Page 428«..1020..427428429430..440450..»

Water distribution in the fuel cell made visible in 4D – EurekAlert

Posted: June 4, 2022 at 2:02 am

video:The video shows the water build-up in the cathode channels during the first 600 s of the fuel cell start-up. The water starts to nucleate on the channel edges and corners. view more

Credit: HZB

"In a fuel cell, hydrogen and oxygen are combined to form water. This produces electrical energy," explains Ralf Ziesche from the imaging group at HZB. "Probably the most important component inside the fuel cell is the membrane." It is only about 20 micrometres thick (half as wide as a human hair) and connected with various functional layers to form a separation area about 600 micrometres wide inside the fuel cell.

"The membrane composite snatches the electrons from the hydrogen atoms. Only the hydrogen nuclei - the protons - can pass through the membrane." The electrons, on the other hand, flow off via an electrical connection and are used as an electric current. Air is let in on the other side of the separating wall. The oxygen it contains reacts with the protons that come through the membrane and the electrons that flow back from the other side of the electric circuit. Pure water is produced.

"Some of the water is discharged. Another part must remain in the fuel cell, because the membrane must not dry out," Ralf Ziesche explains. "But if there is too much water in it, the protons can no longer penetrate the membrane. Dead areas develop at these points, and the reaction can no longer take place there. The efficiency of the entire fuel cell drops." To allow hydrogen, air and water to flow in and out, tiny channels are milled into metal plates on both sides of the membrane. These channels can be used to optimise fuel cells and increase efficiency. Hereby, the channel design is the key for a balanced cell wetting and optimal efficiency.

To do this, it is advantageous to have as accurate a picture as possible of the water distribution within the channels. This was the goal of a collaboration between the research group from the Electrochemical Innovation Lab (EIL) at University College London (UCL) and HZB. "In principle, we subjected the fuel cell to computed tomography, as it is used in medicine," explains Nikolay Kardjilov from the imaging group at HZB. But while X-rays are used for medical analyses, Nikolay Kardjilov and his team preferred to use neutron radiation. "Because X-rays provide far too low an image contrast between hydrogen and water on one side and the metal structure on the other. Neutrons, on the other hand, are ideal here."

This was quite tricky. Because in order to get a three-dimensional image, the radiation source has to go around the object to be imaged. In medicine, this is quite easy to solve. There, the radiation source and scanner rotate around the patient, who is resting on a table. "But our radiation source was the Berlin Experimental Reactor BER II, where we had set up our imaging station CONRAD. And we can't simply rotate it around our fuel cell sample," says Nikolay Kardjilov. But with an engineering trick, his team managed to move the fuel cell, including the supply lines for hydrogen and air, the discharge line for water and the electric cables, into the neutron beam. "Until now, neutron imaging has only been able to produce two-dimensional images from inside the fuel cell. Now, for the very first time, we have also made the water distribution visible in three dimensions and in real time," the physicist is pleased to report. The BER II is shut down since the end of 2019. But the work will be continued as part of the joint research group "NI-Matters" between HZB, the Institut Laue-Langevin (ILL, France) and the University of Grenoble (France).

Kai Drfeld

Nature Communications

Experimental study

Not applicable

High-speed 4D neutron computed tomography for quantifying water dynamics in polymer electrolyte fuel cells

25-Mar-2022

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
Water distribution in the fuel cell made visible in 4D - EurekAlert

Posted in Cell Medicine | Comments Off on Water distribution in the fuel cell made visible in 4D – EurekAlert

Researchers look to unleash the power of stem cells to repair brain injuries – University of Toronto

Posted: June 4, 2022 at 2:02 am

Scientists at the University of Toronto and Sinai Health say they have identified a new way to control the fate of neural stem cells, bringing researchers one step closer to unlocking the mystery of how to repair the brain after injury or stroke.

The findings, published recently in the journalNature Communications, outline a small set of molecules able to keep two major classes of neural stem cells from losing their ability to differentiate into critical components of a mammals cortex, a part of the brain that controls language and information processing.

This discovery is an exciting extension of platform technologies developed by our lab in recent years, which make cell therapy safe and universal with off-the-shelf products to treat degenerative diseases, saidAndras Nagy, who is principal investigator on the study,a professor ofobstetrics and gynaecologyU of Ts Temerty Faculty of Medicine,and a senior investigator at theLunenfeld-Tanenbaum Research Instituteat Sinai Health.

GABAergic and glutamatergic neurons are two major neuronal subtypes in the mammalian forebrain, or cerebral cortex. Both classes develop from cells known as neuroepithelial progenitors and play an early and important role in brain development, but then quickly lose their ability to form other cortical cell types.

To overcome this limitation, scientists in the Nagy lab identified a set of small molecules capable of keeping the progenitor cells growing without losing their developmental potential.

Furthermore, when researchers withdrew that cocktail of molecules from the stem cells, the cells continued to differentiate into cells of the human forebrainin large numbers.

The ability to obtain an unlimited number of forebrain-forming neural epithelium from stem cells is essential for disease modelling and toxicity testing needed in the development of new drugs, said Nagy, who is also affiliated with U of T'sInstitute of Medical Scienceand holds the Canada Research Chair in Stem Cells and Regeneration. These cells could be used in cell therapies, with the potential to treat strokes and other neurological diseases.

Balazs Varga, first author on the paper who developed cell-based therapeutic approaches over the span of a decade for the project, said that understanding the forces orchestrating brain development will help identify underlying causes of diseases, leading to new treatments.

"Our work identified one way we can control the fate of neural stem cells, said Varga, formerly a post-doctoral researcher in the Nagy lab who is now a research associate at Wellcome Trust Medical Research Council Cambridge Stem Cell Institute. Better understanding the behaviour of the neuroepithelial cells will provide us with ideas about how we could control progenitor cell function and brain regeneration.

The research was supported by the Canadian Institutes of Health Research.

Read the original:
Researchers look to unleash the power of stem cells to repair brain injuries - University of Toronto

Posted in Cell Medicine | Comments Off on Researchers look to unleash the power of stem cells to repair brain injuries – University of Toronto

Computer vision tool improves the ability to distinguish rheumatoid arthritis from osteoarthritis in damaged joint tissue – EurekAlert

Posted: June 4, 2022 at 2:02 am

A new study led by Hospital for Special Surgery (HSS) investigators in New York City has found that their computer vision tool effectively distinguishes rheumatoid arthritis (RA) from osteoarthritis (OA) in joint tissue taken from patients who underwent total knee replacement (TKR). The results suggest the machine learning model will help improve research processes in the short term and optimize patient care in the future. The findings were presented today at the European Alliance of Associations for Rheumatology (EULAR) Congress 2022.

TKR is often the only management option for patients with severe knee joint damage. Identifying which disease caused the joint damage is essential for guiding treatment plans, given that RA is a systemic, inflammatory disease that may also affect the eyes or lining around the heart, while OA affects just the joints. We know there are many more immune cells present in the synovium, or joint tissue, of patients with RA compared to those with OA, said Bella Mehta, MBBS, MS, rheumatologist at HSS and lead author of the study. But precisely how many more has not been clear.

Pathologists typically assess images of synovium to determine the extent of inflammation using a combination of approaches, including assigning the level of immune cell infiltration on a scale from 0 to 4, said Dana Orange, MD, MS, rheumatologist at HSS, assistant professor at Rockefeller University and senior author of the study. However, these methods are imperfect. For example, a recent study by HSS investigators found that assessments from two highly experienced pathologists evaluating the infiltration of one type of immune cells known as lymphocytes on the same slides agreed only 67 percent of the time.1

Drs. Orange, Mehta and colleagues at HSS and collaborating institutions developed and validated a computer vision tool that rapidly counts tens of thousands of cell nuclei in whole-slide images of synovium.2 For their present study, they measured 14 different pathologist-scored features in synovium from 60 patients with RA and 147 patients with OA who underwent TKR, and used the computer vision tool to determine cell density.

The investigators identified significant differences between RA and OA features in synovium. The RA samples showed increased cell density; low numbers of mast cells, a type of white blood cell; and lower evidence of fibrosis or scarring compared to the OA samples. The probability of correctly distinguishing between RA and OA in synovium was 85 percent when using the 14 pathologist-scored features alone, 88 percent when using the computers score for cell density alone and 91 percent when the researchers combined the pathologists scores and the computers cell density calculation. The researchers determined a cutoff point for distinguishing RA from OA, determining that synovium containing more than 3,400 cells per mm2 should be classified as RA.

While our innovation is not ready for clinical use yet, it holds promise for assisting pathologists in the future, Dr. Orange said. Right now, we see it as a valuable tool for research purposes because it provides an accurate and 100% reproducible score of inflammation and look forward to developing it further.

Dr. Orange added that in the future computer vision could be trained to glean other types of information from tissue samples, including which types of cells are present and whether they are close enough together that they are likely to be communicating with each other. This more granular assessment might enable clinicians to know more precisely which cells are causing tissue damage and tailor treatments accordingly.

Authors: Bella Mehta, MBBS, MS, Susan M. Goodman, MD, Edward F. DiCarlo, MD, Deanna Jannat-Khah, J. Alex Gibbons, Miguel Otero, PhD, Laura Donlin, PhD (HSS), Tania Pannellini, MD, PhD (Weill Cornell Medicine), William Robinson, MD, PhD (Stanford University), Peter K. Sculco, MD, Mark P. Figgie, MD, Jose A. Rodriguez, MD (HSS), Jessica Kirschmann (Stanford University), James Thompson, David Slater, Damon Frezza (The MITRE Corporation), Zhenxing Xu, Fei Wang, PhD (Weill Cornell Medicine), Dana Orange, MD, MS (HSS and Rockefeller University).

References

1. Orange DE, Agius P, DiCarlo EF, et al. Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and RNA Sequencing Data.Arthritis Rheumatol. 2018;70(5):690-701. doi:10.1002/art.40428

2. Guan S, Mehta B, Slater D, et al. Rheumatoid Arthritis Synovial Inflammation Quantification Using Computer Vision.ACR Open Rheumatol. 2022;4(4):322-331. doi:10.1002/acr2.11381

About HSS

HSS is the worlds leading academic medical center focused on musculoskeletal health. At its core is Hospital for Special Surgery, nationally ranked No. 1 in orthopedics (for the 12th consecutive year), No. 4in rheumatology by U.S. News & World Report (2021-2022), and the best pediatric orthopedic hospital in NY, NJ and CT by U.S. News & World Report Best Childrens Hospitals list (2021-2022).In a survey of medical professionals in more than 20 countries by Newsweek, HSS is ranked world #1 in orthopedics for a second consecutive year (2022). Founded in 1863, the Hospital has the lowest complication and readmission rates in the nation for orthopedics, and among the lowest infection rates. HSS was the first in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center five consecutive times. An affiliate of Weill Cornell Medical College, HSS has a main campus in New York City and facilities in New Jersey, Connecticut and in the Long Island and Westchester County regions of New York State, as well as in Florida. In addition to patient care, HSS leads the field in research, innovation and education. The HSS Research Institute comprises 20 laboratories and 300 staff members focused on leading the advancement of musculoskeletal health through prevention of degeneration, tissue repair and tissue regeneration. The HSS Innovation Institute works to realize the potential of new drugs, therapeutics and devices. The HSS Education Institute is a trusted leader in advancing musculoskeletal knowledge and research for physicians, nurses, allied health professionals, academic trainees, and consumers in more than 145 countries. The institution is collaborating with medical centers and other organizations to advance the quality and value of musculoskeletal care and to make world-class HSS care more widely accessible nationally and internationally.www.hss.edu.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read more:
Computer vision tool improves the ability to distinguish rheumatoid arthritis from osteoarthritis in damaged joint tissue - EurekAlert

Posted in Cell Medicine | Comments Off on Computer vision tool improves the ability to distinguish rheumatoid arthritis from osteoarthritis in damaged joint tissue – EurekAlert

The paired perils of breast cancer and diabetes – EurekAlert

Posted: June 4, 2022 at 2:02 am

image:A breast cancer cell captured in the process of division, with tubulin (a structural protein) in red; mitochondria in green; and chromosomes in blue. view more

Credit: Wei QianNational Cancer Institute

Breast cancer and type 2 diabetes would seem to be distinctly different diseases, with commonality only in their commonality. Breast cancer is the second most diagnosed malignancy after some types of skin cancer; approximately 1 in eight U.S. women will develop invasive breast cancer over the course of their lifetime. More than 10 percent of the U.S. population has diabetes, with an estimated 2 in 5 Americans expected to develop the chronic disease during their lifetime.

