Page 710«..1020..709710711712..720730..»

New CRISPR/Cas9 Plant Genetics Technology to Improve Agricultural Yield and Resist the Effects of Climate Change – SciTechDaily

Posted: July 6, 2021 at 1:59 am

Arabidopsis plants were used to develop the first CRISPR-Cas9-based gene drive in plants. Credit: Zhao Lab, UC San Diego

New technology designed to breed more robust crops to improve agricultural yield and resist the effects of climate change.

With a goal of breeding resilient crops that are better able to withstand drought and disease, University of California San Diego scientists have developed the first CRISPR-Cas9-based gene drive in plants.

While gene drive technology has been developed in insects to help stop the spread of vector-borne diseases such as malaria, researchers in Professor Yunde Zhaos lab, along with colleagues at the Salk Institute for Biological Studies, demonstrated the successful design of a CRISPR-Cas9-based gene drive that cuts and copies genetic elements inArabidopsisplants.

Breaking from the traditional inheritance rules that dictate that offspring acquire genetic materials equally from each parent (Mendelian genetics), the new research uses CRISPR-Cas9 editing to transmit specific, targeted traits from a single parent in subsequent generations. Such genetic engineering could be used in agriculture to help plants defend against diseases to grow more productive crops. The technology also could help fortify plants against the impacts of climate change such as increased drought conditions in a warming world.

A schematic representation of a new plant gene drive using CRISPR/Cas9 technology. Credit: Zhao Lab, UC San Diego

The research, led by postdoctoral scholar Tao Zhang and graduate student Michael Mudgett in Zhaos lab, ispublished in the journalNature Communications.

This work defies the genetic constraints of sexual reproduction that an offspring inherits 50% of their genetic materials from each parent, said Zhao, a member of the Division of Biological Sciences Section of Cell and Developmental Biology. This work enables inheritance of both copies of the desired genes from only a single parent.The findings can greatly reduce the generations needed for plant breeding.

The study is the latest development by researchers in theTata Institute for Genetics and Society(TIGS) at UC San Diego, which was built upon the foundation of anew technology called active genetics with potential to influence population inheritance in a variety of applications.

Developing superior crops through traditional genetic inheritance can be expensive and time-consuming as genes are passed through multiple generations. Using the new active genetics technology based on CRISPR-Cas9, such genetic bias can be achieved much more quickly, the researchers say.

I am delighted that this gene drive success, now achieved by scientists affiliated with TIGS in plants, extends the generality of this work previously demonstrated at UC San Diego, to be applicable in insects and mammals, said TIGS Global Director Suresh Subramani. This advance will revolutionize plant and crop breeding and help address the global food security problem.

Reference: Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis by Tao Zhang, Michael Mudgett, Ratnala Rambabu, Bradley Abramson, Xinhua Dai, Todd P. Michael and Yunde Zhao, 22 June 2021, Nature Communications.DOI: 10.1038/s41467-021-24195-5

Coauthors of the paper include: Tao Zhang, Michael Mudgett, Ratnala Rambabu, Bradley Abramson, Xinhua Dai, Todd Michael and Yunde Zhao.

The research was funded by TIGS-UC San Diego and a training grant from the National Institutes of Health.

Original post:
New CRISPR/Cas9 Plant Genetics Technology to Improve Agricultural Yield and Resist the Effects of Climate Change - SciTechDaily

Posted in Genetics | Comments Off on New CRISPR/Cas9 Plant Genetics Technology to Improve Agricultural Yield and Resist the Effects of Climate Change – SciTechDaily

Study finds differences in APOE 4 expression based on genetic ancestry – National Institute on Aging

Posted: July 6, 2021 at 1:59 am

Research has shown that changes in certain genes can increase a persons risk of developing Alzheimers disease (AD). The strongest known genetic risk factor for AD is a form of the apolipoprotein E (APOE) gene called APOE 4. APOE helps carry cholesterol and other fats in the bloodstream, and problems in this process are thought to contribute to AD. NIA-supported researchers recently found that the level of APOE in the brain is dependent on the individuals genetic ancestry surrounding the APOE gene. Led by a team at the University of Miami, these study results were published in Alzheimers & Dementia on Feb. 1.

