Page 646«..1020..645646647648..660670..»

New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair – Tech Times

Posted: October 5, 2021 at 7:37 pm

Urian B., Tech Times 05 October 2021, 12:10 am

(Photo : Image from Unsplash Website) New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair

A new stem cell approach through the use of wavelength lasers might have discovered why humans lose their hair. Rui Yi, a professor of pathology at Northwestern University, is now setting out to answer the question.

According to the Straits Times, a generally accepted hypothesis regarding stem cells notes that they replenish tissues and organs, which include hair, but they will then eventually be exhausted and then even die in place. This particular process is seen as quite an integral part of the aging process.

Stem cells reportedly play a huge role when it comes to the growth of human and mice hair. The director of the Black Family Stem Cell Institute at the Icahn School of Medicine located at Mount Sinai, Sarah Millar, gave a statement. Luminate Medicine has been able to find a way to avoid chemotherapy hair loss.

Sarah Millar wasn't reportedly involved in Yi's paper and explained that the cells gave rise to the hair shaft as well as its sheath. After a period of time, which is short for human body hair and still much longer for hair on a person's head, the follicles then become inactive, and its lower part starts to degenerate. Sarah Millar's discovery can be found on Eurekalert.

The hair shaft then stops its growth and starts to shed, which is only to be replaced by a brand new strand of hair while the cycle repeats. While the rest of the follicles then die, a collection of stem cells still remains in the bulge and are ready to start turning into hair cells in order to grow a strand of hair.

Researchers who study aging usually take chunks of tissue from animals at different ages and examine the changes. There are, however, two drawbacks to this approach, according to Yi. There has also been a relation made betweenhair loss and teeth.

First, it was noted that the tissue was already dead. It is also not clear as to what led to the charges that are reportedly observed or what will then come after them. He then decided that the team would use a different approach.

Read Also:Best Diabetes Apps for Sugar-Conscious Peeps 2021

They reportedly watched the growth of other individual hair follicles in the ears of mice through the use of a long-wavelength laser that will be able to penetrate deep into the tissue. They then start labeling hair follicles along with green fluorescent protein, anesthetizing the animals in order for them to not move.

They then put their ear under the microscope and started to go back and forth to watch what was happening to the exact same hair follicle. The result showed that when the animals got older and grey, they started to lose their hair, their stem cells also started to escape their own small homes in the bulge.

The cells then changed their shapes from around to certain amoeba-like and squeezed out of small holes in the follicles. They then reportedly recovered their normal shapes and started darting away.

Related Article:Gaming And Mental Health: A Closer Look

This article is owned by Tech Times

Written by Urian B.

2021 TECHTIMES.com All rights reserved. Do not reproduce without permission.

See more here:
New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair - Tech Times

Posted in Stem Cells | Comments Off on New Stem Cell Approach Through Using Wavelength Laser Might have Discovered Why Humans Lose Hair – Tech Times

Stem cell & gene therapy to treat osteogenesis imperfecta: hype or hope – Open Access Government

Posted: October 5, 2021 at 7:37 pm

A genetic syndrome that affects bones

Osteogenesis Imperfecta (OI) is a hereditary disorder occurring in 1:10,000 births and characterised by osteopenia (bone loss) and skeletal fragility (fractures). Secondary features include short stature, skeletal deformities, blue sclera and dentinogenesis imperfect. (1) There is a large clinical variability in OI, and severity ranges from mild to lethal, based on radiological characteristics. Genetically, OI is a collagen-related syndrome. Type I collagen is a heterotrimeric helical structure synthesized by bone-forming cells (osteoblasts), and it constitutes the most abundant protein of the skeletal organic matrix. (2) Synthesis of type I collagen is a complex process. (3) Collagen molecules are cross-linked into fibrils (which confer tensile strength to the bones). Those are then mineralised by hydroxy-apatites (which provides compressive strength) and assembled into fibres.

Dominant mutations in either the COL1A1 or the COLA1A2 genes are responsible for up to 90% of all OI cases. These mutations (more than 1,000 of which have been identified) lead to impairment of collagen structure and production, which in either quantitative or qualitative bone extracellular matrix (ECM) defects. Mutations affecting ECM structure have serious health consequences because the skeleton protects visceral organs and the central nervous system and provides structural support. Bones also store fat in the yellow bone marrow found within the medullary cavity, whilst the red marrow located at the end of long bones is the site of haematopoiesis. In addition, the ECM constitutes a reservoir of phosphate, calcium, and growth factors, and is involved in trapping dangerous molecules.

Stem cell therapy for OI aims to improve bone quality by harnessing the ability of mesenchymal stem cells (MSC) to differentiate into osteoblasts, with the rationale that donor cells would engraft into bones, produce normal collagen and function as a cell replacement. Stem cells have, therefore, been proposed for the treatment of OI (4) and, in particular, prenatal foetal stem cell therapy (foetal stem cells injected into a foetus, i.e. foetal-to-foetal) approach, which offers a promising route to effective treatment. (5) Human foetal stem cells are more primitive than stem cells isolated from adult tissues and present advantageous characteristics compared to their adult counterparts, i.e. they possess a higher level of plasticity, differentiate more readily into specific lineages, grow faster, senesce later, express higher levels of adhesion molecules, and are smaller in size. (6,7) Prenatal cell therapy capitalises on the small size of the foetus and its immunological naivete. In addition, stem cells delivered in utero benefit from the expansion of endogenous stem cells and may prevent organ injury before irreversible damage. (8)

However, human foetal stem cells used are isolated from either foetal blood drawn by cardiac puncture, either during termination of pregnancy or during ongoing pregnancy, albeit using an invasive procedure associated with a high risk of morbidity and mortality for both the foetus and the mother (9). Foetal cells can also be isolated from the first-trimester liver (following termination of pregnancy) and such cells are currently used in The Boost Brittle Bones Before Birth (BOOSTB4) clinical trial, which aims to investigate the safety and efficacy of transplanting foetal derived MSCs prenatally and/or in early postnatal life to treat severe Osteogenesis Imperfecta (OI) (10). Alternatively, foetal stem cells can be isolated during ongoing pregnancy from the amniotic fluid, either during mid-trimester amniocentesis or at birth (11,12) or from the chorionic villi of the placenta during first-trimester chorionic villi sampling (13).

