: July 11, 2022 at 2:05 am

India has a high prevalence of blood cancer and other blood-related disorders like Thalassemia or Aplastic Anemia. Despite a large number of cases, patients suffering from such conditions are forced to struggle with their treatments and therapies. DKMS BMST Foundation India, a non-profit Organisation, is dedicated to the fight against blood cancer and other blood disorders, such as thalassemia and aplastic anemia. It is a joint venture of two reputed Non-profit Organisations: BMST (Bangalore Medical Services Trust) and DKMS, one of the largest international blood stem cell donor centres in the world. Financial Express.com reached out to Patrick Paul, CEO, DKMS BMST Foundation India and he highlighted the status of blood disorders in India, challenges faced by the patients suffering from these diseases and role of DKMS BMST Foundation India in patient care in the country among others. Excerpts:

What are the various types of blood cancers that are prevalent in India?

Blood Cancer typically means malignancies of the blood, bone marrow or lymph nodes that affect normal blood cell production or function.

Of all types of Blood Cancers, here are the three most common types of blood cancer that affects the Indian population mentioned in order of the rate of incidence.

Lymphoma is the name for a group of blood cancers that develop in the lymphatic system. The two main types are Hodgkin lymphoma (generally starts in blood and bone marrow) and non-Hodgkin lymphoma (generally starts in lymph node and lymphatic tissue.)

Leukemia is a blood cancer that develops when normal blood cells change and grow uncontrollably. There are four main types named according to the cells affected (myeloblasts, lymphocytes) and whether the disease starts with mature or immature cells (chronic, acute).

Multiple myeloma starts in the bone marrow when plasma cells begin to grow uncontrollably. As the cells grow, they compromise the immune system and impair the production and function of white and red blood cells causing bone disease, organ damage and anemia among other conditions.

What are the challenges that a blood cancer patient faces in India? What needs to be done to help them in overcoming those hurdles?

Every 5 minutes someone in India is diagnosed with blood cancer or a blood disorder such as Thalassemia or Aplastic Anemia. Despite this huge cancer burden, In India, only 0.04% of the total population is registered as a potential blood stem cell donor. While blood cancer is life-threatening, a set of healthy blood stem cells from a matching donor can be life-saving. The demand and supply gap are increasing as people dont register themselves as potential blood stem cell donors due to lack of awareness.

Only about 30% of the patients in need of a stem cell transplant as lifesaving treatment can find a sibling match. The rest 70% depend on finding a matching unrelated donor which makes it vital for people to register themselves as potential donors and help save a life.

How does DKMS BMST Foundation India help patients with blood cancer? In recent years, what are the crucial milestones that the organization has achieved in the country?

DKMS-BMST helps blood cancer patients by:

Raising awareness and educating the general public about the importance of blood stem cell donation

Recruiting donors by encouraging people of diverse ethnicities to register as a potential blood stem cell donor. Recruitment is done through various registration drives at different colleges, corporates, and associations and through online portal.

Matching and collection of stem cells by facilitating search requests in collaboration with transplant centers, collection, processing and transport of stem cell product

Ensuring donor safety and following up post the procedure to monitor the well-being of the donors

Supporting patients and families with information and organization of registration events

Research to advance blood cancer treatment and improve the success rate of transplants

DKMS-BMST has organized over 1300 donor registration drives with focus on South India in the last one year across various organizations such as corporates, educational institutes, hospitals and defense forces to spread awareness about blood stem cell donation and enroll more potential donors. So far, DKMS-BMST have successfully registered over 70,000 potential blood stem cell donors.

While our donor recruitment team is responsible to register potential donors, our medical team works with transplant centers and collection centers. As soon as we receive a direct request from a transplant center for a patient from India or abroad, a worldwide search is started to determine whether there is a donor available. If there is a donor from DKMS-BMST, we contact this donor and initiate all the steps for a successful blood stem cell donation. So far, we have arranged 29 successful donations and were thus able to offer 29 patients a second chance at life.

Other than blood cancers, what are the other focal areas of DKMS BMST Foundation India?

DKMS BMST Foundation India is a non-profit organization dedicated to the fight against blood cancer and other blood disorders, such as thalassemia and aplastic anemia.