Everyone inherits two copies of the APOE gene, one from each biological parent. There are three forms, or variants, of APOE that have been shown to alter risk for AD: APOE 2, APOE 3, and APOE 4. On average, people of European ancestry who inherit two copies of APOE 4 have about 10 times the risk of AD compared with people who have only the other two variants. Interestingly, researchers have known for some time that carriers of APOE 4 in African ancestry populations, such as Africans and African Americans, have a lower risk for developing AD than European carriers, while carriers of APOE 4 from Asia have a much higher risk for AD from APOE 4 than Europeans. Earlier studies by the University of Miami researchers in individuals who had both European and African ancestries found that it was the genetic ancestry surrounding the APOE gene that determined the risk, not the gene itself. That is, if a person inherited their APOE 4 gene from their African ancestor, they had the African risk for AD; if they inherited it from their European ancestor, they had the European risk for AD. In the new study, researchers wanted to find out how the same gene variant can cause different levels of risk based on genetic ancestry.

The researchers tested whether genetic ancestry affects the expression of the APOE gene in the brain. They used a technique called single-nucleus RNA sequencing to measure how many APOE transcripts, or RNA copies of the gene, were in each individual cell in the brain. Because a genes transcripts have the instructions to make protein, this measurement gives an estimate of how much APOE protein is being produced in these cells. The researchers tested autopsy brain tissue samples from AD patients: four patients of African ancestry who had inherited APOE 4 from African ancestors and seven non-Hispanic white patients who had inherited APOE 4 from their European ancestors.

On average, the researchers found that cells in the brains of patients with European genetic ancestry surrounding APOE 4 had almost 40% more APOE transcripts than the samples from individuals who had African genetic ancestry surrounding APOE 4. Samples from the European genetic ancestry surrounding APOE 4 also had more of a type of brain cell called A1 reactive astrocytes, which are thought to be involved in the cellular degeneration process of AD. These reactive astrocytes produced the highest levels of APOE 4 expression compared to other cell types. The researchers hypothesize that the region of DNA surrounding APOE 4, which differs between people with European ancestry and people with African ancestry, has important information, such as regulatory elements, that controls how much APOE is produced.

The authors note that they had a small sample size because autopsy brain samples from individuals of African ancestry with AD are scarce. They emphasize that to advance the field of Alzheimers research, it is important to encourage people from all ancestral backgrounds to participate in clinical and genetic research, including tissue donation. The studys results could help researchers develop ways to block APOE 4 activity to reduce the risk of AD in people who have this gene variant.

This research was supported in part by NIA grants R01-AG059018, U01-AG052410, RF1-AG054074, U01-AG057659, P50-AG0256878, and P30-AG013854.

These activities relate to NIHs AD+ADRD Research Implementation Milestone 2.G, Maximize the translational potential of genetics research by ensuring rapid and broad sharing of large-scale genetic/genomic data.

Reference: Griswold AJ, et al. Increased APOE 4 expression is associated with the difference in Alzheimers disease risk from diverse ancestral backgrounds. Alzheimers & Dementia. 2021. ePub Feb 1. doi: 10.1002/alz.12287.

Read more from the original source:
Study finds differences in APOE 4 expression based on genetic ancestry - National Institute on Aging

Posted in Genetics | Comments Off on Study finds differences in APOE 4 expression based on genetic ancestry – National Institute on Aging

Newly Discovered Genetic Mutations May Increase Risk for Lou Gehrig’s Disease – University of Utah Health Sciences

Posted: July 6, 2021 at 1:59 am

Jul 01, 2021 5:30 PM

Author: Doug Dollemore

During his 17-year career with the New York Yankees, Lou Gehrig was famed for his prowess as a hitter and for his durability on the baseball field, which earned him his nickname "The Iron Horse. Then, mysteriously, in 1938, his iron body began to figuratively rust. He couldnt run, hit, or field his position as well as he once did. When doctors finally diagnosed his condition, the news was devastating.

Gehrig had amyotrophic lateral sclerosis (ALS), a rare progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. People who have ALS gradually lose their ability to control muscle movement. Eventually, the condition, now often referred to as Lou Gehrigs disease, leads to total paralysis and death. Then, as now, there is no cure.

In the 80 years since Gehrigs death at age 37, scientists have sought to unravel what causes the disease and develop better treatments for it.