However, past research has uncovered associations between the two diseases. Women with diabetes, for example, have a 20 to 27 percent increased risk of developing breast cancer. Insulin resistance a key characteristic of diabetes has been associated with breast cancer incidence and poor survival. Population studies suggest diabetes risk begins to increase two years after a breast cancer diagnosis, and by 10 years post-diagnosis, the risk is 20 percent higher in breast cancer survivors than in age-matched women without breast cancer.

But these epidemiological linkages are not clear-cut or definitive, and some studies have found no associations at all. In a new paper, publishing May 30, 2022 in Nature Cell Biology, a research team led by scientists at University of California San Diego School of Medicine describe a possible biological mechanism connecting the two diseases, in which breast cancer suppresses the production of insulin, resulting in diabetes, and the impairment of blood sugar control promotes tumor growth.

No disease is an island because no cell lives alone, said corresponding study author Shizhen Emily Wang, PhD, professor of pathology at UC San Diego School of Medicine. In this study, we describe how breast cancer cells impair the function of pancreatic islets to make them produce less insulin than needed, leading to higher blood glucose levels in breast cancer patients compared to females without cancer.

Wang said the study was inspired by early work and guidance from Jerrold Olefsky, MD, professor of medicine and associate dean for scientific affairs in the Division of Endocrinology and Metabolism at UC San Diego School of Medicine. Olefsky is co-senior author of the study with Wang.

The culprit, according to Wang and Olefsky, are extracellular vesicles (EV) hollow spheres secreted or shed by cells that transport DNA, RNA, proteins, fats and other materials between cells, a sort of cargo communication system.

In this case, the cancer cells were found to be secreting microRNA-122 into the vesicles. Wang said when vesicles reach the pancreas, they can enter the islet cells responsible for insulin production, dispense their miR-122 cargo and damage the islets critical function in maintaining a normal blood glucose level.

Cancer cells have a sweet tooth, Wang said. They use more glucose than healthy cells in order to fuel tumor growth, and this has been the basis for PET scans in cancer detection. By increasing blood glucose that can be easily used by cancer cells, breast tumors make their own favorite food and, meanwhile, deprive this essential nutrient from normal cells.

The research was conducted using mouse models, which found that slow-releasing insulin pellets or a glucose-lowering drug known as an SGLT2 inhibitor restored normal control of glucose in the presence of a breast tumor, which in turn suppressed the tumors growth.

These miR-122 inhibitors, which happen to be the first miRNA-based drugs to enter clinical trials, might have a new use in breast cancer therapy, Wang said.

Co-authors include: Minghui Cao, Roi Isaac, Wei Yan, Xianhui Ruan, Li Jiang, Yuhao Wan, Jessica Wang, Christine Caron, Donald P. Pizzo, Xuxiang Liu, Andrew R. Chin, Miranda Y. Fong, Oluwole Fadare, Richard B. Schwab, Wei Ying and Jack D. Bui, all at UC San Diego; Dorothy D. Sears, Arizona State University; Steven Neben and Denis Drygin, Regulus Therapeutics, Inc., San Diego; Xiwei Wu, Joanne Mortimer, Yuan Yuan and Susan E. Yost, all at City of Hope, Duarte, CA; Ziting Gao, Kaizhu Guo and Wenwan Zhong, all at UC Riverside.

# # #

Nature Cell Biology

30-May-2022

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
The paired perils of breast cancer and diabetes - EurekAlert

Posted in Cell Medicine | Comments Off on The paired perils of breast cancer and diabetes – EurekAlert

Effect of Genetic Variations on Rifamycins | PGPM – Dove Medical Press

Posted: June 4, 2022 at 2:01 am

Introduction

Tuberculosis (TB) is an infectious disease, which remains a major public health problem globally. In the year 2020, the estimated number of people who died from tuberculosis is 1.3 million among HIV-negative people and 214,000 among HIV-positive.1 Current pharmacotherapy of tuberculosis involves a combination of at least four drugs. Rifamycins are key components of pharmacotherapy for both active and latent TB.

Rifamycins are a class of antibiotics isolated from Amycolatopsis in 1957. Four distinct semi-synthetic rifamycin analogs (rifampicin, rifabutin, rifapentine, and rifaximin) are approved for clinical use. Rifampicin, rifabutin, and rifapentine are used for the treatment of TB and chronic staphylococcal infections.2 Rifapentine given once weekly for 12 weeks with isoniazid is effective and well tolerated in the treatment of latent TB.3 Rifaximin is poorly absorbed from the gastrointestinal tract and is indicated for the treatment of travelers diarrhea, functional bloating, irritable bowel syndrome, and small bowel bacterial overgrowth.4

Variable exposure to anti-TB drugs may be associated with unfavorable treatment outcomes.5 Factors associated with drug exposure variability of anti-TB drugs, such as age, gender nutritional status, human immune-deficiency virus, diabetes, and genetic polymorphism, were described in various previous studies.69 There has been a notable development in recent years on how genetic variations in drug-metabolizing enzymes and transporters contribute to variation in exposure and response to the drugs.10,11 As the local and systemic concentrations of anti-TB drugs are affected by genetic variations in drug-metabolizing enzymes and transporters, pharmacokinetic and pharmacogenetic studies are increasingly performed to optimize TB treatments.12,13

Rifamycins are thought to be metabolized by microsomal hepatic carboxylesterases (CES), and serine esterase arylacetamide deacetylase (AADAC) to 25-deacetylrifamycins.14,15 The uptake, distribution, and excretion of rifampicin are mediated by membrane drug transporters. There are two transporters superfamilies; the solute carrier (SLC) transporters and the adenosine triphosphate (ATP)-binding cassette (ABC) transporters.16 SLC superfamily consists of more than 400 membrane-bound family proteins. Multiple studies revealed that the SLCO1B1 sinusoidal influx transporter influences rifampicin influx,17,18 and the SLCO1B1 *15 haplotype is associated with rifampin-induced liver injury.19 Most ABC transporters in eukaryotic cells mediate the efflux of the substrate from the cells. ABC transporters influence the hepatocellular concentration of rifampicin.2023 Rifamycins are substrates of P glycoprotein (P-gp), coded for by the polymorphic ABCB1 gene.24 Rifampicin also induces ABCB1 gene expression.25 Although SLCO1B1 and ABCB1 gene products have been reported to influence rifamycins pharmacokinetics, there is no candidate gene identified so far for therapeutic drug monitoring.

Recently, advances in technology and scientific discoveries in the medical arena have enabled the practitioner to individualize drug therapy. The keen interest to personalize TB treatment has been a point of discussion over the last decade.2629 The use of pharmacokinetics and pharmacogenetics of anti-tubercular drugs as tools for TB treatment optimization has been discussed previously.13,18 However, there is a scarcity of comprehensive data on the pharmacogenetics of rifamycins. This systematic review was, therefore, designed to evaluate the influence of genetic polymorphism in rifamycins metabolizing enzymes and transporters on their pharmacokinetics.

This systematic review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements (Table S1). The protocol has been registered at PROSPERO with registration number CRD42020206029.

Relevant studies were identified through a search of PubMed, Web of Science, Embase, and Scopus databases. The following combination of words was used: pharmacokinetics OR concentration OR drug concentration AND rifamycins OR rifampin OR rifampicin OR rifabutin OR rifapentine OR rifaximin AND SLCO1B1 OR ABCB1 OR carboxylesterase OR CES OR Arylacetamide deacetylase OR AADAC AND Genetic polymorphism OR pharmacogenetics OR pharmacogenomics OR single nucleotide polymorphisms OR SNP. Further, a hand-search was done from reference lists of studies included to identify eligible studies. There was no limitation on the dates of publication or publication status. Publications available only in the English language were included. The search was refined to studies of human participants.

The following were the eligibility criteria for the inclusion of studies: 1. Human participant studies; 2. Studies that reported on pharmacokinetic parameters of rifamycins; 3. Studies in which study participants were genotyped for rifamycins metabolizing enzyme or transporters gene; and 4. Studies that reported on the pharmacokinetic parameters of rifamycins and the effect of genetic variation on pharmacokinetics.

Validated tools exist for genetic association studies methodological quality assessment. We used the quality of genetic association studies (Q-Genie)30 tool to assess the quality of included studies. Using the checklist adopted (Table S2) from Q-Genie TS assessed the quality of selected studies.

Two (TS and GM) independently extracted data from all included publications using a pre-prepared data extraction format which included items as follows: first author, publication year, study drug, sample size, type of pharmacokinetic parameters assessed, a country in which the study was conducted, participant characteristics, genetic polymorphism investigated, pharmacokinetic parameter results and its association with genetic polymorphism. The disparity between the two reviewers during data extraction was resolved through discussion.

No contact with the authors was done for missing data and the data presented in this review were extracted from the articles.

A total of 115 articles related to genetic polymorphism of drug-metabolizing enzymes and drug transporters with the pharmacokinetics of rifamycins were retrieved from PubMed, Web of Science, Scopus, and Embase databases. Hand search identified two additional articles which were not obtained during the database search. As shown in the PRISMA flowchart (Figure 1) 51 duplicates were removed. The remaining 66 articles were screened by title and abstract for predefined criteria, and 47 were excluded. The reasons for exclusion of studies from titles and abstracts were (1) review articles (N=3); (2) studies focusing on drugs other than rifamycins (N=26); (3) studies that did not have information on the pharmacokinetics of rifamycins but only genetic information reported (N=8); and (4) studies in which only pharmacokinetics data were reported without genetic information (N=10). Furthermore, four articles were excluded after reading them fully. Of the four articles excluded; one article did not contain rifamycins data, one study was done on healthy participants and the other two articles did not contain pharmacokinetic parameters.

Figure 1 PRISMA flow diagram showing the literature search for studies that investigated the effect of genetic variations in drug metabolizing enzymes and drug transporters on the pharmacokinetics of rifamycins.

Notes: PRISMA figure adapted from Liberati A, Altman D, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of clinical epidemiology. 2009;62(10). Creative Commons.

Of the 15 articles selected for qualitative data synthesis, most of the studies (N=14) focused on SLCO1B1 gene polymorphism association with the pharmacokinetics of rifamycins (Table S3). Specifically, seven studies evaluated the association of SLCO1B1 gene polymorphism and pharmacokinetics,3137 three studies SLCO1B1 and ABCB1 gene polymorphism with pharmacokinetics,3840 one study SLCO1B1 and AADAC gene polymorphism with pharmacokinetics,41 one study SLCO1B1, and CES gene polymorphism with pharmacokinetics,42 and two studies SLCO1B1, AADAC, and CES gene polymorphism with pharmacokinetics.43,44 Only one study investigated the association between CES gene polymorphism with pharmacokinetics.45 The most studied rifamycins are rifampicin (thirteen studies) and rifapentine (two studies). No study is available that reported the pharmacokinetic-pharmacogenetic association for rifabutin and rifaximin.

There was variation among studies in sample size, the type of study participants, and the pharmacokinetics parameter compared with gene polymorphism. The smallest sample size was 34,39 while the largest was 256.34 The study participants were TB patients from 13 different countries and races. The majority of the studies were done on adults, but one study data were obtained from children.42 In some studies, participants were TB-HIV co-infected patients. The pharmacokinetics parameters commonly compared with gene polymorphism were maximum concentration (Cmax), AUC (area under the curve), and clearance. However, methods for blood sample collection and pharmacokinetic parameter determination varied among studies.