We have demonstrated that human fetal stem cells isolated from first trimester blood possess superior osteogenic differentiation potential compared to adult stem cells isolated from bone marrow and to fetal stem cells isolated from first trimester liver. We showed that in utero transplantation of these cells in an experimental model of severe OI resulted in a drastic 75% decrease in fracture rate incidence and skeletal brittleness, and improvement of bone strength and quality.(14) A similar outcome was obtained using placenta-derived foetal stem cells (15) and amniotic fluid stem cells following perinatal transplantation into experimental models. (16,17)

Understanding the mechanisms of action of donor cells will enable the engineering of donor cells with superior efficacy to stimulate bone formation and strengthen the skeleton. Despite their potential to differentiate down the osteogenic lineage, there is little evidence that donor cells contribute to regenerating bones through direct differentiation, due to the very low level of donor cell engraftment reported in all our studies. When placed in an osteogenic microenvironment in vitro, foetal stem cells readily differentiate into osteoblasts and produce wild type collagen molecules. However, there are insufficient proofs that collagen molecules of donor cell origin contribute to the formation of the host bone ECM to confer superior resistance to fracture.

It is now well accepted that stem cells can influence the behaviour of target cells through the release of paracrine factors and, therefore, contribute to tissue regeneration indirectly. We have indeed recently shown that donor stem cells stimulate the differentiation of resident osteoblasts, which were unable to fully mature in the absence of stem cell treatment. (16,17) We are now focusing our efforts on understanding the precise molecular mechanisms by which donor cells improve skeletal health to counteract bone fragility caused by various OI-causative mutations.

References

Please note: This is a commercial profile

2019. This work is licensed under aCC BY 4.0 license.

Editor's Recommended Articles

Read the rest here:
Stem cell & gene therapy to treat osteogenesis imperfecta: hype or hope - Open Access Government

Posted in Stem Cells | Comments Off on Stem cell & gene therapy to treat osteogenesis imperfecta: hype or hope – Open Access Government

"Stem cell-based therapeutics poised to become mainstream option – BSA bureau

Posted: October 5, 2021 at 7:37 pm

In conversation with Dr Koji Tanabe, Founder and CEO, I Peace, Inc., The United States/Japan

To make the trial investments more meaningful and to avoid ambivalence in animal models, medical science is adopting novel in vitro models of specialised human pluripotent cell lines. Pluripotent stem cells(PSCs) have the agility to expand indefinitely and differentiate into almost any organ-specific cell type. iPSC-derived organs andorganoidsare currently being evaluated in multiple medical research arena like drug development, toxicity testing, drug screening, drug repurposing, regenerative therapies, transgenic studies, disease modeling and more across clinical developments. Innovative pharmacovigilance methodologies are preferring induced pluripotent stem cells (iPSCs) for pre-clinical and clinical investigational studies. Global Induced Pluripotent Stem Cell (iPSC) market is expected to reach $2.3 B by 2026. The iPSC market inAsia-Pacificis estimated to witness fast growth due to increasing R&D projects across countries likeAustralia,JapanandSingapore.

I Peace, Inc. a Palo Alto-based global biotech company with its manufacturing base in Japan, has succeeded in developing and mass-producing clinical grade iPS cells through its proprietary iPS cell manufacturing services. The human iPSC (hiPSC) lines at I Peace leverage differentiated cells across clinical research and medical applications. Biopsectrum Asia discovered more about Japan's stem cell manufacturing ecosystem with Dr Koji Tanabe, Founder and CEO, I Peace, Inc., (The United States/Japan). Tanabe earned his doctorate under Dr Shinya Yamanaka, a Kyoto University researcher who received the 2012 Nobel Prize in Physiology or Medicine for discovery of reprogramming adult somatic cells to pluripotent cells. I Peace is focusing on this Nobel Prize-winning iPSCs technology where Tanabe had played a key role in generating the worlds first successful human iPSCs as one of the team members and is currently industrialising it in the US and Japan.

How do you define Japans Stem cell manufacturing dynamics aligning with regional and APAC market potential?

We believe that human cells play a pivotal role in next-generation drug therapy. Clinical trials of iPSC applications are in full swing not only in Japan, but worldwide as well. In the US, the momentum of clinical trial research is astounding. Yet, mass production of GMP compliant cell products remains a challenge. Entry into this venture is no easy task. As a contract development and manufacturing organisation (CDMO), I Peace is geared to tackle that challenge and become the pioneer of mass production technology of clinical grade cell products.

Can you elaborate I Peaces cost-effective proprietary stem cell synthesis solution and its manufacturing scale?