In the latest advance, University of Utah Health researchers have detected a set of genetic mutations that appear to increase a persons risk of developing ALS. They say the discovery of mutations in TP73, a gene that has never been associated with ALS before, could help scientists develop new therapies to slow or even stop the progression of the disease.

Its really a novel discovery that suggests a very different pathway for the onset of at least some cases of ALS that hasnt been explored before, says Lynn Jorde, Ph.D., chair of the Department of Human Genetics at U of U Health and the senior author of the study. From a scientific standpoint, its going to provide us with a more complete picture of what is going wrong in ALS and expand our understanding of what can be done to mitigate its devastating consequences.

The study appears in Neurology, the medical journal of the American Academy of Neurology.

"From a scientific standpoint, its going to provide us with a more complete picture of what is going wrong in ALS and expand our understanding of what can be done to mitigate its devastating consequences."

About 85% of ALS cases are sporadic, meaning that no one in a patients family has a history of the disease. However, researchers suspect that up to 61% of sporadic ALS cases are influenced by genetic factors. But detecting those factors has been challenging.

In the past, it has been difficult to determine ALS-causing genes because only recently has sequencing technology advanced enough to feasibly sequence many patients, says Kristi L. Russell, a graduate research assistant at U of U Health and lead author of the study. Additionally, many mutations in a single patient could be considered deleterious, so one must test the candidate mutations in animal models or cell culture, an incredibly time-consuming process.

For this study, Jorde, Russell, and colleagues analyzed blood samples provided by 87 people with sporadic ALS who were being treated at U of U Health. Using a technique called exome sequencing, which zeroes in on the protein-coding regions within genes, they found five people who had rare, deleterious mutations in the TP73 gene, which plays a key role in apoptosis or programmed cell death. Then, the researchers studied data from 2,900 other sporadic ALS patients from the Utah Heritage 1K Project and the ALSdb cohort. Within these groups, they identified 24 different, rare protein-coding variants in TP73.

When the researchers did a similar analysis among 324 people who did not have ALS, the patient mutations in TP73 were not present.

In subsequent laboratory studies, knocking out or disabling TP73 in zebrafish impaired the development of nerve cells in a way that mimicked what appears to occur in ALS. Like in ALS, the zebrafish had fewer motor neurons and shorter axons, nerve fibers that transmit electrical impulses from neurons to muscle cells. This shortening could impede the axons ability to transmit impulses. Shorter axons transmit these impulses far less efficiently.

During their experiments, the researchers also found evidence that mutant TP73, which normally inhibits apoptosis in motor neurons, doesnt work properly. As a result, they suspect that apoptosis is more likely to occur.

It seems that mutant TP73 disrupts apoptosis, which leads to more neuronal death, Russell says. Many biological pathways have been implicated in ALS progression, but our study highlights the underappreciated role of apoptosis in ALS pathology. Apoptosis could potentially become a new focus or target for treatment drug screens.

More here:
Newly Discovered Genetic Mutations May Increase Risk for Lou Gehrig's Disease - University of Utah Health Sciences

Posted in Genetics | Comments Off on Newly Discovered Genetic Mutations May Increase Risk for Lou Gehrig’s Disease – University of Utah Health Sciences

4 new weed products to try from Compound Genetics, Papa & Barkley, and more – Weedmaps News

Posted: July 6, 2021 at 1:59 am

With so many great cannabis brands releasing exciting new products in new markets, it can be hard to keep track of every release. So we're rounding up a few significant releases. This week, we look at releases by Insane, Kal, and more.

Insane just came out with a new strain available at all Dr. Greenthumb dispensaries in California. Stuffed French Toast is a cross between Paris OG and Faceoff OG, and appeals to the wake 'n' bake crowd with a flavor profile of cinnamon, pine, and orange, tasting just like the breakfast staple it was named after.

Available: California

California-based topicals brand Papa & Barkley just announced infused THC capsules to its lineup. The two-ingredient, whole-plant THC Releaf Capsules are made from coconut and cannabis oils and contain 25 to 50 milligrams of THC.

Available: California

Compound Genetics started dropping three strains at the June 26 grand opening of the Cookies Santa Ana location. These strains include Apples and Bananas, Gummiez, dropping on July 1, and Pav, which was made in collaboration with rapper Quavo.

