Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418426 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bauer, T. R. Jr. et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 108, 33133320 (2006).
Article CAS PubMed PubMed Central Google Scholar
Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4years. Science 270, 475480 (1995).
Article CAS PubMed Google Scholar
Boztug, K. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med. 363, 19181927 (2010).
Article CAS PubMed PubMed Central Google Scholar
Cowan, M. J. et al. Early outcome of a phase I/II clinical trial (NCT03538899) of gene-corrected autologous CD34+ hematopoietic cells and low-exposure busulfan in newly diagnosed patients with Artemis-deficient severe combined immunodeficiency (ART-SCID). Biol. Blood Marrow Transpl. 26, S88S89 (2020).
Article Google Scholar
Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 21812187 (2004).
Article CAS PubMed Google Scholar
Kanter, J. et al. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N. Engl. J. Med. 386, 617628 (2022).
Article CAS PubMed Google Scholar
Kohn, L. A. & Kohn, D. B. Gene therapies for primary immune deficiencies. Front. Immunol. 12, 648951 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev. Immunol. 21, 759806 (2003).
Article CAS PubMed Google Scholar
Locatelli, F. et al. Betibeglogene autotemcel gene therapy for non-0/0 genotype -thalassemia. N. Engl. J. Med. 386, 415427 (2022).
Article CAS PubMed Google Scholar
Malech, H. L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl Acad. Sci. USA 94, 1213312138 (1997).
Article CAS PubMed PubMed Central Google Scholar
Morgan, R. A., Gray, D., Lomova, A. & Kohn, D. B. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574590 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 1709517105 (2018).
Article CAS PubMed PubMed Central Google Scholar
Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 29382944 (2023).
Article CAS PubMed PubMed Central Google Scholar
Sou, K., Goins, B., Oyajobi, B. O., Travi, B. L. & Phillips, W. T. Bone marrow-targeted liposomal carriers. Expert Opin. Drug Deliv. 8, 317328 (2011).
Article CAS PubMed PubMed Central Google Scholar
Sou, K., Klipper, R., Goins, B., Tsuchida, E. & Phillips, W. T. Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute. J. Pharmacol. Exp. Ther. 312, 702709 (2005).
Article CAS PubMed Google Scholar
Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 99269937 (2022).
Article CAS PubMed Google Scholar
Boulais, P. E. & Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood 125, 26212629 (2015).
Article CAS PubMed PubMed Central Google Scholar
Ikonomi, N., Kuhlwein, S. D., Schwab, J. D. & Kestler, H. A. Awakening the HSC: dynamic modeling of HSC maintenance unravels regulation of the TP53 pathway and quiescence. Front. Physiol. 11, 848 (2020).
Article PubMed PubMed Central Google Scholar
Li, J. Quiescence regulators for hematopoietic stem cell. Exp. Hematol. 39, 511520 (2011).
Article PubMed Google Scholar
Man, Y., Yao, X., Yang, T. & Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front. Cell Dev. Biol. 9, 621214 (2021).
Article PubMed PubMed Central Google Scholar
Nakamura-Ishizu, A., Takizawa, H. & Suda, T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141, 46564666 (2014).
Article CAS PubMed Google Scholar
Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 10861093 (2011).
Article CAS PubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645648 (1994).
Article CAS PubMed Google Scholar
Mandal, T., Beck, M., Kirsten, N., Linden, M. & Buske, C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci. Rep. 8, 989 (2018).
Article PubMed PubMed Central Google Scholar
Pei, S. & Jordan, C. T. How close are we to targeting the leukemia stem cell? Best Pract. Res. Clin. Haematol. 25, 415418 (2012).
Article CAS PubMed Google Scholar
Li, C. et al. Prophylactic in vivo hematopoietic stem cell gene therapy with an immune checkpoint inhibitor reverses tumor growth in syngeneic mouse tumor models. Cancer Res. 80, 549560 (2020).
Article CAS PubMed Google Scholar
Li, C. et al. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal globin in beta-YAC mice. Blood Adv. 5, 11221135 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, C. et al. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol. Ther. 29, 822837 (2021).
Article CAS PubMed Google Scholar
Li, C. et al. Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Mol. Ther. Methods Clin. Dev. 24, 127141 (2022).
Article PubMed Google Scholar
Psatha, N. et al. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 138, 15401553 (2021).
Article CAS PubMed PubMed Central Google Scholar
Muruve, D. A., Barnes, M. J., Stillman, I. E. & Libermann, T. A. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum. Gene Ther. 10, 965976 (1999).
Article CAS PubMed Google Scholar
Sweeney, C. L. & De Ravin, S. S. The promise of in vivo HSC prime editing. Blood 141, 20392040 (2023).
Article CAS PubMed Google Scholar
Worgall, S., Wolff, G., Falck-Pedersen, E. & Crystal, R. G. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther. 8, 3744 (1997).
Article CAS PubMed Google Scholar
Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchennes muscular dystrophy. N. Engl. J. Med. 389, 12031210 (2023).
Article CAS PubMed Google Scholar
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 10781094 (2021).
Article CAS PubMed PubMed Central Google Scholar
Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313320 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282300 (2023).
Article CAS PubMed PubMed Central Google Scholar
Farbiak, L. et al. All-in-one dendrimer-based lipid nanoparticles enable precise HDR-mediated gene editing in vivo. Adv. Mater. 33, e2006619 (2021).
Article PubMed PubMed Central Google Scholar
Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701710 (2021).
Article CAS PubMed PubMed Central Google Scholar
Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 2132121330 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265291 (2023).
Article CAS PubMed Google Scholar
Wei, T., Cheng, Q., Min, Y. L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777787 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wu, L. C. et al. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 108, 11831188 (2006).
Article CAS PubMed PubMed Central Google Scholar
Metais, J. Y. et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 3, 33793392 (2019).
Article PubMed PubMed Central Google Scholar
Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295302 (2021).
Article CAS PubMed PubMed Central Google Scholar
Stavropoulou, V., Peters, A. & Schwaller, J. Aggressive leukemia driven by MLL-AF9. Mol. Cell Oncol. 5, e1241854 (2018).
Article PubMed Google Scholar
Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 4146 (2020).
Article CAS PubMed PubMed Central Google Scholar
See the rest here:
Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells - Nature.com