The key advantage of iPSCs is the ability to create pluripotent cells from an individuals own cells. Furthermore, iPSCs can multiply indefinitely and evolve into any type of cell, making iPSCs an ideal tool for transplant and regenerative medicine and drug research. However, clinical applications of iPSCs to date, utilise heterogenic transplantation. It is because manufacturing of just one line of iPSCs requires a cost intensive clean room to be occupied for several months. Manufacturing process complexities also pose a barrier to cost reduction and mass production.

In contrast, I Peace has developed a proprietary, fully automated closed system for iPS manufacturing, enabling cost-effective production of multiple lines of iPSCs from multiple donors in a single room. Within a few years, we expect to manufacture several thousand lines of iPSCs simultaneously in a single room. With this technology, I Peace can efficiently generate an ample supply of various iPSCs for heterogenic transplant, while also fostering a society where everyone can bank their own iPSCs for potential medical use.

How does I-Peace better position its businesses objectives and go-to-market strategies?

I Peaces manufacturing facility and its processes have undergone rigorous audits and are certified to be in compliance with GMP guidelines of the US, Japan, and Europe. We have the capacity to manufacture clinical-grade iPSCs and iPSC-derived cells for clinical use in the global market. Our manufacturing staff have unparalleled expertise in the manufacturing of iPSCs, and their knowledge and experience make it possible to mass produce high quality clinical-grade iPSCs in the shortest possible time. Additionally, we streamlined the iPSC use licensing scheme to expedite collaborative ventures with downstream partners. We believe these strategies position I Peace as a global leader in iPSC technology.

How do you outline the concept of democratising access to iPSC manufacturing?

At I Peace, we envision a world in which everyone would possess their own iPSCs and if needed, receive autologous transplant medication using their own iPSC. We believe in the importance of raising awareness of Nobel Prize winning iPSC technology and we think much more needs to be done. We need to enlighten the public about iPSCs - what they are, how they are created, and how they play a role in next-generation medical therapies. We also need to underscore the benefits of early banking ones own iPSCs, such as autologous transplant and the fact that cells taken in the early stages of life are preferable over cells collected later in life.

To democratise iPSC access, it is also important to expedite application research. We work closely with downstream partners, and support their iPSC-derived drug therapy development efforts by providing iPSCs to meet their needs. We also collaborate with downstream partners in the development of promising therapies including the use of T-cells for cancer therapy, cardiomyocytes for the treatment of heart disease, and neurocytes for neurological disease.

What is your outlook around boosting public-private stakeholders initiatives to encourage awareness on stem-cell-based therapeutics?

iPSC research has advanced tremendously over the past 16 years, and even more so since Dr Shinya Yamanakas Nobel Prize award in 2012. The acceleration of applied research is paving the way for stem cell-based therapeutics to become a common treatment modality in the near future. As human cell manufacturing requires specialised professional skills and knowledge, it is important to promote functional specialisation. These specialisations include donor recruiting, cell manufacturing (where I Peace is the key player), and implementing cell transplant as a medical practice. We believe that creating a systematic industry structure will build awareness and further drive the growth of stem cell-based therapy.

Can you brief Japans licensing key notes to manufacture and process clinical-grade cells in the region?

Japan enacted three laws to promote the use of regenerative medicine as a national policy:

1) The Regenerative Medicine Promotion Act -- representing the country's determination to promote regenerative medicine;

2) The Pharmaceuticals, Medical Devices, and Other Therapeutic Products Act (PMD Act); and

3) The Act on the Safety of Regenerative Medicine (RM Act). The U.S. also has various tracks such as the Regenerative Medicine Advanced Therapy (RMAT) Designation, Breakthrough Therapy designation, and Fast Track designation.

Of significance, the PMD Act enables a fast-track for regulatory approval of regenerative medicalproducts in Japan. In compliance with the RM Act, I Peace was audited by the PMDA and licensed by the Ministry of Health, Labour, and Welfare to manufacture specific cell products.

Because cell product manufacturing regulations are not standardised globally, cell therapy developers are forced to source GMP iPSCs for each market. I Peace however, has overcome this hurdle. We have built in compliance with global GMP regulations, including FDA's cGMP regulations per 21 CFR 210/211 in our operation. As a result, we can provide cells for global use in multiple markets, accelerating both product development and regulatory approval.

Hithaishi C Bhaskar

hithaishi.cb@mmactiv.com

View post:
"Stem cell-based therapeutics poised to become mainstream option - BSA bureau

Posted in Stem Cells | Comments Off on "Stem cell-based therapeutics poised to become mainstream option – BSA bureau

Indianapolis mother gives 13-year-old son with sickle cell disease a 2nd chance at life – WTHR

Posted: October 5, 2021 at 7:37 pm

Myles Glass has spent the past several years living life on the sidelines in a wheelchair, wishing for a better day. That day came in November 2020.

INDIANAPOLIS A 13-year-old boy living with sickle cell disease has been given a second chance at life, thanks to his mother.

Myles Glass has been through more in his young life than most adults. For the past few years, Glass has spent his days in and out of Riley Hospital for Children.

"[I] kind of have to look on the bright side of things. Being in the hospital, I meet new nurses and kids who go through what I go through. It's kind of hard to go through that at my age," Glass said.

He was diagnosed with sickle cell disease as a newborn. According to the Centers for Disease Control and Prevention, African Americans make up the largest number of people with the disease in the U.S.

Sickle cell disease is an inherited condition that impacts red blood cells and causes pain, infections and extreme fatigue. These symptoms keep Glass from doing things he loves.