Available: California

Kal will be dropping new flavors on July 2 in its seltzer line in time for summer. Each 12-ounce can of Kal contains 15 milligrams of hemp-derived CBD and 2 grams of sugar. The new flavors include black cherry, ruby red grapefruit, ginger lemonade, and blood orange mango.

Available: Nationwide

High Tales, a video series produced by Monogram, the cannabis line from Jay-Z, just dropped its latest episode featuring rapper Curren$y. The episode shows Curren$y's very own grilled-cheese recipe, along with weed-related stories he's experienced throughout his life and career.

Available: Nationwide

Featured image by Gina Coleman/Weedmaps

Hannah is a Seattle-based writer and editor. Shes worked in the cannabis industry for three years and continues to learn and explore.

More:
4 new weed products to try from Compound Genetics, Papa & Barkley, and more - Weedmaps News

Posted in Genetics | Comments Off on 4 new weed products to try from Compound Genetics, Papa & Barkley, and more – Weedmaps News

Genetic mapping of subsets of patients with fragile X syndro | TACG – Dove Medical Press

Posted: July 6, 2021 at 1:59 am

Introduction

Fragile X syndrome (FXS), OMIM # 300624, is a X-linked inherited genetic disease classified as a triplet repeat condition. FXS is the most common cause of inherited intellectual disability and autism in the world. It has a prevalence of 1 in 5000 men and 1 in 8000 women. Affected individuals are characterized by intellectual disability, autism, language deficit, typical facies, and macroorchidism.1,2

Alterations in the FMR1 gene with locus Xq27.3 are causative of Fragile X Syndrome and other disorders. This gene harbors a CGG repeat within the 5 untranslated region and, depending on the number of repetitions, 4 types of alleles are defined with different clinical manifestations:3 Normal alleles, which have up to 44 CGG repeats; grey zone or intermediate alleles that contain between 45 and 54 repeats; premutation (PM) alleles with between 55 and 200 repeats; and full mutation (FM) alleles, with more than 200 repeats. In most cases, this is due to an expansion of the CGG triplet from one generation to the next.4

The Fragile Mental Retardation Protein (FMRP) is coded by the FMR1 gene. The absence of FMRP expression is usually secondary to the methylation of the FMR1 gene that occurs when more than 200 CGG repeats are present in the 5UTR region; this can also be explained by a point mutation in the coding region for FMR1 or a deletion that includes this gene, but these changes have only been reported in a few cases. The absence of FMRP is related to the classic FXS phenotype.5,6

FMRP expression is slightly lower in the carriers of a PM allele. Lower levels of FMRP are found particularly in the upper premutation (PM) range however, they typically do not present the classic FXS syndrome phenotype.7 Furthermore, they have elevated FMR1 mRNA levels between 2 to 8 times normal levels, which also leads to RNA toxicity. These elevated levels of mRNA are a risk for a number of medical conditions that are not explained by decreased FMRP.2,4,8

FMRP has roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation9,10 and for certain subgroups of cerebral transcripts.11

This protein is involved in the regulation of RNA stability, subcellular transport and translation of neural mRNAs that codify proteins involved in synapsis development, neural plasticity and brain development.8

In addition, FMRP interacts with at least 180 proteins expressed in the brain and connective tissue. This interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and other novel FMRP-interacting candidate proteins located in different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1 and TRIM28. This interactome suggests that, besides its known functions, FMRP is involved in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis and mitochondrial organization.9

Several studies have shown that in the absence of FMRP, a wide range of neural mRNAs are affected, boosting neural protein synthesis, which results in dendritic spine dysmorphogenesis and glutamate/GABA imbalance, which in turn produce variations in neural excitation/inhibition, phenomena that are present in FXS. Dendritic spine dysmorphogenesis plays a role in the intellectual deficits and behavioral problems, due to the weak synaptic connections found in this syndrome.12,13

Fragile X syndrome (FXS) has incomplete penetrance and variable expressivity and biological sex is a decisive factor of the phenotype. Full mutation of the FMR1 gene has a 100% penetrance of intellectual disability in males and 60% in females. Other characteristics associated with FXS Appear with varying frequencies in affected individuals. Autism spectrum disorder (ASD) symptoms appear during early childhood in 50% to 60% of males and 20% of females with FXS.1417

Physical features include elongated face, large and prominent ears (7578% of affected males), mandibular prognathism (80% of adult men), hyperlaxity and macroorchidism (95% of adult men). Other characteristics also vary in their frequency of presentation: seizures (23%), strabismus (8%), and cardiac abnormalities such as abnormal aortic root dimensions (18%) and mitral valve prolapse (55%). In general, the female phenotype is less severe and less specific.4,18

The variation in the phenotype of monogenic diseases is common,19,20 it is explained by a combination of genetic, environmental, and lifestyle factors,21 and FXS is not an exception.