Our aim is to improve the situation of patients suffering from blood cancer and other blood disorders in India, by raising awareness about blood stem cell transplantation and registering potential blood stem cell donors. By doing this, DKMS-BMST provides patients in need of a blood stem cell transplant with a second chance at life.

How the ongoing COVID-19 pandemic has affected the treatment and diagnosis of hemoglobinopathy and other blood disorders?

Blood cancer and other blood disorder patients suffer from immune deficiency. Even regular respiratory viruses are a problem and the spread of coronavirus is a major risk for the patients. These patients are more sensitive to infection than any other group, because the treatment itself destroys their own immune system, and replaces it with the donors. Thus, the management of such high-risk patients have also become challenging in this situation. The Covid-19 pandemic had posed lot of challenges for patients with hematological-oncological conditions and in need of a blood stem cell transplant. In the context of unrelated blood stem cell transplants there is lots of logistic support needed. The lockdown situations used to impact the usual process for transporting blood stem cells across borders and countries. There was also a fear factor in the voluntary blood stem cell donors about blood stem cell donation during this time.

However, now the situation is getting better and we are registering potential donors through online and offline activities as well.

What are the common misconceptions that you come across related to blood cancers and other blood-related disorders in India?

A lack of understanding and multiple baseless misconceptions existing amongst people about the process, impacts the cause. People often mistake a blood stem cell transplant as a painful procedure. The blood stem cell donors need not undergo any surgical procedure as the stem cells are collected from the donors blood. The process followed is similar to donating blood platelets. It is high time that we all overcome these misconceptions and commit to being a lifesaver.

What are the challenges DKMS BMST Foundation India faces while recruiting Indian donors? What is the importance of recruiting young donors?

As the number of patients increase every year, the number of transplants increase proportionately. But the problem is, due to the lack of awareness and general misconception about stem cell transplants in India, there are only 0.04% of the population that are registered as potential blood stem cell donors. This makes it very difficult for a patient to be able to find an HLA (Human Leucocyte Antigen) matched donor. While misinformation and/or lack of information is the biggest challenge faced by all potential blood stem cell donors today, multiple myths associated with a stem cell donation pose a greater threat.

Some of the common myths include:

Myth: Donating blood stem cells means losing them forever.

Fact: When you donate your stem cells, you are only donating a fraction of your total stem cells.

All the cells will naturally be replenished within a few weeks

Myth: Donating stem cells is an invasive and painful process

Fact: Blood stem cells are collected through peripheral blood stem cell collection (PBSC) which is completely safe and a non-surgical procedure. The process is similar to blood platelet donation that takes approximately three to four hours to complete and the donor can leave the collection center the same day.

Myth: Blood Donation and a blood stem cell donation are same

Fact: Unlike blood collection for transfusion, blood stem cells are collected only when there is a match between the donor and patients Human leukocyte antigen (HLA) (tissue type).

So, you could be potentially be the only match and lifesaver for a person with blood cancer in need of a transplant. Blood stem cell donors donate only blood stem cells and the process is similar to a platelet donation.

Myth: Joining a blood stem cell registry is of no use. Most patients can find a stem cell donor within their own families.

Fact: Per statistics, only 30% of blood disorder patients in need of a stem cell transplant are able to find a sibling match. About 70 percent of patients need an unrelated donor.

What is the significance of Stem Cell Transplant as a treatment option?

Due to the advanced medical technologies and increased research, life-threatening diseases such as blood cancer can be treated through stem cell transplants. Stem cell transplantation is a procedure that restores blood-forming stem cells in people who have had theirs destroyed by the very high doses of chemotherapy or radiation therapy. Healthy blood stem cells from a matching donor is infused into the patient to help resume healthy blood production.

What are future plans for DKMS-BMST in India? In the coming years, what will be the status of India with respect to stem-cell therapies?

DKMS-BMST will continue working with its mission to help blood cancer and blood disorder patients by raising awareness, organizing donor registration events to recruit more potential blood stem cell donors of Indian origin, thus increasing the chances of finding matching donors for patient in need of a lifesaving stem cell transplant and facilitating successful blood stem cell donations. Since, ethnicity plays a crucial role in finding a matching donor, the ratio of potential blood stem cell donors from India needs to rise significantly.

Continue reading here:
Every 5 minutes someone in India is diagnosed with blood cancer or a blood disorder: Patrick Paul, CEO, DKMS BMST Foundation India - The Financial...