SLCO1B1 gene encodes for an Organic Anion Transport Proteins 1B1 (OATP1B1). It is located on chromosome 12. OATP1B1 is a transmembrane protein involved in the uptake of various drugs including rifamycins from the blood into the hepatocyte.46 Currently, 191 clinical variants have been reported. SLCO1B1c.521T>C (rs4149056), where the valine amino acid changed to alanine at position 174, was reported to affect drug response.47 Eight studies assessed the effect of rs4149056 SNPs on rifamycin pharmacokinetic parameters. Among these studies, only Huerta-Garca et al reported increased AUC among heterozygous CT for SLCO1B1 521T>C than the other genotypes. However, the observed increase in AUC was not statistically significant.39 A summary of specific transporters influence on pharmacokinetics is presented in Table 1.

Table 1 Summary of the Studies Reported the Drug Transporter (SLCO11 and ABC1B) Gene Polymorphisms Association with Rifamycins Pharmacokinetics Variation

SLCO1B1 g.38664C>T (rs4149032) was reported in twelve studies. rs4149032 is an intronic SNP most common in the African population.48,49 Gengiah et al reported high frequency in the SLCO1B1 (rs4149032) gene polymorphism and its association with low median rifampicin C2.5hr in the heterozygous and homozygous variant carriers.32 Similarly, Chigutsa et al reported high allelic frequency of the SLCO1B1 rs4149032 polymorphism and 28% reductions in the bioavailability of rifampin for homozygous variants.40 No statistically significant increase in the rifampicin exposure for the homozygous TT of g.38664 C > T (rs4149032) was observed in the study of Kim et al.37 However, the large number of studies reviewed here did not report any observed significant effect of SLCO1B1 rs4149032 SNP polymorphism with rifamycin pharmacokinetic variation.

SLCO1B1 c.388A>G (rs2306283) is another SNP in the SLCO1B1 gene. This SNP causes a change of asparagine amino acid to aspartic at 130, but the effect of this change on the transporter function is not clear yet. Huerta-Garca et al reported the AG genotype derived from SNP SLCO1B1 c.388A>G was associated with lower rifampicin AUC024 h values compared to those with AA genotype.39 In post hoc analysis, Dompreh et al observed that the SLCO1B1 c.388AA genotype was associated with low rifampin concentrations compared to those with c.388GG.42 The five remaining studies did not report any association between rs2306283 SNP and rifamycin pharmacokinetics. The SNP SLCO1B1 c.463 C>A (rs11045819) is another variant allele of the SLCO1B1 gene reported to affect rifamycin pharmacokinetics. According to Weiner et al, patients with SLCO1B1c.463C>A variant allele had 42% lower rifampin exposure, 34% lower peak concentration levels, and 63% greater apparent oral clearance compared with SLCO1B1 c.463CC.36 However, the remaining five studies did not report any association between rs11045819 SNPs and rifamycin pharmacokinetics.

ABCB1 (ATP-binding cassette sub-family B member 1) genes encode for P-gp also known as multidrug resistance protein 1 (MDR1). P-gp is a transmembrane protein, which acts as an energy-dependent drug efflux pump. It decreases intracellular drug accumulation, thereby decreasing the effectiveness of many drugs.50 The ABCB1c.3435 C>T (rs1045642), ABCB1c.G2677T/A (rs2032582) and ABCB1c.1236C>T (rs1128503) SNPs are the most common nonsynonymous and synonymous SNPs studied.51 Rifamycins are a substrate and inducer of the ABCB1 gene.52 The decrease in rifampicin exposure with the time of treatment is partly explained by the induction of the ABCB1 gene. Three studies assessed the effect of four ABCB1, rs1045642 rs2032582, rs1128503, and rs3842 (ABCB1c.4036A>G) SNPs. Huerta-Garca et al demonstrated that the rs1045642 TT genotype is a predictor that explains 34.8% of the variability in rifampicin Cmax and 48.5% of the variability in AUC024 h.39 However, the other two studies did not replicate this observed result of Huerta-Garca et al.38,40

Rifamycins are metabolized by esterase enzymes. The esterase enzymes implicated in the metabolism of rifamycins are hepatic carboxylesterases (CES), and serine esterase arylacetamide deacetylase (AADAC). Two carboxylesterases, CES1 and CES2, are recognized to play major roles in drug metabolism. These enzymes metabolize rifamycins to their respective deacetylrifamycins.14,15,53 Polymorphism of the CES1 and CES2 genes have been shown to influence the metabolism of several drugs.54 However, few studies investigated the effect of CES1 and CES2 gene variants on rifamycin metabolism (Table 2).

Table 2 Summary of the Studies Reported the Drug-Metabolizing Enzyme (AADAC and CES) Gene Polymorphisms Association with Rifamycins Pharmacokinetics Variation

Sloan et al investigated CES1 rs12149368 SNP effect on rifampicin pharmacokinetics in Malawian tuberculosis patients. The rs12149368 variant does not affect the plasma rifampicin concentration43 (Table 2). Song et al identified 10 variations in CES2 in Korean TB patients. Among the ten variants three closely linked SNPs, c.-2263A>G (rs3759994, g.738A>G), c.269965A>G (rs4783745, g.4629A>G), and c.1612+136G>A (g.10748G>A), may alter the metabolism of rifampicin by affecting the efficiency of transcription of the gene. In particular, the CES2 c.-2263A>G variant, which is found in the promoter region is associated with increased plasma concentrations of rifampicin.45

Shimazu et al reported that microsomes from a liver sample genotyped as AADAC*3/AADAC*3 showed decreased enzyme activities, compared with others. However, the allelic frequency is low, 1.3% European American, and 2.0% African American. The AADAC*2 (rs1803155) allele, which has a higher frequency has also shown reduced enzyme activity. The recent report of Francis et al and Weiner et al revealed that rs1803155 SNP has a significant effect on rifapentine exposure in tuberculosis patients. The mean AUC-24 of rifapentine decreased by 10.2% in black tuberculosis patient carriers of AADAC rs1803155 G versus A allele.44 The odds increase for GG allele carriers. A similar result was reported by Francis et al. Patients carrying the AA variant of AADAC rs1803155 were found to have a 10.4% lower clearance of rifapentine.41 However, another study from Malawi showed that AADAC rs1803155 SNP did not affect rifampicin pharmacokinetics.43

This systematic review provides current updates on the impact of genetic polymorphisms of drug transporters and drug-metabolizing enzymes on the pharmacokinetics of rifamycins. The overall finding suggests that the polymorphism in the drug transporter SLCO1B1 rs4149032, rs2306283, rs11045819, and ABCB1 rs1045642 and metabolizing enzyme AADACrs1803155 and CES2 c.-22263A>G (g.738A>G) of rifamycins partly contributes to the variability of pharmacokinetic parameters in tuberculosis patients.

The SLCO1B1 gene is located on chromosome 12. Fifteen exons and many variants have been identified in the SLCO1B1 gene. The missense mutation of rs4149056 (c.521T>C) where the wild type T is substituted with variant C causes a change in amino acid of OATP1B1 protein from valine to alanine at 174 positions. This change has been implicated in reduced OATP1B1 protein function and is associated with an increased risk for statin-induced muscle toxicity.55 However, an increase in the exposure to rifamycins was not reported in seven studies, and the one study, which reported an increase in AUC for the heterogeneous variant is also statistically non-significant. Lower frequency of rs4149056 CC variant in African populations56 where the majority of studies were done and small sample size may contribute to no difference in the pharmacokinetics. rs2306283 (388A>G) SNP causes a change of asparagine amino acid to aspartic at 130 positions. The consequence of this change on the transporter function is not well elucidated. The patients who were homozygous wild type (AA)42 and heterozygous (AG)39 were reported to have lower rifampicin exposure. Similarly, no myopathy was observed with rs2306283 polymorphism which was observed in other SLCO1B1 genes in patients taking statins suggesting no effect or increased activity of the mutant variant.57

rs11045819, which is located on exon 4, is another missense variant known in SLCO1B1gene. Of the four studies that assessed the impact of rs11045819 SNPs on rifampicin pharmacokinetics, only Weiner et al reported lower rifampicin exposure, lower peak concentration levels and greater apparent oral clearance with the SLCO1B1 rs11045819 variant allele (CA) compared to the wild-type allele (CC).36 This is consistent with a previous report that rs11045819 polymorphism increases OATP1B1 transporter activity and decreases systemic exposure of the OATP1B1 substrate.58,59

The well-studied SLCO1B1 gene SNPs believed to affect rifamycin pharmacokinetics is rs4149032. The rs4149032 is an intron-located SNP and is reported to have a high allelic frequency. The effect of SLCO1B1 rs4149032 on gene expression and OATP1B1 protein transporter function is not clear yet. Nevertheless, SLCO1B1 rs4149032 polymorphism was found to be associated with lower rifampicin exposures. Emmanuel et al and Gengiah et al reported that patients who are homozygous mutant and heterozygous for rs4149032 polymorphism have lower bioavailability and Cmax respectively of rifampicin.32,40 In addition, Kim et al observed lower oral clearance and higher rifampicin exposure for rs4149032 homozygous wild type (TT).37

Rifampicin significantly increases gene expression, protein levels, and efflux activity of ABCB1.25,60 It is also a substrate for P-glycoprotein.61 Huerta-Garca et al demonstrated that the rs1045642 SNPs, which is a silent mutation, is associated with rifampicin pharmacokinetics. Patients with CC or CT genotypes showed lower values of Cmax and AUC 24 compared to those with a TT genotype.39 Although the rs1045642 SNPs is a silent mutation, previous studies have shown that rs1045642 affects the P-gp protein either by being in linkage disequilibrium with other functional SNPs or by allele-specific differences in the codon usage affecting the protein folding and function.62,63 The observed change in the rifampicin pharmacokinetics with rs1045642 SNPs may be attributed to the above explanation.

Rifamycins are metabolized by the esterase enzyme family; microsomal hepatic carboxylesterases (CES), and serine esterase arylacetamide deacetylase (AADAC) to 25-deacetylrifamycins.14 Three esterase enzymes AADAC, CES1, and CES2 have been reported as enzymes responsible for rifamycin deacetylation. Several genetic polymorphisms of the CES1 and CES2 genes have been shown to affect drug metabolism. For example, variations of the CES1 gene have been reported to affect the metabolism of dabigatran oseltamivir, imidapril, and clopidogrel. Similarly, CES2 gene polymorphisms have been found to affect aspirin and irinotecan.54 Few studies are available that report the association of CES1 and CES2 variants and rifamycin pharmacokinetics. Song et al evaluated 10 SNPs of CES2 and found increased plasma rifampicin concentrations with the CES2 c.-22263A>G (g.738A>G) variants.45 Although Dompreh et al did not report similar results,42 the higher frequency of this variant allele warrants further investigation.

AADAC is primarily expressed in the liver and metabolizes clinically important drugs including rifamycins. Three, namely, AADAC*1 (wild-type), AADAC*2, and AADAC*3, where the latter two have decreased enzymatic activity, were reported so far.14,15 Recently, Francis et al and Weiner et al reported AADAC rs1803155 SNPs to have a significant effect on rifapentine metabolism. Shortly, a mutant variant of rs1803155 (AA) has decreased activity and decreased clearance of rifapentine. On the other hand, patients who have the wild type (GG) have shown decreased rifapentine exposure.41,44 Furthermore, Gabriele et al discovered the presence and inter-individual variation of AADAC in the human lung.64 These findings suggest the important role of AADAC pharmacogenetics in tuberculosis drug therapy.

Exposure to rifamycins in particular rifampicin is a crucial variable for successful tuberculosis treatment outcomes. The high inter-individual variability in rifamycins pharmacokinetics have been associated with various factors such as diabetes mellitus65 and partly HIV co-infection.66,67 The majority of studies included in this review included patients with co-morbid conditions. The sample size is also inadequate for some studies.

In conclusion, the genetic polymorphism of drug transporters and drug-metabolizing enzymes has an impact on rifamycin pharmacokinetics. However, based on the available data, it is difficult to identify candidate SNPs in the drug transporters SLCO1B1 and ABCB1 for therapeutic drug monitoring. On the other hand, the effect of drug-metabolizing enzyme SNPs on the rifamycin pharmacokinetics is promising but needs more studies. In general, further controlled clinical studies with adequate sample size are required to characterize the genetic variation influence on the pharmacokinetics of rifamycins for tuberculosis chemotherapy optimization.