"For him, it's kind of like we have to have him in a bubble," said his mother, Melissa Sanders.

Glass has spent the past several years living life on the sidelines in a wheelchair, wishing for a better day.

"[I would] hope that one day, I can do what kids do, like playing football and basketball," Glass said.

That day came in November 2020 when his mother donated bone marrow for a stem cell transplant, curing him of sickle cell disease.

"I was able to give him a second life with being a donor so that he can somewhat be a normal kid," Sanders said.

Riley Hospital for Children Dr. Seethal Jacob, who has been working with Glass and his family, said one baby every two minutes is born with sickle cell disease. She also said studies show there is a clear disparity for funding for this disease.

"There's been a lot of neglect when it comes to the disease itself. I think it's important to pay attention to the population it affects. I think that likely tells the story why sickle cell disease has been a neglected disease for so long," Jacob said.

Despite his challenges, Glass is staying positive and making strides in his physical therapy at Riley Hospital for Children.

"He's already been through harder things than most people will ever go through. I think anything else in life is going to be a piece of cake," said his physical therapist, Sarah Johnson.

"This gives me a glimpse of hope that even though you may have been diagnosed with this disease, it's not the end of the world," Sanders said.

For Glass, this is just the beginning. He hopes his story encourages other people living with sickle cell disease to keep moving forward.

"I know it's hard now, but you'll get through it. You'll be able to do what kids do your own age," Glass said.

Click here for more information on sickle cell disease and treatment options.

What other people are reading:

View post:
Indianapolis mother gives 13-year-old son with sickle cell disease a 2nd chance at life - WTHR

Posted in Stem Cells | Comments Off on Indianapolis mother gives 13-year-old son with sickle cell disease a 2nd chance at life – WTHR

StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – ABC 12 News

Posted: October 5, 2021 at 7:37 pm

SACRAMENTO, Calif., Oct. 5, 2021 /PRNewswire/ --StemExpress is proud to announce that they will be the official COVID-19 testing provider for 2021's Meeting on the Mesa, a hybrid event bringing together great minds in the cell and gene biotech sphere. It has partnered with Alliance for Regenerative Medicine to comply with the newly implemented California state COVID-19 vaccination and testing policy regarding gatherings with 1,000 or more attendees. This partnership will allow the vital in-person networking aspect of the event to commence while protecting the health and safety of participants and attendees.

In-person networking commences at the 2021 Cell and Gene Meeting on the Mesa with COVID-19 testing options provided by StemExpress.

As a leading global provider of human biospecimen products, StemExpress understands the incredible impact that Meeting on the Mesa has on the industry and has been a proud participant for many years. For over a decade, StemExpress has provided the cell and gene industry with vital research products and holds valued partnerships with many of this year's participants. As such, it understands the immense value that in-person networking provides and is excited to help bring this element back to the meeting safely and responsibly.

StemExpress has been a trusted provider of widescale COVID-19 testing solutions since early 2020 - providing testing for government agencies, public health departments, private sector organizations, and the public nationwide. For Meeting on the Mesa, StemExpress is offering convenient testing options for unvaccinated attendees and those traveling from outside of the country. Options will include take-home RT-PCR COVID Self-Testing Kits and on-site, rapid PCR testing for the duration of the event. The self-testing kit option allows attendees to test for COVID in the days leading up to the event for a seamless admission and the days following the event to confirm they haven't been exposed. The on-site rapid testing option utilizes the new Thermo Fisher Accula, offering in-person testing at the event with results in around 30 minutes. StemExpress is excited to bring these state-of-the-art COVID testing solutions to the frontlines of the Cell & Gene industry to allow for safe in-person connections.

The StemExpress partnership with Alliance for Regenerative Medicine seeks to empower the entire cell and gene industry with a long-awaited opportunity to return to traditional networking practices. It is well known that innovation doesn't exist in a vacuum - allowing great minds to come together is a sure way to spur scientific growth and advance cutting-edge research, giving hope for future cures.

Cell and Gene Meeting on the Mesa will take place October 12th, 2021, through October 14th, 2021, at Park Hyatt Aviara,7100 Aviara Resort Drive Carlsbad, CA 92011. To learn more about the event, please visit MeetingOnTheMesa.com.

For more information about COVID testing solutions for businesses and events, visit https://www.stemexpress.com/covid-19-testing/.

About StemExpress:

Founded in 2010 and headquartered in Sacramento, California, StemExpress is a leading global biospecimen provider of human primary cells, stem cells, bone marrow, cord blood, peripheral blood, and disease-state products. Its products are used for research and development, clinical trials, and commercial production of cell and gene therapies by academic, biotech, diagnostic, pharmaceutical, and contract research organizations (CRO's).

StemExpress has over a dozen global distribution partners and seven (7) brick-and-mortar cellular clinics in the United States, outfitted with GMP certified laboratories. StemExpress runs its own non-profit supporting STEM initiatives, college and high school internships, and women-led organizations. It is registered with the U.S. Food and Drug Administration (FDA) and is continuously expanding its network of healthcare partnerships, which currently includes over 50 hospitals in Europe and 3 US healthcare systems - encompassing 31 hospitals, 35 outpatient facilities, and over 200 individual practices and clinics.

StemExpress has been ranked by Inc. 500 as one of the fastest-growing companies in the U.S.