Posted in Stem Cell Therapy | Comments Off on Every 5 minutes someone in India is diagnosed with blood cancer or a blood disorder: Patrick Paul, CEO, DKMS BMST Foundation India – The Financial…

Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women…

Posted: July 11, 2022 at 2:05 am

The Global Rheumatoid Arthritis Stem Cell Therapy Market is replete with new growth opportunities and expansion avenues. There has been an increase in the use of products and services falling under the ambit of Rheumatoid Arthritis Stem Cell Therapy, giving a thrust to the growth of the global Rheumatoid Arthritis Stem Cell Therapy market. The unprecedented use of these products can be attributed to the increasing paying capacity of the masses.

Furthermore, in the absence of robust or utilitarian alternatives, the demand within the global Rheumatoid Arthritis Stem Cell Therapy market is projected to reach new heights of recognition. It is worthwhile to mention that the global Rheumatoid Arthritis Stem Cell Therapy market is treading along a lucrative pathway due to favorable government legislations.

To get in-depth insights Request for Brochure here https://www.factmr.com/connectus/sample?flag=B&rep_id=1001

The COVID-19 pandemic has changed narratives related to growth and expansion across several key industries. Therefore, the Rheumatoid Arthritis Stem Cell Therapy market is also battling the cons of supply chain disruptions and procurement issues. Over the course of the next quarter, market players could be investing in new technologies to recover from the shocks of the pandemic.

The global market for rheumatoid arthritis stem cell therapy is highly fragmented. Examples of some of the key players operating in the global rheumatoid arthritis stem cell therapy market include Mesoblast Ltd., Roslin Cells, Regeneus Ltd, ReNeuron Group plc, International Stem Cell Corporation, TiGenix and others.

Through the latest research report on Rheumatoid Arthritis Stem Cell Therapy market, the readers get insights on:

Share Your Requirements & Get Customized Reports: https://www.factmr.com/connectus/sample?flag=RC&rep_id=1001

Tentatively, the global rheumatoid arthritis stem cell therapy market can be segmented on the basis of treatment type, application, end-user, and geography.

Based on treatment type, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on application, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on the distribution channel, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on geography, the global rheumatoid arthritis stem cell therapy market can be segmented into:

The study further identifies major manufacturing trends, technologies that will be commercialized

Reasons to choose a Fact.MR:

For In-depth Analysis & Business Strategy, Buy a Copy of this Report: https://www.factmr.com/checkout/1001

About Fact. MR

Market research and consulting agency with a difference! Thats why 80% of Fortune 1,000 companies trust us for making their most critical decisions. We have offices in US and Dublin, whereas our global headquarter is in Dubai. While our experienced consultants employ the latest technologies to extract hard-to-find insights, we believe our USP is the trust clients have in our expertise. Spanning a wide range from automotive & industry 4.0 to healthcare & retail, our coverage is expansive, but we ensure even the most niche categories are analyzed. Reach out to us with your goals, and well be an able research partner.

Contact:US Sales Office :11140 Rockville PikeSuite 400Rockville, MD 20852United StatesTel: +1 (628) 251-1583E-Mail:sales@factmr.com

Corporate Headquarter:Unit No: AU-01-H Gold Tower (AU),Plot No: JLT-PH1-I3A,Jumeirah Lakes Towers,Dubai, United Arab Emirates

More:
Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women...

Posted in Stem Cell Therapy | Comments Off on Growing Prevalence & Recurrence Of Rheumatoid Arthritis Is Expected To Growth Of The Rheumatoid Arthritis Stem Cell Therapy Market Designer Women…

New sickle cell disease gene therapies depend on getting the right mouse – EurekAlert

Posted: July 11, 2022 at 2:05 am

image:Human red blood cells with sickle cell disease view more

Credit: Image courtesy of the Weiss lab. For permission to reuse, please contact St. Jude Childrens Research Hospital.