A study reported in this publication was supported by the Fogarty International Center and National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number D43 TW009127 and by the Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or CDT-Africa, Addis Ababa University.

The authors declare no conflicts of interest.

1. WHO. Global tuberculosis report 2021. 2021.

2. William J, Burman KG. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327341. doi:10.2165/00003088-200140050-00002

3. Surey J, Stagg HR, Yates TA, et al. An open label, randomised controlled trial of rifapentine versus rifampicin based short course regimens for the treatment of latent tuberculosis in England: the HALT LTBI pilot study. BMC Infect Dis. 2021;21(1):90. doi:10.1186/s12879-021-05766-9

4. Shayto RH, Abou Mrad R, Sharara AI. Use of rifaximin in gastrointestinal and liver diseases. World J Gastroenterol. 2016;22(29):66386651. doi:10.3748/wjg.v22.i29.6638

5. Sileshi T, Tadesse E, Makonnen E, Aklillu E. The impact of first-line anti-tubercular drugs pharmacokinetics on treatment outcome: a systematic review. Clin Pharmacol. 2021;13:112. doi:10.2147/CPAA.S289714

6. Ramachandran G, Hemanth Kumar AK, Bhavani PK, et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. Int J Tuberc Lung Dis. 2013;17(6):800806. doi:10.5588/ijtld.12.0628

7. Daskapan A, Idrus LR, Postma MJ, et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747766. doi:10.1007/s40262-018-0716-8

8. Alfarisi O, Mave V, Gaikwad S, et al. Effect of diabetes mellitus on the pharmacokinetics and pharmacodynamics of tuberculosis treatment. Antimicrob Agents Chemother. 2018;62(11):e0138318. doi:10.1128/AAC.01383-18

9. Mtabho CM, Semvua HH, van den Boogaard J, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother. 2019;74(12):35373545. doi:10.1093/jac/dkz368

10. Afsar NA, Bruckmueller H, Werk AN, Nisar MK, Ahmad HR, Cascorbi I. Implications of genetic variation of common drug metabolizing enzymes and ABC transporters among the Pakistani population. Sci Rep. 2019;9(1):7323. doi:10.1038/s41598-019-43736-z

11. Ahmed S, Zhou Z, Zhou J, Chen S-Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom Proteom Bioinform. 2016;14(5):298313. doi:10.1016/j.gpb.2016.03.008

12. Choi R, Jeong BH, Koh WJ, Lee SY. Recommendations for optimizing tuberculosis treatment: therapeutic drug monitoring, pharmacogenetics, and nutritional status considerations. Ann Lab Med. 2017;37(2):97107. doi:10.3343/alm.2017.37.2.97

13. Motta I, Calcagno A, Bonora S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization?. Expert Opin Drug Metab Toxicol. 2018;14(1):5982. doi:10.1080/17425255.2018.1416093

14. Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol. 2011;82(11):17471756. doi:10.1016/j.bcp.2011.08.003

15. Shimizu M, Fukami T, Kobayashi Y, et al. A novel polymorphic allele of human arylacetamide deacetylase leads to decreased enzyme activity. Drug Metab Dispos. 2012;40(6):11831190. doi:10.1124/dmd.112.044883

16. Keogh J, Hagenbuch B, Rynn C, Stieger B, Nicholls G. Chapter 1 membrane transporters: fundamentals, function and their role in ADME. Drug transporters: volume 1: role and importance in ADME and drug development. 1: the royal society of chemistry; 2016: 156.

17. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):20392054. doi:10.1007/s11095-009-9924-0

18. Thomas L, Sekhar Miraj S, Surulivelrajan M, Varma M, Sanju CSV, Rao M. Influence of single nucleotide polymorphisms on rifampin pharmacokinetics in tuberculosis patients. Antibiotics. 2020;9(6):307. doi:10.3390/antibiotics9060307

19. Li LM, Chen L, Deng GH, et al. SLCO1B1 *15 haplotype is associated with rifampin-induced liver injury. Mol Med Rep. 2012;6(1):7582. doi:10.3892/mmr.2012.900

20. Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother. 2018;100:335348. doi:10.1016/j.biopha.2018.02.038

21. Kck K, Grube M, Jedlitschky G, et al. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet. 2007;46(6):449470. doi:10.2165/00003088-200746060-00001

22. Marin JJG. Plasma membrane transporters in modern liver pharmacology. Scientifica. 2012;2012:428139. doi:10.6064/2012/428139

23. Juan-Carlos P-DM, Perla-Lidia -P-P, Stephanie-Talia -M-M, Mnica-Griselda A-M, Luz-Mara T-E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep. 2021;48(2):18831901. doi:10.1007/s11033-021-06155-w

24. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Nat Acad Sci. 1996;93(9):40014005. doi:10.1073/pnas.93.9.4001

25. Martinec O, Biel C, de Graaf IAM, et al. Rifampicin induces gene, protein, and activity of P-glycoprotein (ABCB1) in human precision-cut intestinal slices. Front Pharmacol. 2021;12:684156.

26. Khan N, Das A. Can the personalized medicine approach contribute in controlling tuberculosis in general and India in particular?. Precis Clin Med. 2020;3(3):240243. doi:10.1093/pcmedi/pbaa021

27. da Silva Alcobia MC, Nogueira L, Villar M, et al. Precision medicine in tuberculosis treatment a role for pharmacogenetics?. Eur Respir J. 2018;52(suppl 62):PA2689.

28. Mahomed S, Padayatchi N, Singh J, Naidoo K. Precision medicine in resistant tuberculosis: treat the correct patient, at the correct time, with the correct drug. J Infect. 2019;78(4):261268. doi:10.1016/j.jinf.2019.03.006

29. Lange C, Aarnoutse R, Chesov D, et al. Perspective for precision medicine for tuberculosis. Front Immunol. 2020;11:2442. doi:10.3389/fimmu.2020.566608

30. Sohani ZN, Meyre D, de Souza RJ, et al. Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet. 2015;16(1):50. doi:10.1186/s12863-015-0211-2

31. Naidoo A, Chirehwa M, Ramsuran V, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):224240. doi:10.2217/pgs-2018-0166

32. Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Countries. 2014;8(8):987993. doi:10.3855/jidc.4696

33. Jeremiah K, Denti P, Chigutsa E, et al.. Nutritional supplementation increases rifampin exposure among tuberculosis patients coinfected with HIV. Antimicrob Agents Chemother. 2014;58(6):34683474. doi:10.1128/AAC.02307-13

34. Ramesh K, Hemanth Kumar AK, Kannan T. SLCO1B1 gene polymorphisms do not influence plasma rifampicin concentrations in a South Indian population. Int J Tuberc Lung Dis. 2016;20(9):12311235. doi:10.5588/ijtld.15.1007

35. Mukonzo JK, Kengo A, Kutesa B, et al. Role of pharmacogenetics in rifampicin pharmacokinetics and the potential effect on TB-rifampicin sensitivity among Ugandan patients. Trans R Soc Trop Med Hyg. 2020;114(2):107114. doi:10.1093/trstmh/trz108

36. Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54(10):41924200. doi:10.1128/AAC.00353-10

37. Kim ES, Kwon BS, Park JS, et al. Relationship among genetic polymorphism of SLCO1B1, rifampicin exposure and clinical outcomes in patients with active pulmonary tuberculosis. Br J Clin Pharmacol. 2021;87(9):34923500. doi:10.1111/bcp.14758

38. Medellin-Garibay SE, Huerta-Garcia AP, Rodriguez-Baez AS, et al. A population approach of rifampicin pharmacogenetics and pharmacokinetics in Mexican patients with tuberculosis. Tuberculosis. 2020;124:101982.

39. Huerta-Garca AP, Medelln-Garibay SE, Salazar-Gonzlez RA, et al.Anthropometric and genetic factors associated with the exposure of rifampicin and isoniazid in Mexican patients with tuberculosis. Ther Drug Monit. 2019;41:648656.

40. Chigutsa E, Visser ME, Swart EC. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011;55(9):41224127. doi:10.1128/AAC.01833-10

41. Francis J, Zvada SP, Denti P, et al.. A population pharmacokinetic analysis shows that arylacetamide deacetylase (AADAC) gene polymorphism and HIV infection affect the exposure of rifapentine. Antimicrob Agents Chemother. 2019;63(4). doi:10.1128/AAC.01964-18.

42. Dompreh A, Tang X, Zhou J, et al.. Effect of genetic variation of NAT2 on isoniazid and SLCO1B1 and CES2 on rifampin pharmacokinetics in Ghanaian children with tuberculosis. Antimicrob Agents Chemother. 2018;62(3). doi:10.1128/AAC.02099-17.

43. Sloan DJ, McCallum AD, Schipani A, et al.. Genetic determinants of the pharmacokinetic variability of rifampin in Malawian adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(7). doi:10.1128/AAC.00210-17.

44. Weiner M, Gelfond J, Johnson-Pais TL, et al. Decreased plasma rifapentine concentrations associated with AADAC single nucleotide polymorphism in adults with tuberculosis. J Antimicrob Chemother. 2021;76(3):582586. doi:10.1093/jac/dkaa490

45. Song SH, Chang HE, Jun SH, et al. Relationship between ces2 genetic variations and rifampicin metabolism. J Antimicrob Chemother. 2013;68(6):12811284. doi:10.1093/jac/dkt036

46. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157181. doi:10.1124/pr.110.002857

47. Al-Salameh A, Danchin N, Verstuyft C, et al. Association between rs4149056 variant in SLCO1B1 and early discontinuation of statin after acute myocardial infarction. Pharmacogenomics. 2020;21(3):163172. doi:10.2217/pgs-2019-0109

48. Rajman I, Knapp L, Hanna I. Genetic diversity in drug transporters: impact in African populations. Clin Transl Sci. 2020;13(5):848860. doi:10.1111/cts.12769

49. Aklillu E, Habtewold A, Ngaimisi E, et al. SLCO1B1 gene variations among Tanzanians, Ethiopians, and Europeans: relevance for African and worldwide precision medicine. Omics. 2016;20(9):538545. doi:10.1089/omi.2016.0119

50. Luker GD, Flagg TP, Sha Q, et al. MDR1 P-glycoprotein reduces influx of substrates without affecting membrane potential. J Biol Chem. 2001;276(52):4905349060.

51. Bosch TM, Meijerman I, Beijnen JH, Schellens JH. Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer. Clin Pharmacokinet. 2006;45(3):253285. doi:10.2165/00003088-200645030-00003

52. Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):63666369. doi:10.1128/AAC.01124-13

53. Jamis-Dow CA, Katki AG, Collins JM, Klecker* RW. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica. 1997;27(10):10151024. doi:10.1080/004982597239994

54. Merali Z, Ross S, Par G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29(3):143151. doi:10.1515/dmdi-2014-0009

55. Linskey DW, English JD, Perry DA, et al. Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet Genom. 2020;30(9):208211. doi:10.1097/FPC.0000000000000412

56. Santos PC, Soares RAG, Nascimento RM, et al. SLCO1B1 rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med Genet. 2011;12(1):136. doi:10.1186/1471-2350-12-136

57. Turongkaravee S, Jittikoon J, Lukkunaprasit T, Sangroongruangsri S, Chaikledkaew U, Thakkinstian A. A systematic review and meta-analysis of genotype-based and individualized data analysis of SLCO1B1 gene and statin-induced myopathy. Pharmacogenomics J. 2021;21(3):296307. doi:10.1038/s41397-021-00208-w

58. Dudenkov TM, Ingle JN, Buzdar AU, et al. SLCO1B1 polymorphisms and plasma estrone conjugates in postmenopausal women with ER+ breast cancer: genome-wide association studies of the estrone pathway. Breast Cancer Res Treat. 2017;164(1):189199. doi:10.1007/s10549-017-4243-3

59. Ramsey LB, Moncrieffe H, Smith CN, et al. Association of SLCO1B1 *14 allele with poor response to methotrexate in juvenile idiopathic arthritis patients. ACR Open Rheumatol. 2019;1(1):5862. doi:10.1002/acr2.1008

60. Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther. 2000;68(4):345355. doi:10.1067/mcp.2000.109797

61. Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD. Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol. 2010;44(2):152167. doi:10.1007/s12033-009-9220-6

62. Bouatou Y, Stenz L, Ponte B, Ferrari S, Paoloni-Giacobino A, Hadaya K. Recipient rs1045642 polymorphism is associated with office blood pressure at 1-year post kidney transplantation: a single center pharmacogenetic cohort pilot study. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00009

63. Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A silent polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525528. doi:10.1126/science.1135308

Read the original:
Effect of Genetic Variations on Rifamycins | PGPM - Dove Medical Press

Posted in Genetic medicine | Comments Off on Effect of Genetic Variations on Rifamycins | PGPM – Dove Medical Press

Sarepta Therapeutics Appoints Michael Chambers and Kathryn Boor, Ph.D., to Its Board of Directors – GlobeNewswire

Posted: June 4, 2022 at 2:01 am

CAMBRIDGE, Mass., June 02, 2022 (GLOBE NEWSWIRE) -- Sarepta Therapeutics, Inc. (NASDAQ: SRPT), the leader in precision genetic medicine for rare diseases, today announced the appointments of Michael Chambers and Kathryn Boor, Ph.D., to its Board of Directors. Both Mr. Chambers and Dr. Boor bring distinct and invaluable experience to the Sarepta board that will help guide the company on its mission to change the course of life-threatening rare diseases.