About the Alliance for Regenerative Medicine:

The Alliance for Regenerative Medicine (ARM) is the leading international advocacy organization dedicated to realizing the promise of regenerative medicines and advanced therapies. ARM promotes legislative, regulatory, reimbursement and manufacturing initiatives to advance this innovative and transformative sector, which includes cell therapies, gene therapies and tissue-based therapies. Early products to market have demonstrated profound, durable and potentially curative benefits that are already helping thousands of patients worldwide, many of whom have no other viable treatment options. Hundreds of additional product candidates contribute to a robust pipeline of potentially life-changing regenerative medicines and advanced therapies. In its 12-year history, ARM has become the voice of the sector, representing the interests of 400+ members worldwide, including small and large companies, academic research institutions, major medical centers and patient groups. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Media Contact: Anthony Tucker, atucker@stemexpress.com

View original content to download multimedia:

SOURCE StemExpress

Read this article:
StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa - ABC 12 News

Posted in Stem Cells | Comments Off on StemExpress Partners with the Alliance for Regenerative Medicine to Provide COVID-19 Testing for the Cell and Gene Meeting on the Mesa – ABC 12 News

Brazil investigates the use of stem cells in the treatment of covid-19 The Clare People – The Clare People

Posted: October 5, 2021 at 7:37 pm

On Friday (1), the National Health Surveillance Agency (Anvisa) approved a clinical study for a treatment with stem cells, aimed at patients with viral pneumonia due to covid-. Tests against the SARS-CoV-2 coronavirus should take place in 4 Brazilian states, including Paran, Rio Grande do Sul, Bahia and Rio de Janeiro.

In the Phase1/2 research, the safety and efficacy of potential advanced cell therapy is evaluated solutions based on human cells or genes, such as stem cells. According to Anvisa, the initial study of the treatment is sponsored by the Paran Association of Culture (APC) of the Pontifical Catholic University of Paran (PUC/PR).

Research by PUC Paran tests the efficacy and safety of stem cells against covid-1024 (Image: Reproduction/Andrea Piacquadio/Pexels)

In the study of stem cells against covid-, researchers will be able to recruit up to 60 volunteers. To participate, the person must have a diagnosis of viral pneumonia caused by the Sars-CoV-2 coronavirus, confirmed by RT-PCR tests, in a moderate or severe situation. In addition, you will be required to sign a consent form.

Want to catch up on the hottest tech news of the day? Go and subscribe to our new channel on youtube, Canaltech News.

Every day a summary of the main news of the tech world for you!

This is a phase 1/2a clinical trial with a mesenchymal stem cell-based product Allogeneic, with the main objective of evaluating the safety in the treatment of patients with pneumonia caused by SARS-CoV-2, informs Anvisa. In general, these cells are derived from the tissue of the umbilical cord (TCU) of newborns.

The following clinical centers participate in the study:

Hospital Espaol, in Salvador, Bahia;

Porto Alegre Hospital de Clnicas, in Porto Alegre, Rio Grande do Sul;

According to the safety data collected in the clinical trial, an independent committee will evaluate the continuity of the research. In addition, Anvisa highlighted that the aspects related to ethics in research with human beings were the evaluated and the trial was approved by the National Research Ethics Committee of the Ministry of Health (Conep/MS).

So far, Anvisa has not approved any treatment with stem cells for any of the phases of covid-1024. This is because no evidence has been presented to confirm the safety and efficacy, so far. In this sense, the use of such treatments can put people at serious risk and constitutes a sanitary and criminal offence.

For clinical use in the population, it is necessary that there is unequivocal proof of the safety, efficacy and quality of the products. During the development phase and through controlled research, the products are defined the clinical indications, the main adverse reactions observed, the special care with the patient during and after use, as well as the critical attributes of the products quality, completes the agency on the importance of regulation.

Source: Anvisa

Did you like this article?

Subscribe your email on Canaltech to receive daily updates with the latest news from the world of technology.

Read more:
Brazil investigates the use of stem cells in the treatment of covid-19 The Clare People - The Clare People

Posted in Stem Cells | Comments Off on Brazil investigates the use of stem cells in the treatment of covid-19 The Clare People – The Clare People

Faster healing of wounds can decrease pain and suffering and save lives – WWNY

Posted: October 5, 2021 at 7:36 pm

Published: Oct. 4, 2021 at 4:02 PM EDT

ORLANDO, Fla., Oct. 4, 2021 /PRNewswire/ --Billions of dollars are spent every year because of complications of wound healing. Researchers at the College of Medicine at the University of Central Florida (UCF) in Orlando have discovered a new technology to accelerate wound healing. Their research is published in the Life Cell Biology and Tissue Engineering Journal (https://pubmed.ncbi.nlm.nih.gov/34575027/). The UCF lab's research focus is to develop stem cell therapies for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, wound healing and ALS.

Researchers at the College of Medicine at UCF in Orlando have discovered a new technology to accelerate wound healing.

Dr. Frederick R Carrick, Professor of Neurology at the College of Medicine at UCF, reported that animals with wounds and injured stem cells that were placed on a special ceramic blanket healed much faster than controls. Gladiator Therapeutics manufactured the therapeutic ceramic blanket that was used in this research. The researchers reported that wounds in animals and in stem cells were both repaired significantly faster when they treated them with the ceramic blankets.

This research was designed and accepted for presentation at the USA Department of Defense's premier scientific meeting, the Military Health System Research Symposium (MHSRS). Dr Carrick stated that the new ceramic blankets do not need a power supply and are ideally suited for use in both combat and civilian wound treatments. Large wounds, such as those suffered in combat are easily infected and may result in increased suffering, disability and death amongst Warfighters. Faster healing of wounds can decrease pain and suffering and save lives.

