You should read the following discussion and analysis of our financial conditionand results of operations together with the condensed consolidated financialstatements and related notes included in Part I, Item 1 of this Quarterly Reporton Form 10-Q (this "Quarterly Report") and with the audited financial statementsand the related notes included in our Annual Report on Form 10-K for the fiscalyear ended December 31, 2021 filed with the Securities and Exchange Commissionon March 18, 2022. Certain of the information contained in this discussion andanalysis or set forth elsewhere in this Quarterly Report, including informationwith respect to plans and strategy for our business, includesforward-looking statements that involve risks and uncertainties. As a result ofmany factors, including those factors set forth in the section entitled "RiskFactors", in Part II, Item 1A of this Quarterly Report, our actual results coulddiffer materially from the results described in or implied by theforward-looking statements contained in the following discussion and analysis.You should carefully read the section entitled "Risk Factors" to gain anunderstanding of the important factors that could cause actual results to differmaterially from our forward-looking statements. Please also see the section ofthis Quarterly Report entitled "Cautionary Note RegardingForward-Looking Statements." The events and circumstances reflected in ourforward-looking statements may not be achieved or may not occur, and actualresults could differ materially from those described in or implied by theforward-looking statements contained in the following discussion and analysis.As a result of these risks, you should not place undue reliance on theseforward-looking statements. We assume no obligation to revise or update anyforward-looking statements for any reason, except as required by law.OverviewWe are a clinical-stage biotechnology company dedicated to enabling curesthrough hematopoietic stem cell therapy. We are focused on the development andcommercialization of safer and more effective conditioning agents and mRNA-basedstem cell engineering to allow for expanded use of stem cell transplantation andex vivo gene therapy, a technique in which genetic manipulation of cells isperformed outside of the body prior to transplantation. We are also developingnovel therapeutics directed at diseased hematopoietic stem cells.Our drug development pipeline includes multiple product candidates designed toimprove hematopoietic stem cell therapy. Our lead product candidate, JSP191, isin clinical development as a novel conditioning antibody that clearshematopoietic stem cells from bone marrow in patients prior to undergoingallogeneic stem cell therapy or stem cell gene therapy. We plan to initiate aregistrational clinical study in acute myeloid leukemia ("AML") patientsundergoing stem cell transplantation by the end of the first quarter of 2023.Based on the single agent depletion observed in our Phase 1 study ofmyelodysplastic syndrome ("MDS") patients undergoing stem cell transplant, weare also initiating a pilot study of JSP191 as a therapeutic in lower-risk MDS,which we expect to commence in the second half of this year. Beyond JSP191, weare developing stem cell grafts transiently reprogrammed using mRNA that have acompetitive advantage over endogenous hematopoietic stem cells ("HSCs"),enabling higher levels of engraftment designed to remove the need for highlytoxic conditioning of the patient and lower the risk of other seriouscomplications that limit current stem cell transplants. We plan to continue toexpand our pipeline to include other novel stem cell therapies based on immunemodulation, graft engineering and cell or gene therapies. Our goal is to expandthe use of curative stem cell transplant and gene therapies for all patients,including children and the elderly.Stem cell transplantation is among the most widely practiced forms of cellulartherapy and has the potential to cure a wide variety of diseases, includingcancers, genetic disorders, and autoimmune diseases. Yet currently, patientsmust receive highly toxic and potentially life-threatening conditioning agentsto prepare their bone marrow for transplantation with either donor stem cells ortheir own gene-edited stem cells. Younger, fitter patients capable of survivingthese toxic side effects are typically given myeloablative, or high-intensity,conditioning whereas older or less fit patients are typically given reducedintensity, but still toxic, conditioning which leads to less effectivetransplants. These toxicities include a range of acute and chronic effects tothe gastrointestinal tract, kidneys, liver, lung, endocrine, and neurologictissues. Depending upon the conditioning regimen, fitness of the patient, andcompatibility between the donor and recipient, the risk of transplant-relatedmortality ranges from 10% to more than 50% in older patients. Less toxic ways tocondition patients have been developed to enable transplant for older patientsor those with major comorbidities, but these regimens risk less potent diseaseelimination and higher rates of disease relapse. Even though stem cell therapycan be one of the most powerful forms of disease cure, these limitations ofnon-targeted conditioning regimens have seen little innovation over the pastdecade. 20Our lead product candidate, JSP191, is a monoclonal antibody designed to blockthe specific signal on stem cells required for survival. It is currently indevelopment as a highly targeted conditioning agent prior to stem cell therapyas well as a therapeutics in lower-risk MDS patients, which we expect tocommence in the second half of 2022. We are also sponsoring two clinical studiesof JSP191 as a conditioning agent prior to stem cell transplant. The firstclinical study is an open label Phase 1/2 trial in two cohorts of severecombined immunodeficiency ("SCID") patients: patients with a history of a priorallogeneic transplant for SCID but with poor graft outcomes and newly diagnosedSCID patients. The primary endpoint in this study is to evaluate the safety andtolerability of JSP191. The secondary goal of this study is to evaluate theefficacy of JSP191 as a conditioning agent in conjunction with a stem celltransplant. Based on preliminary results from our ongoing Phase 1/2 clinicaltrial, we believe JSP191 has demonstrated the ability as a single agent toenable engraftment of donor HSCs as determined by donor chimerism, or thepercentage of bone marrow cells in the patient that are of donor origin aftertransplant. Engraftment was observed in seven out of ten T-B-NK+ SCID patientswith prior allogeneic transplant, as evidenced by CD15+ donor chimerism of morethan 5% averaged from 12-24 weeks post-transplant. Increased nave donor T cellproduction was observed in the majority of T-B-NK+ subjects, as well as clinicalimprovement. No JSP191 treatment-related serious adverse events ("SAEs") havebeen reported to date and pharmacokinetics have been consistent with earlierstudies in healthy volunteers. We expect to complete enrollment in this Phase1/2 clinical trial by mid-2023.