Were pleased to welcome two new board members whose participation will contribute to the realization of Sareptas strategic vision to create transformative therapies for patients with rare diseases, said M. Kathleen Behrens, Ph.D., Chairperson of Sareptas Board of Directors.

Mr. Chambers appointment brings tremendous bioscience and entrepreneurial leadership, along with deep expertise in areas of fundamental importance to genetic medicine innovators. Dr. Boor, in addition to her scientific and academic credentials, is an expert in environment, sustainability and governance, a topic of significant importance to Sarepta, said Doug Ingram, Sareptas president and chief executive officer. These new appointments add to the diversity of experience and perspective on our Board, providing outstanding leadership as we work with the greatest urgency to bring innovative genetic medicines to patients.

Mr. Chambers co-founded Aldevron, based in Fargo, N.D., in 1998, and served as its chief executive officer for more than 20 years before serving as Executive Chairman of the Board until 2021 when Aldevron was acquired for $9.6 billion. As founder, Chambers oversaw the growth of Aldevron into a world-class service organization, specializing in nucleic acid and protein production, antibody development, and custom services with operations in the United States and Europe. Chambers currently serves on the Board of Directors at Calviri, Inc.

In 2018, Chambers was named one of the 100 Most Intriguing Entrepreneurs by Goldman Sachs. He earned his bachelors degree in biotechnology, microbiology, and chemistry from North Dakota State University.

Dr. Boor is the Dean of the Graduate School and Vice Provost for Graduate Education at Cornell University. Previously, Dr. Boor served as the Ronald P. Lynch Dean of the College of Agriculture and Life Sciences (CALS) at Cornell.She earned a bachelors degree in food science from Cornell University, a masters degree in food science from the University of Wisconsin and a Ph.D. in microbiology from the University of California, Davis. She joined the Cornell Food Science department as assistant professor in 1994, became its first tenured female faculty member in 2000, and led as department chair from 2007-2010.

Dr. Boor serves on the Board of Directors for Seneca Foods Corporation, International Flavors and Fragrances, the United States-Israel Binational Agricultural Research and Development (BARD) Fund, and the Foundation for Food and Agriculture Research (FFAR).She serves on the Science Board for the US Food and Drug Administration and on the New York State Southern Tier Regional Economic Development Council.

About Sarepta TherapeuticsSarepta is on an urgent mission: engineer precision genetic medicine for rare diseases that devastate lives and cut futures short. We hold leadership positions in Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophies (LGMDs), and we currently have more than 40 programs in various stages of development. Our vast pipeline is driven by our multi-platform Precision Genetic Medicine Engine in gene therapy, RNA and gene editing. For more information, please visitwww.sarepta.com or follow us on Twitter, LinkedIn, Instagram and Facebook.

Internet Posting of InformationWe routinely post information that may be important to investors in the 'For Investors' section of our website atwww.sarepta.com. We encourage investors and potential investors to consult our website regularly for important information about us.

Forward-Looking StatementsThis press release contains forward-looking statements. Any statements contained in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Words such as "believes," "anticipates," "plans," "expects," "will," "intends," "potential," "possible" and similar expressions are intended to identify forward-looking statements. These forward-looking statements include statements related to Sareptas mission to change the course of life-threatening rare diseases and the potential benefits of the additions of Dr. Boor and Michael Chambers to Sareptas Board.

These forward-looking statements involve risks and uncertainties, many of which are beyond Sareptas control. Known risk factors include, among others: Sarepta may not be able to execute on its business plans, including meeting its expected or planned regulatory milestones and timelines, clinical development plans, and bringing its products to U.S. and ex-U.S. markets for various reasons including possible limitations of Company financial and other resources, manufacturing limitations that may not be anticipated or resolved for in a timely manner, and regulatory, court or agency decisions, such as decisions by the United States Patent and Trademark Office with respect to patents that cover Sareptas product candidates; and those risks identified under the heading Risk Factors in Sareptas most recent Annual Report on Form 10-K for the year ended December 31, 2021, and most recent Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission (SEC) as well as other SEC filings made by the Company which you are encouraged to review.

Any of the foregoing risks could materially and adversely affect the Companys business, results of operations and the trading price of Sareptas common stock. For a detailed description of risks and uncertainties Sarepta faces, you are encouraged to review the SEC filings made by Sarepta. We caution investors not to place considerable reliance on the forward-looking statements contained in this press release. Sarepta does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof, except as required by law.

Source: Sarepta Therapeutics, Inc.

Investor Contact: Ian Estepan, 617-274-4052iestepan@sarepta.com

Media Contact: Tracy Sorrentino, 617-301-8566tsorrentino@sarepta.com

Read more:
Sarepta Therapeutics Appoints Michael Chambers and Kathryn Boor, Ph.D., to Its Board of Directors - GlobeNewswire

Posted in Genetic medicine | Comments Off on Sarepta Therapeutics Appoints Michael Chambers and Kathryn Boor, Ph.D., to Its Board of Directors – GlobeNewswire

Drug Resistant Tuberculosis Could be Treated with Derivative of Tropical Plant – Genetic Engineering & Biotechnology News

Posted: June 4, 2022 at 2:01 am

A new preclinical study conducted on rat models and published on May 31, 2022, reports the discovery of a new class of drugs that could prove effective in treating patients infected with drug-resistant strains of Mycobacterium tuberculosis.

Senior author of the study, Ho-Yeon Song, PhD, of Soonchunhyang University in South Korea said, The new class of PP derivatives is aMycobacterium tuberculosis-targeted antimicrobial with microbiome-safe properties.

The findings were published in an article titled Discovery of Mycobacterium tuberculosisTargeted antimicrobial PP derivatives, in the journal PLOS Biology.

While further testing will be required, the low effective dose and high level of safety in these early tests indicate that these new drugs are likely to be important alternatives to the current regimen for treatment of tuberculosis, Song said.

As part of the study, the scientists screened a variety of natural products derived from plant extracts for potent antibacterial activity against M. tuberculosis. This led them to isolate and purify deoxypergularinine (DPG) from the roots ofCynanchum atratum,a flowering plant used in traditional Chinese medicine.

In earlier studies, the team showed that this compound inhibited not only normal M. tuberculosis but also drug-resistant strains of the bacterium. They had also shown, combining this active ingredient with the first line of standard drugs used to treat tuberculosis, significantly reduced the minimum doses (minimum inhibitory concentrations, MICs) of these drugs needed to inhibit a strain of the bacterium (H37Ra).

In the current study, the team developed and tested multiple analogues of DPG for their ability to inhibitM. tuberculosis without harming the infected cells. They identified a class of PP-derivatives, characterized by the presence of phenanthrene and pyrrolidine groups in their structures, that could inhibit M. tuberculosis effectively with negligible effects on the cells infected, indicating their low toxicity.

The team found several PP derivatives were effective at concentrations lower that that used for current first-line tuberculosis drugs in cells infected with drug-resistant strains of the bacterium in culture, indicating higher antibacterial potency of these derivatives.

The authors notes, PPs demonstrated antitubercular activities in macrophage and tuberculosis mouse models, showing no detectable toxicity in all assays tested.

The team treated infected rats with three PP derivatives (PP1S, PP2S and PP3S) separately for 4 weeks and found this reduced the burden of tuberculosis infection compared to untreated mice. Moreover, the treatments produced no adverse effects in the rats upon two weeks of high-dose treatment and four weeks of intermediate-dose treatment.

The authors also tested the effects of the PP derivative on the intestinal microbiome in mice, since antibiotic treatments are generally associated with off-target killing of beneficial or harmless bacteria that colonize the human gut.

The authors noted, PPs specifically inhibited M. tuberculosis without significantly changing the intestinal microbiome in mice. Whereas standard drugs compromised the mouse gut microbiome, treatment with PP2S for a week showed no significant reduction in gut bacteria.

The team also conducted in vitro studies to identify the drug target. They found a gene called PE-PGRS57, that is found only in the genomes of the M. tuberculosis complex, to be the genetic target of the drug. This explains the high selectivity and safety potency of these new class of compounds.

Mycobacterium tuberculosisinfects and kills nearly 1.5 million people each year globally. Current standard care for drug-susceptible tuberculosis includes a four-month regimen of rifapentine-moxifloxacin or a six-to-nine-month regimen of rifampin, isoniazid, pyrazinamide, and ethambutol (RIPE), according to the US Centers for Disease Control and Prevention (CDC).

Several factors including incomplete treatment course, and wrong dosage or period of treatment, has led to the emergence of multi-drug resistant (MDR), pre-extensively drug-resistant (pre-XDR), extensively drug-resistant (XDR) and totally drug-resistant (TDR) strains of Mycobacterium tuberculosis. If successfully tested in clinical trials, the new class of deoxypergularinine derivates would represent a major advance in treating tuberculosis.

Follow this link:
Drug Resistant Tuberculosis Could be Treated with Derivative of Tropical Plant - Genetic Engineering & Biotechnology News

Posted in Genetic medicine | Comments Off on Drug Resistant Tuberculosis Could be Treated with Derivative of Tropical Plant – Genetic Engineering & Biotechnology News

NeuBase to Participate at the Jefferies Healthcare Conference – Benzinga – Benzinga

Posted: June 4, 2022 at 2:01 am

PITTSBURGH and CAMBRIDGE, Mass., June 01, 2022 (GLOBE NEWSWIRE) -- NeuBase Therapeutics, Inc.NBSE ("NeuBase" or the "Company"), a biotechnology platform company Drugging the Genome to address disease at the base level using a new class of precision genetic medicines, announced today that company management will present a corporate overview at the Jefferies Healthcare Conference being held in New York on June 8 10, 2022.

A replay of the webcast will be available following the presentation for 90 days. To access the webcast, please click here. Please contact your representative at Jefferies to schedule a one-on-one meeting with NeuBase management during the conference.

About NeuBase TherapeuticsNeuBase is accelerating the genetic revolution by developing a new class of precision genetic medicines that Drug the Genome. The Company's therapies are built on a proprietary platform called PATrOL that encompasses a novel peptide-nucleic acid antisense oligonucleobase technology combined with a novel delivery shuttle that overcome many of the hurdles to selective mutation engagement, repeat dosing, and systemic delivery of genetic medicines. With an initial focus on silencing disease-causing mutations in debilitating neurological, neuromuscular, and oncologic disorders, NeuBase is committed to redefining medicine for the millions of patients with both common and rare conditions, who currently have limited to no treatment options. To learn more, visitwww.neubasetherapeutics.com.