The UCF College of Medicine research team is conducting ongoing research on the use of the Gladiator ceramic blanket in animal models of Alzheimer's and Parkinson's disease, traumatic brain injury and wound care. They have recently developed a new Alzheimer's therapy combining drugs that affect stem cells that increase the development of brain cells and improve brain function. The UCF lab is also the first to transplant stem cells isolated from the human brain to aged rats where they showed increased development of new brain cells and improvement of cognition.

Dr. Kiminobu Sugaya, Professor of Medicine at the UCF College of Medicine is excited about their findings. Dr. Sugaya stated that the benefits of using the Gladiator ceramic blanket are that it can be used anywhere without a power supply or the side effects that are commonly found when injecting chemicals or drugs.

Further information about this study:

drfrcarrick@post.harvard.edu 321-868-6464

View original content to download multimedia:

SOURCE University of Central Florida College of Medicine

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

See more here:
Faster healing of wounds can decrease pain and suffering and save lives - WWNY

Posted in Florida Stem Cells | Comments Off on Faster healing of wounds can decrease pain and suffering and save lives – WWNY

US FDA Approves Kite’s Tecartus as the First and Only Car T for Adults With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia | DNA RNA and…

Posted: October 5, 2021 at 7:36 pm

DetailsCategory: DNA RNA and CellsPublished on Monday, 04 October 2021 20:29Hits: 295

-- 65% of Patients Achieved Overall Complete Remission with Tecartus --

-- High Unmet Need: Fifty Percent of Adult Patients Will Relapse on Currently Available Treatments --

-- Approval Marks Kites Fourth Indication for its Cell Therapies and First in Leukemia --

SANTA MONICA, CA, USA I October 01, 2021 I Kite, a Gilead Company (Nasdaq: GILD), today announced the U.S. Food and Drug Administration (FDA) has granted approval for Tecartus (brexucabtagene autoleucel) for the treatment of adult patients (18 years and older) with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL). Following FDA Breakthrough Therapy Designation and a priority review, Tecartus is the first and only chimeric antigen receptor (CAR) T-cell therapy approved for adults (18 years and older) with ALL. There is a high unmet need, as half of this patient population will relapse, and median overall survival (OS) is only approximately eight months with current standard-of-care treatments. Patients can access Tecartus through 109 authorized treatment centers across the U.S.

Adults with ALL face a significantly poorer prognosis compared to children, and roughly half of all adults with B-ALL will relapse on currently available therapies, said Bijal Shah, MD, ZUMA-3 investigator and medical oncologist, Moffitt Cancer Center, Tampa, Florida. We now have a new meaningful advancement in treatment for these patients. A single infusion of Tecartus has demonstrated durable responses, suggesting the potential for long-term remission and a new approach to care.

The approval is based on results from ZUMA-3, a global, multicenter, single-arm, open-label study in which 65% of the evaluable patients (n=54) achieved complete remission (CR) or CR with incomplete hematological recovery (CRi) at a median actual follow-up of 12.3 months. The duration of CR was estimated to exceed 12 months for more than half the patients. Among efficacy-evaluable patients, median duration of remission (DOR) was 13.6 months. Among the patients treated with Tecartus at the target dose (n=78), Grade 3 or higher cytokine release syndrome (CRS) and neurologic events occurred in 26% and 35% of patients, respectively, and were generally well-managed.

Today marks Kites fourth FDA approved indication in cell therapy in under four years, demonstrating our commitment to advancing CAR T for patients across many different hematologic malignancies, said Christi Shaw, Chief Executive Officer of Kite. Tecartus has already transformed outcomes for adults living with mantle cell lymphoma, and we look forward to offering the hope for a cure to patients with ALL.

Adults with relapsed or refractory ALL often undergo multiple treatments including chemotherapy, targeted therapy and stem cell transplant. CAR T-cell therapy works differently, by harnessing a patients own immune system to fight cancer. With CAR T, the patients blood is drawn and the T cells are separated. Then the T cells are genetically engineered with a specific receptor that enables them to identify and attack cancer cells, and put back into the patients body.

Roughly half of all ALL cases actually occur in adults, and unlike pediatric ALL, adult ALL has historically had a poor prognosis, said Lee Greenberger, PhD, Chief Scientific Officer of The Leukemia & Lymphoma Society (LLS). Developing new therapies that would be life-changing for people with cancer has been a dream of LLS. We are proud to see the potential of CAR T realized for even more people with this approval for brexucabtagene autoleucel.

Tecartus is also currently under review in the European Union and United Kingdom for the treatment of adult patients with relapsed or refractory B-cell precursor ALL.

The Tecartus U.S. Prescribing Information has a BOXED WARNING for the risks of CRS and neurologic toxicities, and Tecartus is approved with a Risk Evaluation and Mitigation Strategy (REMS) due to these risks; see below for Important Safety Information.

Additional Information About ZUMA-3 Trial

Further efficacy results from the ZUMA-3 trial have been published and presented in scientific forums. Published Phase 1 data showed 32% of responders (n=22) were still in remission at the median follow-up of 22.1 months. In Phase 2 data presented at the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting, investigators reported that among treated patients (n=54), 31% of these patients were in ongoing response at a median follow-up of 16.4 months. 97% of responders had deep molecular remission, with undetectable minimal residual disease (MRD), and median OS among all responders has not yet been reached. A safety analysis, reported in the Lancet, showed among all patients who experienced a neurologic event, 94% of CRS events and 88% of neurologic events were resolved.