Sickle cell disease is an extremely debilitating condition that affects up to 40% of the population in African countries, with patients suffering episodes of excruciating pain, organ damage and reduced life-expectancy. This disease is caused by a mutation in a gene that makes haemoglobin, the protein that carries oxygen in red blood cells, with the damaged haemoglobin distorting the shape of red blood cells, causing painful and potentially life-threatening blockages in blood vessels. However, scientists have realised that increasing the production of a healthy form of this protein (foetal haemoglobin, which is usually only produced when we are in the womb), could provide a revolutionary treatment for these patients. In their current Disease Models & Mechanisms article, Mitchell Weiss and colleagues from St. Jude Childrens Research Hospital, Memphis, USA, investigated a promising new treatment that is being developed in Weiss lab and works by editing genes to switch on the production of this healthy, foetal haemoglobin in adult red blood cells. When testing the treatment in mice, the researchers found that even though the lab mice had the symptoms of sickle cell disease, the foetal haemoglobin gene and surrounding DNA were not properly configured, making the revolutionary stem-cell treatment ineffective or even harmful in the animals and raising concerns for future research testing new gene-based therapies in these laboratory mice.

Before a new treatment can be tested on people, scientists test them on laboratory animals, so Weiss and colleagues tried their new gene therapy in two types of mice that carry the symptoms of sickle cell disease: so-called Berkeley and Townes mice. First, they removed stem cells cells in the bone marrow programmed to become red blood cells from the mice and used gene editing to modify part of the stem cells DNA to switch on the healthy foetal haemoglobin gene. The scientists then put these reprogrammed stem cells back into the mice and monitored the animals for 18 weeks to find out how the treatment affected them.

Surprisingly, 70% of the Berkeley mice died from the therapy and it only activated production of the healing foetal haemoglobin gene in 3.1% of mouses stem cells. In contrast, the experimental treatment activated the foetal haemoglobin gene in 57% of red blood cells in the Townes mice and did not affect the animals survival. However, the levels of foetal haemoglobin produced in the red blood cells of Townes mice were 7- to 10-times lower than seen when this approach is used in human cells grown in the laboratory and not high enough to reduce clinical signs of sickle cell disease.

Weiss and colleagues then wanted to find out why this new treatment was not successful in the Berkeley mice, which have been used for decades to test treatments for sickle cell disease. Dr Weiss says, We realized that we did not know enough about the genetic configurations of these mice. Therefore, the team sequenced the haemoglobin genes and surrounding DNA of the Berkeley mice and discovered that instead of having a single copy of the mutated human gene, the mice had 22 randomly arranged, broken-up copies of the mutated human sickle cell disease gene and 27 copies of the human foetal haemoglobin that the team had hoped to activate to cure the mice of the disease. This complex genetic make-up caused the fatal effects when the scientists tested the gene therapy in the Berkeley mice, as editing multiple copies of a gene can damage the DNA. This means that researchers cannot use these mice to test and optimise this gene-editing treatment.

In contrast, the Townes mice only had single copies of the mutated human haemoglobin gene and the gene that makes human foetal haemoglobin. However, these mice likely lacked crucial pieces of DNA that normally regulate the production of the foetal haemoglobin gene in humans. Therefore, they couldnt produce enough of this healthy protein to alleviate the mouse symptoms. Dr Weiss commented, Our findings will help scientists using the Berkeley and Townes mice decide which to use to address their specific research question relating to sickle cell disease or haemoglobin. Additionally, this work provides a reminder for scientists to carefully consider the genetics of the mice that they are using to study human diseases and find the right mouse for the job.

Disease Models & Mechanisms

Experimental study

Animals

Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations

6-Jul-2022

Dr Weiss is on advisory boards for Cellarity Inc., Novartis, Graphite Bio and Forma Therapeutics.The other authors declare no competing financial interests. Co-author Akshay Sharma is the site principal investigator of clinical trials for genome editing of sickle cell disease sponsored by Vertex Pharmaceuticals/CRISPR Therapeutics(NCT03745287)and Novartis(NCT04443907). The industry sponsors provide funding for the clinical trial, which includes salary support. Akshay Sharma hasreceived consultant fee from Spotlight Therapeutics, Medexus Inc. and Vertex Pharmaceuticals. He has also received research funding from CRISPR Therapeutics and honoraria from Vindico Medical Education.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read more here:
New sickle cell disease gene therapies depend on getting the right mouse - EurekAlert

Posted in Stem Cell Therapy | Comments Off on New sickle cell disease gene therapies depend on getting the right mouse – EurekAlert

Page 351«..1020..350351352353..360370..»