NeuBase Investor Contact:Daniel FerryManaging DirectorLifeSci Advisors, LLCdaniel@lifesciadvisors.com OP: (617) 430-7576

NeuBase Media Contact:Jessica Yingling, Ph.D.PresidentLittle Dog Communications Inc.jessica@litldog.comOP: (858) 344-8091

Read this article:
NeuBase to Participate at the Jefferies Healthcare Conference - Benzinga - Benzinga

Posted in Genetic medicine | Comments Off on NeuBase to Participate at the Jefferies Healthcare Conference – Benzinga – Benzinga

College of Education professor takes Covid-19 research to Kentucky schools – WUKY

Posted: June 4, 2022 at 2:00 am

More than two years into the pandemic, some of todays students may not remember school prior to COVID-19. Many have been part of quarantined sports teams, wearing masks to class and moves to online remote learning.

The students are not just watching COVID-19 play out on the news. The students are living it, Alameh said.

Alamehs project is designed to evoke interest in the science behind pandemic-related issues debated in schools and communities across the U.S. and around the globe. The curriculum sets middle and high school students up to act as disease detectives, and their investigation will focus on a novel source wastewater.

Wastewater testing is a non-invasive way to track disease prevalence in places such as college residence halls, nursing homes and school buildings. People infected with the coronavirus shed it in their feces, even if they are not symptomatic. If levels of SARS-CoV-2 rise in wastewater testing, decisions can be made about how to best mitigate additional spread in the population.

Since the early days of the pandemic, a group of UK faculty members have been acting as real-life disease detectives, collecting wastewater and breaking samples down to test for COVID-19. They are now ready to take their work on the road in a white Ford van outfitted as a mobile wastewater testing facility. While providing wastewater testing and training in rural parts of Kentucky, they will visit schools to get students excited about science, technology, engineering and mathematics

(STEM).

"Wastewater testing has seen limited use in the past as a public health surveillance tool, but the COVID-19 pandemic has brought newfound interest in the approach due to its ability to monitor infection trends without extensive clinical testing," said UK College of Medicine Assistant Professor of Family and Community Medicine James Keck, M.D.Keck, along with Scott Berry, Ph.D., an associate professor in the UK College of Engineering, are leading two grant-funded research projects involving the detection of SARS-CoV-2 in wastewater.

Alameh, an assistant professor of STEM Education, is a co-investigator leading an offshoot project from the grants developing curriculum for middle and high school students.

Students will begin to see that science is not something that is removed from society at all. Science is ingrained in nearly all things and this project creates a perfect opportunity for us to talk about the nature of science and how socio-scientific issues affect our day to day lives.

High-quality curriculum should not just be interesting. It should come from a felt need. This is what we call problem-based learning and what more of a problem is this, Alameh said.

Ensuring the lessons are a good fit within teachers existing curriculum is a key target of the project. Alameh and UK STEM Education Ph.D candidate, Sagan Goodpaster, are also working with five middle and high school science teachers to review the lessons for their applicability. Together, they are examining the Kentucky standards for teaching science, biology and chemistry and integrating the knowledge students are required to learn, outlined in those standards, into the new lessons being developed around wastewater testing.

The five teachers are helping evaluate whether the lessons are something they think other teachers would want to implement. We need to ensure there would be a time and place for them in the existingcurriculum, Alameh said. They are offering suggestions on all components of the lessons. For example, they might say the way we explain virus modeling is too advanced for middle school, so maybe we can teach it another way instead.

Alameh, who taught high school for seven years prior to working in higher education, worked with the Markey Cancer Center on a similar project, reviewing a science curriculum developed about cancer to ensure it aligned with Kentucky standards.

By showing students content based on real life topics facing their families like cancer and COVID-19, students begin to see that science is what brings us the information that impacts decision-making. With the coronavirus, if they test wastewater at a school and start to detect very high results, what happens next? Do we close schools or not? Put mask mandates in place? Reinforce washing hands? Those little things we usually see in social media and news, they are always so controversial.

But we forget the back story happens because of science, Alameh said. Students will learn how sewer lines are accessed by scientists to collect wastewater and how samples are prepared, as well as have achance to analyze slides themselves in the van. All samples used with schools will be contrived and therefore safe to handle.

Divided into six lessons, the program starts by asking students to consider what viruses are, whether they are alive, the difference between living and non-living things and what defines life. They willalso learn about the structure of viruses and develop a more in-depth understanding of COVID 19, focusing on what sets it apart from other viruses. Lessons also cover how soap and water kill viruses, and how viruses hijack host cells. Students will also explore how viruses spread and the idea of using wastewater to test the prevalence of COVID-19 in a community.

The culminating project has students write a report connecting public health decision-making with wastewater surveillance. Alameh is also working with Anna Hoover, Ph.D., assistant professor in the UK College of Public Health Department of Preventive Medicine and Environmental Health, to tailor lessons to the public health decision-making process.

Students will have a chance to say now that I get the science, now that I understand what viruses are and how they spread and now that I have learned about wastewater testing, this is how I think this information can inform the decision-making process, Alameh said.

This summer, the participating teachers will meet for professional development sessions where they will talk pedagogy, content, go over materials and have a chance to discuss what works and doesnt work forthem.

Its a learning process for all of us, Alameh said. I know from my time as a high school teacher that if a researcher comes to you in isolation, you wont always be able to implement the curriculum in classunless it fits within existing needs. You dont want to add to the teachers loads. They are already doing a lot. But on the other side, you cannot in these times talk about viruses in biology class and not mention the coronavirus. It is exciting to build a curriculum around a topic that is already at the forefront of teachers and students minds.

Science impacts politics, day to day life, society and it even goes into the personal level and influences how families interact. These are conversations we need to embrace. We cannot shy away and say it ispolitics. Thats why we call them socio-scientific issues. There are a lot of driving forces around them.

As a faculty member in the College of Education, Alamehs research stems from the question What is science? and this project will help inform her work. Students, as well as their teachers, will take a testand fill out a survey before they begin the lessons on wastewater testing. After completing the wastewater curriculum and turning in their final paper, they will take the surveys again.

We are testing whether students views related to COVID-19 will change after having a front-row seat for hands-on exploration of the disease. We also want to see if their performance on the scientificconcepts test shows a correlation with their opinions about science and coronavirus. And, we are curious to see if their understanding of the nature of science will be influenced after participating in this project, Alameh said.

Understanding the nature of science is an integral part of students gaining scientific literacy, Alameh said. She will be testing to see if participants understand how cultural and social values can influence interpretation of data. It is also important for students to understand that knowledge they come to know now, such as that the earth is round,was developed through scientific methods, Alameh said.

Often, we have years of evidence that support testable explanations. Before we learned what oxygen is, we didnt know oxygen is needed tomake something burn, but now we have years of evidence to prove it.

However, science is tentative and can change when new evidence comes in.

Particularly when we are dealing with something new, we must adjust and be ready to make new decisions, she said.

Alameh said the pandemic has given everyone the opportunity to watch science evolve in real time as new information is gathered. The process likely has contributed to a distrust of information, since it seems to be changing and updating continuously, Alameh said.

I hope this project will help us gauge how an understanding of the nature of science that scientific explanations is tentative until new evidence arrives influences opinions about COVID-19, Alameh said.

Alameh hopes her research will, ultimately, contribute to helping students improve their ability to understand scientific phenomena, as well as explain their reasoning to others.

To learn more about become a STEM Education teacher, visit education.uky.edu/STEM.

Here is the original post:
College of Education professor takes Covid-19 research to Kentucky schools - WUKY

Posted in Kentucky Stem Cells | Comments Off on College of Education professor takes Covid-19 research to Kentucky schools – WUKY

Intestinal Stem Cells – PMC

Posted: June 4, 2022 at 1:58 am

Curr Gastroenterol Rep. Author manuscript; available in PMC 2011 Oct 1.

Published in final edited form as:

PMCID: PMC2965634

NIHMSID: NIHMS233209

Department of Internal Medicine, Division of Digestive Diseases, University of Oklahoma Health Sciences Center, 975 NE 10th Street, SL Young BRC West 1268B, Oklahoma City, OK 73104, USA

Shahid Umar, Department of Internal Medicine, Division of Digestive Diseases, University of Oklahoma Health Sciences Center, 975 NE 10th Street, SL Young BRC West 1268B, Oklahoma City, OK 73104, USA;

Self-renewal in the intestinal epithelia is fueled by a population of undifferentiated intestinal stem cells (ISCs) that give rise to daughter or progenitor cells, which can subsequently differentiate into the mature cell types required for normal gut function. The cellular signals that regulate self-renewal are poorly understood and the factors that mediate the transition from a stem cell to a progenitor cell in the gut are unknown. Recent studies have suggested that ISCs are located either at the crypt base interspersed between the Paneth cells (eg, Lgr-5+ve cells) or at or near position 4 within the intestinal crypt (eg, DCAMKL-1 or Bmi-1+ve cells). This raises the possibility that distinct stem cell regions exist in the crypts and that ISC's state of activation will determine how the self-renewal is regulated in the intestinal tract.

Keywords: Intestinal stem cell (ISC), Self-renewal, Transit amplifying (TA) cell, Enterocytes, Paneth cells, Enteroendocrine cells, Goblet cells, Intestinal crypts, Inflammation, Radiation

The absorptive and protective functions of the gut are dependent on an intact and functional intestinal epithelium. Homeostasis of the normal adult intestinal epithelium is maintained by continuous and rapid replacement of differentiated cells by replication of undifferentiated epithelial or transit cells located within the crypts and subsequent differentiation of their progeny during migration away from the zone of replication. This renewal process involves rapid and continuous proliferation of epithelial cells in the crypt base with subsequent migration of these cells along the crypt-villus axis. The process of epithelial cell renewal within the intestine appears to be entirely dependent upon a limited number of long-lived multipotent intestinal stem or progenitor cells. An intestinal stem cell (ISC), similar to stem cells of the mouse hematopoietic system and the hair follicle, may be broadly defined by at least two properties: the ability to maintain itself throughout long periods of time (ie, self-renewal) and the potential to generate all differentiated cell types including enterocytes, goblet cells, entero-endocrine cells, and Paneth cells (ie, multipotency). When stem cells divide, they are believed to undergo an asymmetric cell division into a new stem cell plus a committed daughter cell. The rapidly cycling daughter cells, also called transit amplifying (TA) cells, then undergo a limited number of cell divisions before terminally differentiating into a tissue mass. The regulatory mechanisms that control stem cell proliferation at baseline and in response to injury are just beginning to be explored. This review highlights recent discoveries and implications the ISC field may have on the regenerative processes in the digestive tract involved in health and disease.

The intestinal epithelium is the most vigorously self-renewing tissue of adult mammals [1]. It is specified from endoderm formed during gastrulation and remains as a stratified cuboidal epithelium until mid-gestation in most vertebrates [2]. During middle to late gestation, the basic tissue architecture of the intestine is established through epithelial-mesenchymal interactions. Induced by signals from mesoderm-derived mesenchyme, the endoderm-derived epithelium evaginates to form villi and intervillus regions. The intervillus regions consist of undifferentiated and actively dividing cells that eventually invaginate into the mucosa to form the crypt of Lieberkhn in the first few days after birth and continue to develop during the next several weeks in the rodent [3].

The small intestinal architecture consists of continuous villi and crypts (). The functional compartment of the epithelium contains differentiated cells no longer capable of dividing that have the features of mature epithelial cells. These differentiated epithelial cells populate the villi and can be categorized based on their function: enterocytes that function to absorb nutrients, goblet cells that secrete a protective mucus barrier and enteroendocrine cells that release gastrointestinal hormones (). Paneth cells that secrete antibacterial peptides on the other hand, reside at the base of the proliferative compartment [4]. The proliferative compartment contains undifferentiated and rapidly cycling cells that populate the crypts of Lieberkhn. The epithelium in this region is responsible for providing the tremendous cell turnover and the protective niche for the epithelial stem cell. As cells begin to differentiate, they migrate toward the lumen and are eventually shed, either from the tip of the intestinal villi or from the surface of the colonic epithelium. Therefore, the crypt is mainly a proliferative compartment, is monoclonal, and is maintained by multipotent stem cells whereas the villus represents the differentiated compartment and is polyclonal as it receives cells from multiple crypts [5].