ZUMA-3 is an international multicenter, registrational Phase 1/2 study in adult patients (18 years old) with ALL whose disease is refractory to or has relapsed following first standard systemic therapy with remission of 12 months or less, after two or more lines of systemic therapy or at least 100 days after allogeneic stem cell transplantation. Seventy-one patients were enrolled (and leukapheresed) in the study, and the primary endpoint was overall complete remission rate (OCR, equaling complete remission plus complete remission with incomplete hematologic recovery) as determined by an independent review.

About ALL

ALL is an aggressive type of blood cancer that can also involve the lymph nodes, spleen, liver, central nervous system and other organs. Approximately 1,000 adults are treated annually for relapsed or refractory ALL. B-cell precursor ALL is the most common form, accounting for approximately 75% of cases, and treatment is typically associated with inferior outcomes compared with other types of ALL. Survival rates remain very poor in adult patients with relapsed or refractory ALL, with median OS at less than eight months.

About Tecartus

Tecartus is an autologous, anti-CD19 CAR T-cell therapy. Tecartus uses the XLP manufacturing process that includes T cell enrichment, a necessary step in certain B-cell malignancies in which circulating lymphoblasts are a common feature. Tecartus is also being evaluated in pediatric ALL, where its use is investigational, and its safety and efficacy have not been established.

About Kite

Kite, a Gilead Company, is a global biopharmaceutical company based in Santa Monica, California, with commercial manufacturing operations in North America and Europe. Kites singular focus is cell therapy to treat and potentially cure cancer. As the cell therapy leader, Kite has more approved CAR T indications to help more patients than any other company. For more information on Kite, please visit http://www.kitepharma.com.

About Gilead Sciences

Gilead Sciences, Inc. is a biopharmaceutical company that has pursued and achieved breakthroughs in medicine for more than three decades, with the goal of creating a healthier world for all people. The company is committed to advancing innovative medicines to prevent and treat life-threatening diseases, including HIV, viral hepatitis and cancer. Gilead operates in more than 35 countries worldwide, with headquarters in Foster City, California.

Tecartus Indication

Tecartus is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of:

This indication is approved under accelerated approval based on overall response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.

SOURCE: Kite Pharma

Link:
US FDA Approves Kite's Tecartus as the First and Only Car T for Adults With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia | DNA RNA and...

Posted in Florida Stem Cells | Comments Off on US FDA Approves Kite’s Tecartus as the First and Only Car T for Adults With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia | DNA RNA and…

Losing Your Hair? You Might Blame the Great Stem Cell Escape. – The New York Times

Posted: October 5, 2021 at 7:35 pm

Every person, every mouse, every dog, has one unmistakable sign of aging: hair loss. But why does that happen?

Rui Yi, a professor of pathology at Northwestern University, set out to answer the question.

A generally accepted hypothesis about stem cells says they replenish tissues and organs, including hair, but they will eventually be exhausted and then die in place. This process is seen as an integral part of aging.

Instead Dr. Yi and his colleagues made a surprising discovery that, at least in the hair of aging animals, stem cells escape from the structures that house them.

Its a new way of thinking about aging, said Dr. Cheng-Ming Chuong, a skin cell researcher and professor of pathology at the University of Southern California, who was not involved in Dr. Yis study, which was published on Monday in the journal Nature Aging.

The study also identifies two genes involved in the aging of hair, opening up new possibilities for stopping the process by preventing stem cells from escaping.

Charles K.F. Chan, a stem cell researcher at Stanford University, called the paper very important, noting that in science, everything about aging seems so complicated we dont know where to start. By showing a pathway and a mechanism for explaining aging hair, Dr. Yi and colleagues may have provided a toehold.

Stem cells play a crucial role in the growth of hair in mice and in humans. Hair follicles, the tunnel-shaped miniature organs from which hairs grow, go through cyclical periods of growth in which a population of stem cells living in a specialized region called the bulge divide and become rapidly growing hair cells.

Sarah Millar, director of the Black Family Stem Cell Institute at the Icahn School of Medicine at Mount Sinai, who was not involved in Dr. Yis paper, explained that those cells give rise to the hair shaft and its sheath. Then, after a period of time, which is short for human body hair and much longer for hair on a persons head, the follicle becomes inactive and its lower part degenerates. The hair shaft stops growing and is shed, only to be replaced by a new strand of hair as the cycle repeats.

But while the rest of the follicle dies, a collection of stem cells remains in the bulge, ready to start turning into hair cells to grow a new strand of hair.

Dr. Yi, like most scientists, had assumed that with age the stem cells died in a process known as stem cell exhaustion. He expected that the death of a hair follicles stem cells meant that the hair would turn white and, when enough stem cells were lost, the strand of hair would die. But this hypothesis had not been fully tested.

Together with a graduate student, Chi Zhang, Dr. Yi decided that to understand the aging process in hair, he needed to watch individual strands of hair as they grew and aged.

Ordinarily, researchers who study aging take chunks of tissue from animals of different ages and examine the changes. There are two drawbacks to this approach, Dr. Yi said. First, the tissue is already dead. And it is not clear what led to the changes that are observed or what will come after them.

He decided his team would use a different method. They watched the growth of individual hair follicles in the ears of mice using a long wavelength laser that can penetrate deep into tissue. They labeled hair follicles with a green fluorescent protein, anesthetized the animals so they did not move, put their ear under the microscope and went back again and again to watch what was happening to the same hair follicle.