The FDA has granted rare pediatric disease designation to JSP191 as aconditioning treatment for patients with SCID. In addition, the FDA grantedorphan drug designation to JSP191 for conditioning treatment prior tohematopoietic stem cell transplantation.
We expect our expenses will increase substantially in connection with ourongoing and planned activities, as we:
? advance product candidates through preclinical studies and clinical trials;
? procure the manufacture of supplies for our preclinical studies and clinical
? attract, hire and retain additional personnel;
? operate as a public company;
? implement operational, financial and management systems;
? pursue regulatory approval for any product candidates that successfully
? establish a sales, marketing, and distribution infrastructure to commercialize
any product candidate for which we may obtain marketing approval and related
commercial manufacturing build-out; and
? obtain, maintain, expand, and protect our portfolio of intellectual property
Business Impact of the COVID-19 Pandemic
Stanford License Agreement
Other collaboration and clinical trial agreements
Collaboration with Stanford University
Components of Results of Operations
External research and development costs include:
? costs incurred under agreements with third-party CROs, CMOs and other third
parties that conduct preclinical and clinical activities on our behalf and
manufacture our product candidates;
? costs associated with acquiring technology and intellectual property licenses
that have no alternative future uses;
? consulting fees associated with our research and development activities; and
? other costs associated with our research and development programs, including
Internal research and development costs include:
? employee-related costs, including salaries, benefits and
stock-based compensation expense for our research and development personnel;
? other expenses and allocated overheads incurred in connection with our research
Our future research and development costs may vary significantly based onfactors, such as:
? the scope, rate of progress, expense and results of our discovery and
preclinical development activities;
? the costs and timing of our chemistry, manufacturing and controls activities,
including fulfilling cGMP-related standards and compliance, and identifying and
? per patient clinical trial costs;
? the number of trials required for approval;
? the number of sites included in our clinical trials;
? the countries in which the trials are conducted;
? delays in adding a sufficient number of trial sites and recruiting suitable
patients to participate in our clinical trials;
? the number of patients that participate in the trials;
? the number of doses that patients receive;
? patient drop-out or discontinuation rates;
? the duration of patient participation in the trials and follow up;
? the cost and timing of manufacturing our product candidates;
? the phase of development of our product candidates;
? the efficacy and safety profile of our product candidates;
? the timing, receipt, and terms of any approvals from applicable regulatory
authorities, including the FDA and non-U.S. regulators;
? maintaining a continued acceptable safety profile of our product candidates
following approval, if any, of our product candidates;
? changes in the standard of care on which a clinical development plan was based,
which may require new or additional trials;
? the extent to which we establish additional strategic collaborations or other
? the impact of any business interruptions to our operations or to those of the
Other Income (Expense), Net
Three Months Ended March 31, 2022 and 2021
The following table summarizes our results of operations for the three monthsended March 31, 2022 and 2021 (in thousands):
Research and Development Expenses
The following table summarizes our research and development expenses for thethree months ended March 31, 2022 and 2021 (in thousands):
Our external costs by program for the three months ended March 31, 2022 and 2021were as follows (in thousands):
General and Administrative Expenses
Liquidity and Capital Resources
Future Funding Requirements - Going Concern
Contractual Obligations and Commitments
We have contractual obligations and commitments as described in Note 9,Commitments and Contingencies, within our condensed consolidated financialstatements included in Part I, Item 1 of this Quarterly Report.
Our future financing requirements will depend on many factors, including:
? the timing, scope, progress, results and costs of research and development,
preclinical and non-clinical studies and clinical trials for our current and
? the number, scope and duration of clinical trials required for regulatory
approval of our current and future product candidates;
? the outcome, timing and costs of seeking and obtaining regulatory approvals
from the FDA and comparable foreign regulatory authorities for our product
candidates, including any requirement to conduct additional studies or generate
additional data beyond that which we currently expect would be required to
support a marketing application;
? the costs of manufacturing clinical and commercial supplies of our current and
future product candidates;
? the costs and timing of future commercialization activities, including product
manufacturing, marketing, sales and distribution, for any of our product
candidates for which we receive marketing approval;
? any product liability or other lawsuits related to our product candidates;
? the revenue, if any, received from commercial sales of any product candidates
for which we may receive marketing approval;
? our ability to establish a commercially viable pricing structure and obtain
approval for coverage and adequate reimbursement from third-party and
? the costs to establish, maintain, expand, enforce and defend the scope of our
intellectual property portfolio, including the amount and timing of any
payments we may be required to make, or that we may receive, in connection with
licensing, preparing, filing, prosecuting, defending and enforcing our patents
or other intellectual property rights;
? expenses incurred to attract, hire and retain skilled personnel;
? the costs of operating as a public company; and
? the impact of the COVID-19 pandemic, which may exacerbate the magnitude of the
10,752
Cash Flows Used in Operating Activities
Net cash used in operating activities was $14.2 million and $6.2 million for thethree months ended March 2022 and 2021, respectively.
Cash Flows Used in Investing Activities
Cash Flows from Financing Activities
See more here:
JASPER THERAPEUTICS, INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-Q) - Marketscreener.com