Intestinal stem cell (ISC) compartments in the mammalian intestine. a The intestinal crypt-villus unit. ISCs reside at the base of the crypt, either in the +4 position counting from the bottom of the crypt (brown) directly above the Paneth cells (gray), or as crypt base columnar (CBC) cells (red) located between the Paneth cells, whereas transit-amplifying (TA) progenitor cells (yellow) can arise from self-renewing CBCs. Goblet cells and enterocytes are labeled purple and green, respectively. b Chemical and immunohistochemical detection of the four principal cell lineages of the small intestine: villus-associated absorptive cells (Fatty acid binding protein, stains the villi), Goblet cells (stained by periodic acid/Schiff), enteroendocrine cells (stained for synaptophysin, arrows), and Paneth cells (stained for lysozyme). c An enlarged view of a small intestinal crypt depicting two different stem cell regions; a quiescent stem cell zone (+4 position), and an active stem cell zone (+1 to +4 positions) scattered between the Paneth cells. The +4 label-retaining cells (LRCs) are normally maintained in a quiescent state through direct interaction with and signals generated from the niche, such as pericryptal fibroblast/myofibroblasts and adjacent enteroendocrine cells within the +4 region. CBCs, continuously activated by signals generated from stromal cells at the crypt base, are responsible for most of the regenerative capacity of the intestine under homeostatic conditions. A gradient of BMP signaling, known to inhibit proliferation, is established along the crypt-villus axis, with relatively high activity throughout the villus and correspondingly less activity within the crypt. An opposite gradient of Wnt signaling, providing an important proliferative stimulus, is highest at the crypt base and decreases toward the crypt-villus junction. (A, reproduced with permission from Dr. Hans Clevers, Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences and the University Medical Center Utrecht, Utrecht, The Netherlands)

The well-compartmentalized structure of the small intestine is advantageous for analysis of developmental processes; however, study within this tissue has been limited by lack of a robust in vitro culture system for primary intestinal epithelial cells. Recently, studies with transgenic and knockout mice have shed light on molecular mechanisms underlying the fetal development of intestine as well as homeostatic epithelial regeneration in the adult. Through these studies, several signaling pathways such as the Wnt, bone morphogenic protein (BMP), phosphatidyl inositol (3,4,5) kinase (PI3K), and Notch cascades have been revealed to play critical roles in regulating proliferation and controlling ISC self-renewal and differentiation in normal tissue.

Stem cells are defined by their ability to self-renew and to give rise to mature cell types to maintain the integrity of the intestinal epithelium. Given the importance of stem cells to body tissues, it has long been postulated that stem cells should divide infrequently to prevent the acquisition of errors during DNA replication and to preserve their long-term proliferation potential. In humans, however, billions of cells are lost on a daily basis and therefore must be replenished for survival. Moreover, human tissues occasionally face traumatic injuries. The injured tissues have to be repaired quickly through rapid stem cell division and differentiation to maintain a proper balance. Thus, an extraordinary mechanism of regulation at the stem cell level apparently exists to allow stem cells to divide sparingly, to maintain their long-term potency, and rapidly, to maintain tissue homeostasis and repair injured tissues. Small intestinal epithelial lining is regenerated every 4 to 5 days. Either four to six [6] or one ISC [7] are present in small intestinal crypts, which cycle slowly (2430 h) and give rise to rapidly cycling TA cells by asymmetric division [8]. The TA cells move up the crypt and undergo differentiation into either absorptive (enterocytes) or secretory lineages (mucous, enteroendocrine, Paneth cells), which then move upward into the villus [9] (). Paneth cells, however, migrate downward to the base of the crypts [4]. Enterocytes are the dominant lineage (90% of total cells), goblet cells comprise 8% to 10% and enteroendocrine cells comprise about 1% of the epithelium. Stem cells in animal tissues are often located and controlled by special tissue microenvironments known as niches. A stem cell niche can be defined as a specific location in a tissue where stem cells can reside for an indefinite period of time and produce progeny cells while self-renewing. This niche is made up of and influenced by nearby proliferating and differentiating epithelial cells as well as by surrounding mesenchymal cells. Although separated from the epithelial cells by the basement membrane, these mesenchymal cells (ie, blood vessels, intraepithelial lymphocytes, and fibroblasts/myofibroblasts) together with the extracellular matrix, promote the epithelial-mesenchymal crosstalk required to maintain the stem cell niche. Epithelial-mesenchymal interactions enable specification of epithelial stem cells during development [10], but the requirement and nature of these communications in adult stem cells remain to be characterized. Excessive stem cell production can result in cancer; thus, maintaining a balance of stem cell quiescence and activity is a hallmark of a functional niche [11]. We have just begun to understand which niche signals regulate self-renewal and maintain the balance between self-renewal and differentiation of ISCs. An increasing number of signaling pathways, including Wnt, BMP, Hedgehog, and Notch, may play important roles in this regard, as discussed in the following section.

Wnt proteins form a family of highly conserved secreted signaling molecules that are capable of signaling both in an autocrine and paracrine fashion. Wnt induces its biologic effects by binding to either the seven-span transmembrane protein Frizzled (Fz) or the single-span low-density lipoprotein receptor-related protein (LRP). Wnt-mediated signaling results in increased stability of -catenin in the cytoplasm, and its interaction with the T-cell factor 4 (Tcf-4) transcription factor within the nucleus. Under normal conditions, -catenin forms a complex of proteins containing adenomatosis polyposis coli (APC), axin, and glycogen synthase kinase-3 (GSK-3) and its levels are tightly controlled through ubiquitin-mediated proteasomal degradation. Wnt factors inhibit the -catenin-APC complex. Hence, -catenin is stabilized and interacts with nuclear Tcf-4 to drive the transcription of specific target genes. Initial studies demonstrated that active Wnt signaling was found in intervillus regions and was thought to inhibit differentiation and stimulate proliferation, as indicated by experiments in which inhibition of Wnt signaling by Tcf-4 disruption halted the proliferation of endoderm and depleted endodermal stem/progenitor cells [12]. These experiments also showed that proliferative cells in the intervillus region were replaced by mature enterocytes usually seen in the villus [12]. However, recent findings indicate that Wnt signaling within the developing intestine may be more complex. In fact, Wnt activity was found exclusively within the villus epithelium from embryonic day 16 (E16) to postnatal day 2 (P2) and was not seen within the intervillus region until P2. However, by E14, villus and intervillus regions displayed unique genetic signatures and by E17.5, proliferative cells were restricted to intervillus regions. In addition, although nuclear -catenin and c-MYC expression corresponded to the villus cells with Wnt activity, other known Wnt target genes and pathway components such as CD44, CyclinD1, and Tcf-4 were present within the intervillus region [13]. These results suggest that Wnt signaling and proliferation may be uncoupled during early development and that perhaps Wnt-independent mechanisms drive early epithelial proliferation. Furthermore, Wnt signaling may play an important role in initial villus formation. Wnt signaling components are expressed by crypt epithelial cells and surrounding mesenchymal cells, which play an extremely important role in normal homeostasis [11, 14, 15] (). Wnt inhibitors, such as Dkk3, may be expressed in a graded manner along the crypt-villus axis, providing the balance between positive and negative regulators of this pathway [16].

Indian hedgehog (Ihh) is also expressed in the intervillus region, whereas its receptor, Patched, is expressed in the adjacent mesoderm [17]. Because Hedgehog inhibition compromises villus formation, this signal is thought to work as a morphogen within the intestine as in other tissues [18]. It remains unclear whether Ihh signaling is dependent on Wnt activation or is completely independent. More recently, Ihh was shown to regulate ISC self-renewal and differentiation [19]. Intestinal epithelial Ihh signals to the mesenchymal compartment to regulate formation and proliferation of mesenchymal cells, which in turn affects the epithelial proliferation and differentiation. These findings provide a basis for analyses of the role of the muscularis mucosae in ISC regulation. Indeed, expression of BMPs mainly in mesoderm-derived mesenchymal cells is regulated by Hedgehog signaling, and BMP signaling also plays a role in regulating morphogenesis during intestinal development [20]. Inhibition of BMP signaling by over-expression of its inhibitor, Noggin, or conditional inactivation of its receptor, BMPR1A, causes ectopic crypt formation, suggesting a role for BMP signaling in restricting crypt numbers [21].

A high level of Notch is expressed in the intestinal stem cells [11]. Four isoforms of the Notch receptor have been identified in mammals (Notch14) [22]. Notch activation is achieved through direct interaction with specific transmembrane ligands of the DSL (Delta/Serrate/Caenorhabditis elegans Lag-2) family, such as Delta-like (DLL) 1, 3, and 4 and Jagged 1-2 in mammals [23]. Notch-DSL ligand binding initiates proteolytic cleavage at both the extracellular and intracellular regions of the Notch receptor, leading to the release of Notch intracellular domain (NICD) [24]. Nuclear localization signals within the NICD direct its translocation, where it binds to and displaces a CSL transcriptional corepressor complex [25, 26]. Basic helix-loop-helix transcription factors of the Hairy/E(spl) (HES) and HES-related genes in vertebrates class are the best-characterized Notch targets [27]. Importantly, Notch transcriptional output depends greatly upon specific cell and tissue types because various events such as pathway crosstalk can affect the transcriptional regulation of tissue-specific differentiation, development, and cell-cycle regulation [28].

The Notch signal controls daughter cells differentiating into absorptive rather than secretory cells. Like Wnt signaling, the Notch pathway also plays a role in stem cell maintenance [28]. Components of the Notch pathway are chiefly expressed in the epithelium at the crypt base, in the stem cell region. Increasing Notch signaling through forced expression of NICD in newborn mouse results in increased cell proliferation in the stem cell compartment and also shows a severe reduction of all three secretory cell types [28]. Conversely, inhibition of the Notch signaling in the intestinal epithelium, either by deletion of the Hes1 gene, the CSL gene, the Notch1 and Notch2 genes, or through pharmacologic -secretase inhibitors, results in an excessive number of secretory cells [1, 29]. Although Notch signaling plays an important role in stem cell proliferation, the experimental results suggest that Notch signaling functions in the TA compartment controlling absorptive rather than secretory cell fate decisions in the intestinal epithelium.

In summary, among the four major signals characterized so far (Wnt, Notch, Hh, and BMP), Wnt signaling mainly functions in the crypt base to maintain stem cell proliferation and self-renewal; Notch signaling mainly functions in the TA compartment to control daughter cell fate determination; and the Hh-BMP signaling from the crypt or intervillus pocket delivers a long-range signal to inhibit the formation of crypts and promote the formation of villi.

The location, number, and behavior of ISCs within the base of the crypt have been characterized by numerous investigators using murine models [4], following chemoradiation [30], somatic mutation [31], chimeric breeding [32], and transgenic overexpression or ablation of specific regulatory genes [12, 20, 21, 33]. Interpretation of these data with respect to the precise position and behavior of ISC within the intestinal crypt continues to be debated [34, 35]. In the mouse small intestine, two types of stem cells have been identified [35]. One type is located below the +4 position in the stem cell zone and the other type is located at the +4 position from the crypt bottom. Cheng and Leblond [4] identified small cycling epithelial cells interspersed between the Paneth cells, or the so-called crypt base columnar (CBC) cells, using morphologic methods in mammalian intestine. Later, Bjerknes and Cheng [36] provided additional information on these specialized cells using elegant clonal marking techniques. These investigators postulated that the CBCs located within the stem cell zone of the crypt base might represent the actual ISC and that all the differentiated intestinal epithelial cell types develop from these CBCs [36]. An alternative hypothesis also suggested that the ISCs were actually located elsewhere at a position that averaged +4 from the bottom of the crypts, with the lowest three positions generally relegated to the terminally differentiated Paneth cells. Evidence supporting this hypothesis of the +4 stem cell model was provided by Potten [30]. These investigators, using the DNA-labeling reagents, bromodeoxyuridine or (3H)-thymidine, on radiation-sensitive, label-retaining cells (LRC) showed that the LRCs were located specifically at the +4 position in the intestinal crypt region, precisely at the origin of the migratory epithelial cell column.