What they saw was a surprise: When the animals started to grow old and gray and lose their hair, their stem cells started to escape their little homes in the bulge. The cells changed their shapes from round to amoeba-like and squeezed out of tiny holes in the follicle. Then they recovered their normal shapes and darted away.

Sometimes, the escaping stem cells leapt long distances, in cellular terms, from the niche where they lived.

If I did not see it for myself I would not have believed it, Dr. Yi said. Its almost crazy in my mind.

The stem cells then vanished, perhaps consumed by the immune system.

Dr. Chan compared an animal's body to a car. If you run it long enough and dont replace parts, things wear out, he said. In the body, stem cells are like a mechanic, providing replacement parts, and in some organs like hair, blood and bone, the replacement is continual.

But with hair, it now looks as if the mechanic the stem cells simply walks off the job one day.

But why? Dr. Yi and his colleagues next step was to ask if genes are controlling the process. They discovered two FOXC1 and NFATC1 that were less active in older hair follicle cells. Their role was to imprison stem cells in the bulge. So the researchers bred mice that lacked those genes to see if they were the master controllers.

By the time the mice were 4 to 5 months old, they started losing hair. By age 16 months, when the animals were middle-aged, they looked ancient: They had lost a lot of hair and the sparse strands remaining were gray.

Now the researchers want to save the hair stem cells in aging mice.

This story of the discovery of a completely unexpected natural process makes Dr. Chuong wonder what remains to be learned about living creatures.

Nature has endless surprises waiting for us, he said. You can see fantastic things.

Read the original here:
Losing Your Hair? You Might Blame the Great Stem Cell Escape. - The New York Times

Posted in New York Stem Cells | Comments Off on Losing Your Hair? You Might Blame the Great Stem Cell Escape. – The New York Times

Healthcare Researchers Are Putting HUMAN Immune Systems In Pigs To Study Illnesses-Here’s The Tech Behind It – Tech Times

Posted: October 5, 2021 at 7:35 pm

RJ Pierce, Tech Times 05 October 2021, 09:10 am

Healthcare research has gone a long way from the dark days of old, when today's simplest illnesses can be a death sentence. And now, there's reason to look forward to a brighter future because of this news.

(Photo : Getty Images )

According to BigThink, a team from Iowa State University claimed that they've found a way to integrate human immune systems in pigs, as a way to study illnesses much closer.

In other words, they basically "humanized" the pigs to try and find out how to better treat human diseases in the future.

The implications of their research are quite profound, too. As per the researchers, this breakthrough could theoretically advance healthcare research in areas such as virus and vaccines, cancer, and even stem cell treatments.

Before this, scientists often used mice in their biotech and biomedical experiments. However, the problem is that mice-based results don't translate well to humans.

Aside from mice, primates have also been used in related fields of healthcare research due to their direct biological connections with humans. Nevertheless, a lot of ethical issues popped up, thus leading to the retirement of primates, including chimpanzees, from this type of research eight years ago.

This won't be the first time that healthcare research has produced what's basically human-animal hybrids to study illnesses.

Three years ago, a team of scientists from Rockefeller University in New York managed to create a human-chicken embryo, in an attempt to take a closer look at the intricacies of stem cell therapies.

Read also: Scientists Want To Create Part-Human Part-Animal Chimeras To Find Cure For Diseases

It started when the same scientists from Iowa State University discovered a genetic mutation in pigs that caused an illness called SCID (Severe Combined Immunodeficiency).

Some people may know this from the film "The Boy In The Plastic Bubble" from 1976, which tells the story of a child whose immune system never fully developed. As such, he was forced to literally live inside a sterile bubble because even the slightest cold would kill him.

Upon this discovery, the researchers then developed a pig that's far more immunocompromised compared to a person with SCID, then successfully "humanized" it by injecting human immune stem cells into the livers of piglets.

The researchers were able to do this by using ultrasound imaging as a guide.

Ultrasound imaging, also known as sonography, makes use of high-frequency waves to look inside the body.

(Photo : Getty Images )

The resulting pigs had excellent healthcare research potential, because they were found to have human immune cells in their blood, thymus gland, spleen, and liver.

However, the SCID-afflicted pigs are in constant danger of infections. As such, they have to be housed in so-called bubble biocontainment facilities. These facilities work by maintaining high positive pressure, which keeps dangerous pathogens out. All staff members have to wear sterile protective gear at all times.

They've basically turned into their own versions of the boy in the bubble.

Before this research, pigs have often been used to know more about the human body because of how strikingly similar their anatomy is to humans.

In fact, a few scientists even believe that with how biologically similar pigs are to humans, they might be classified into an animal family occupied by primates, reportedScience.org.au.

But of course, there have been ethical issues involving the use of these human-animal hybrids for healthcare research. Eventually, though, the National Institutes of Health (NIH) relaxed their regulations a bit back in 2016, which made it easier for scientists to transfer human stem cells into animal embryos.

Related: Scientists Grow Sheep Embryos With Human Cells To Revolutionize Organ Transplant

This article is owned by Tech Times

Written by RJ Pierce

2021 TECHTIMES.com All rights reserved. Do not reproduce without permission.

The rest is here:
Healthcare Researchers Are Putting HUMAN Immune Systems In Pigs To Study Illnesses-Here's The Tech Behind It - Tech Times

Posted in New York Stem Cells | Comments Off on Healthcare Researchers Are Putting HUMAN Immune Systems In Pigs To Study Illnesses-Here’s The Tech Behind It – Tech Times

Page 646«..1020..645646647648..660670..»