One major obstacle in ISC biology has been the lack of definitive markers that identify ISCs. Reliable markers would allow for definitive identification of the stem cell population and would facilitate the ability to isolate and manipulate these cells in vitro. Numerous proteins are expressed in the crypt compartment but not in the villus, such as EphB2 [37], CD44 [38], and Hes1 [39]. Immunohistochemistry and in situ hybridization studies suggested that RNA binding protein Musashi-1 (Msi-1), involved in Notch signaling, is also expressed in the supra-Paneth cells as well as in CBC cells () [39, 40]. Members of BMP and Wnt signaling pathways (p-PTEN and p-AKT) localize to ISCs [20, 41]. In recent years, fluorescence-activated cell sorting has been used to identify side population (SP) cells in murine small intestine as a source of putative ISCs [42]. These SP cells were distinct from the hematopoietic stem cells and their progeny, based on the absence of surface markers for CD45, c-kit, and CD34. RNA prepared from CD45-negative intestinal SP cells were found to be enriched with Msi-1 [42]. The molecular features of the potential stem cell populations in SP faction were recently characterized [43]. Protein markers such as EphB2 [37], CD44 [38], Fgfr3 [44] and Sox9 [45] have a crypt-base expression pattern, but are not specific to ISCs. Analyses of various Wnt pathway components and their target genes have identified Sfrp5 [46] and Ascl2 [46] as possible ISC markers. Besides these, it was recently shown that telomerase reverse transcriptase (mTert), as identified in GFP transgenic mice, stains a few cells at cell position 4 [47]. None of these genes, however, encode for proteins that are amenable to cell-sorting procedures. Laser-capture microdissection method found numerous transcripts involved in c-myc signaling to be significantly expressed in putative ISC cells [48]. Immunohistochemistry studies showed that doublecortin and Ca2+/calmodulin-dependent kinase-like-1 (DCAMKL-1) and Mapk14 are expressed within the stem cell zones [49].

Proposed intestinal stem cell markers

Long-term DNA-label retention tentatively located stem cells at position +4 directly above Paneth cells [50]. Leucine-rich-repeat-containing G-protein-coupled receptor-5 (LGR5) expression was demonstrated in crypts of small intestines, but not in the villi by in situ hybridization [51]. LGR5 gene marked the slender cycling crypt base columnar (CBC) cells (), interspersed between Paneth cells [51]. LGR5 encodes an orphan G-protein-coupled receptor, characterized by a large leucine-rich extracellular domain [51], and is expressed in colorectal, ovarian, and hepatocellular carcinomas [51]. The CBC cells were positive for proliferation marker Ki67 and occasionally expressed M-phase marker phospho-histone H3 [51]. Adult mice irradiated with 1 to 10 Gy were analyzed for apoptosis after 6 h. Apoptosis was determined in +4 CBC cells and TA cells (located at position 515) [50]. Maximal apoptosis at +4 position was reached at 1 Gy, whereas 10 Gy was needed to measure apoptosis in CBC and TA cells, suggesting that LGR5 may be a marker for stem cells in small and large intestines [51]. Moreover, using genetic approaches, it was demonstrated that LGR5-positive CBCs are multipotent for all mature intestinal epithelial cell types, cycle every 24 h, and persist for 60 days [51]. Thus, even though questions remain regarding the functional role of LGR5 in the intestinal epithelia [52], loss of LGR5 may affect both crypt regeneration and neoplastic transformation.

In 2009, lineage-tracing studies of adult prominin-1 (also called CD133; a pentaspan transmembrane glycoprotein that localizes to membrane protrusions) showed that some prominin-1positive cells are located at the base of crypts in the small intestine, co-express LGR5, and can generate the entire intestinal epithelium, and therefore seem to be small intestinal stem cells as well [53]. Moreover, olfacto medin 4 (OLFM4), which was identified in a gene expression profile for LGR5-positive cells, was shown to be highly expressed in CBCs in the human small intestine and colon, and may therefore be a marker for human intestinal and colon stem cells [54]. Sangiorgi and Capecchi [55] characterized the progeny of crypt Bmi1-positive cells (; ) and argued in support of the +4 LRCs as a population of stem cells within the small intestine. Bmi1 encodes a chromatin remodeling protein of the polycomb group that has essential roles in self-renewal of hematopoietic and neural stem cells. Bmi1 seems to consistently mark long-lived cell clones (>12 months) populated by all intestinal lineages and serves as a specific marker of a cell population located at the +4 position of the crypt. Furthermore, ablation of Bmi1-positive cells by targeted expression of the diphtheria toxin depletes the epithelium of the genetically marked crypts (known as whole crypt units) [55]. Thus, expression of Bmi1 also identifies ISC candidates. In addition to LGR5 and prominin-1, other potential stem cell markers have been identified for which lineage tracing is not yet complete.

It was reported recently that DCAMKL-1, a microtubule-associated kinase expressed in post-mitotic neurons, is a novel putative ISC marker (; ) [56]. DCAMKL-1 was identified as a Gene Ontogeny-enriched transcript expressed in comparison with gastric epithelial progenitor and whole stomach libraries [49] and more recently in gastric stem cells [57]. Immunoreactive DCAMKL-1 cells were found at or near position +4, at a frequency of one cell per five crypts [56]. DCAMKL-1-positive CBC cells were also observed, but at much lower frequency [56]. More recently it was shown that the novel putative ISC marker DCAMKL-1 is predominantly expressed in quiescent cells in the lower two thirds of the small intestinal crypt epithelium and in occasional CBC cells [58]. In contrast, novel putative stem cell marker LGR5 is observed in rapidly cycling CBCs and in occasional crypt epithelial cells [58]. Functionally quiescent DCAMKL-1positive crypt epithelial cells retained BrdU label in a modified label-retention assay [58]. Importantly, it was demonstrated that DCAMKL-1 is a cell surface expression protein, and a specific antibody against the extracellular domain of DCAMKL-1 was used to isolate DCAMKL-1 positive cells from adult mouse small intestine by fluorescence-activated cell sorting [58]. DCAMKL-1positive cells were found to self-renew and form spheroids in suspension culture [58]. These spheroids formed glandular epithelial structures in the flanks of athymic nude mice, which expressed multiple markers of gut epithelial lineage [58]. Thus, DCAMKL-1 is a marker of quiescent ISCs and can be distinguished from the cycling stem/progenitor cells that are LGR5 positive. DCAMKL-1 did not co-localize with other key markers such as chromogranin A, pPTEN, pAKT, somatostatin, or secretin [58]. LGR5 identifies proliferative CBC and TA cells in the gut as evidenced by co-labeling with proliferating cell nuclear antigen. Thus, the original hypothesis of a +4 ISC [50] is likely accurate, and DCAMKL-1positive cells likely represent the elusive quiescent ISCs.

Restoration of normal epithelial architecture and function after intestinal injury induced by a variety of noxious agents (chemical, infectious, radiation, and inflammatory) is a multistep process that involves tight regulatory control of epithelial stem cell dynamics [59]. First, migration of adjacent epithelial cells over the wound reestablishes continuity of the epithelium. Stem cells divide to increase their numbers and to give rise to the more rapidly proliferating TA cells. The transit cell population then expands rapidly to form a regenerative crypt. A single surviving clonogenic crypt stem cell is sufficient to facilitate crypt regeneration. If the injury has completely destroyed some crypts, the surviving crypt stem cells can divide to increase their numbers, and subsequently restore sufficient numbers of crypts by crypt fission, to maintain epithelial homeostasis [59]. Whether this process involves recruitment of a quiescent stem cell population from within the crypt-villus axis or requires replenishment from the bone marrow remains to be determined. Moreover, because the epithelial stem cells within a crypt segregate to daughter crypts when crypt fission occurs, an expansion of the stem cell number must accompany this reparative response. However, the factors that coordinate this complex process in diseases such as human inflammatory bowel disease have not been fully elucidated, and much remains unknown about the biologic consequences of chronic intestinal inflammation on the fate or proliferation of the stem cell population.

Inflammatory bowel disease is characterized by cycles of mucosal injury and ulceration, followed by epithelial regeneration and restoration of normal epithelial architecture and function. In several mouse models of inflammatory bowel disease, alterations of epithelial function have been implicated in the pathogenesis of chronic inflammation [60]. In general, intestinal inflammation is associated with significant upregulation of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-8, IL-12 and tumor necrosis factor (TNF)-, along with other mediators and growth factors, such as cyclo-oxygenase (COX)-2, basic fibroblast growth factor (bFGF), hepatocyte growth factor, and vascular endothelial growth factor [60]. Expression of these inflammatory mediators is regulated by activation of nuclear factor-B (NF-B). NF-B is a key coordinator of innate immunity and inflammation and has emerged as an important endogenous tumor promoter [61, 62]. Crohn's ileitis is also associated with a reduced expression of Tcf-4, which regulates Paneth cell differentiation, leading to defects in innate immunity [63].

Expansion of the proliferative zone, increased crypt branching, and changes in the normal patterns of cellular differentiation have been documented in human inflammatory bowel disease [60], suggesting that the pathways regulating the relationship between cellular replication and epithelial differentiation have been altered in these diseases. Although it is clear that the intestinal epithelium responds to inflammation and mucosal injury by initiating a regenerative response, the specific effects inflammation may have on the in vivo turnover of epithelial stem cells or progenitor cells, or the way in which the inflammatory milieu may perturb normal epithelial differentiation and/or function remain obscure. Similarly, a number of cytokines, growth factors and other mediators including TNF-, transforming growth factor (TGF)3, trefoil factor-3 (TFF3), IL-1, IL-11, COX1/2, bFGF, FGF-7, and FGF-10 associated with intestinal inflammation or injury can induce increase in crypt epithelial stem cell survival when exogenously administered before radiation [64, 65]. However, more work is needed to understand how enhanced expression of one or more of these peptides, as a consequence of ileal inflammation, directly affects epithelial stem cells or differentiation of progenitor cells.

The radiosensitivity of the small intestine is primarily a function of rapidly dividing progenitor cells derived from epithelial stem cells near the base of intestinal crypts. Although crypt epithelial cells are extremely sensitive to radiation-induced apoptosis, there is little to no apoptosis in the villi. Doses as low as 0.01 to 1.0 Gy induce apoptosis within the lower crypt. Peak apoptosis is observed between 3 and 6 h post-irradiation [6567]. However, at higher doses (>8 Gy), a second apoptotic wave occurs 24 h post-irradiation. After severe irradiation, epithelial cell loss at the villus tips creates an imbalance between epithelial production and turnover, resulting in villi shortening and disruption of the mucosal barrier if all or most of the crypt stem cells die. However, if a single stem cell survives in the crypt region, regenerative crypts will appear within 3 to 4 days, and crypt-villi architecture will be restored within 6 to 8 days. The balance between the rate and extent of crypt-villi regeneration, which depends on the stem cell and the pathologic consequences of denuding the epithelial covering from the small intestine, is a major determinant of survival in the early period after acute radiation exposure.

The possible relationship between the quiescent and the actively cycling nature of the ISCs needs to be further explored. Moreover, it is critical to understand the genetic elements that determine stem cell fate and the basis by which regeneration occurs in order to better understand stem cell plasticity and the contribution made by the stem cell compartment to malignant disease. It is hoped that future studies in this area will provide a better platform to develop therapies to regenerate damaged intestinal epithelia as seen after radiation injuries or inflammatory bowel disease (eg, Crohn's disease).

This work was partially supported by National Institutes of Health Grant R01 CA131413 (to SU) from the NCI.

Disclosure No potential conflict of interest relevant to this article was reported.

Papers of particular interest, published recently, have been highlighted as:

Of importance

Of major importance

Read the original here:
Intestinal Stem Cells - PMC

Posted in Oklahoma Stem Cells | Comments Off on Intestinal Stem Cells – PMC

Page 428«..1020..427428429430..440450..»