Here, we present a review of the knowledge about the molecular factors involved in the variable expressivity of FXS.

The presence of a full mutation in FMR1 is associated with the hypermethylation of a CpG island located in the promoter of the FMR1 gene. Methylation of DNA regions (mDNA) is one of the main epigenetic modifications related to transcription regulation.22 A CpG island is located proximal to the CGG repeat tract, which is expanded in FXS. Hypermethylation of the CpG island generates transcriptional silencing of the FMR1 gene.23 As a consequence, the Fragile Mental Retardation Protein (FMRP), codified by the FMR1 gene, is not produced24 and in turn, the absence or low expression of FMRP causes FXS.

CGG tract repetition expansion in the untranslated region (UTR) of exon 1 in the FMR1 gene generates instability of that region during the replication process, inducing size mosaicism, which is defined as the presence of premutation and mutation alleles in several cells.25

In males with FXS caused by full mutation, the detection of FMR1 mRNA levels in peripheral blood lymphocytes is common. This phenomenon is due to both size mosaicism and mDNA in the CpG island and nearby regions that vary between cells and tissues.26 Furthermore, longitudinal studies in women with FXS have shown that levels of mRNA transcribed from FMR1 decrease significantly with age.23 Complicating even more the behavior of mDNA and FXS, it has been found that in premutation alleles, a considerable number of cells have mDNA.27 The variation between methylation states of the CpG island and nearby regions among different cells and tissue of the same person is known as methylation mosaicism.28 It is estimated that around 50% of people with FXS have this type of mosaicism.29 In cells where mutated alleles are not methylated, they are transcriptionally active and can be expressed.30 However, in these cells there is no FMRP synthesis since mRNA with CGG expansion greater than 200 repeats is not translated efficiently in ribosomes.31,32

The absence or low levels of FMRP is a decisive factor for FXS development, as several studies have aimed to discover the relationship between protein levels and phenotypic characteristics of the patients. Since the late 1990s, correlations between FMRP levels and the neurological phenotype of FXS have been established.29,33,34 The first studies about this topic established the standard levels of FMRP in peripheral blood leucocytes through immunoblotting. When comparing protein levels with the allele type and the presence of size mosaicism, it was demonstrated that people with the lowest FMRP levels were males with FM. Males with size mosaicism and females with FM had slightly higher levels of FMRP than males with FM.33,35,36 Via multiple regression models, it was found that FMRP levels were significantly correlated with the intelligence quotient (IQ) of the patients in the study.33 However, studies did not identify the same relation between FMRP levels and behavioral symptoms.34,37 More recent evidence supports a partial overlap between the pathogenic mechanisms that lead to FXS and ASD.38 Lower FMRP levels have been documented in samples of individuals with FXS and ASD compared to patients with FXS only.29,34 The relation between FMRP levels and IQ in males and females with different expansions in CGG repeats was studied recently.39 This last study has two important advantages compared with previous studies: firstly, the use of fluorescence resonance energy transfer (FRET), which has a higher sensibility when measuring protein levels, and also FMRP levels were measured in dermal fibroblasts. Unlike leucocytes, fibroblasts derive from the ectoderm, the same germ layer from which nervous system cells originate. Researchers found a strong and positive relation between FMRP levels and cognitive skills in patients with levels below 30% of the standard levels in controls. Interestingly, above this level, there was a higher dependence between low FMRP levels and low IQ.39

In parallel with the aforementioned studies, researchers reported the incidence of size and methylation mosaicism in cognitive impairment severity.4042 The classic definition of premutation alleles behavior as non-methylated alleles, and mutated alleles as methylated or partially methylated ones in order to categorize premutation carriers and patients with FXS has been extended progressively to include a detailed classification that takes into account the existence of size and methylation mosaicisms.

Regarding size mosaicisms, different combinations have been described, including patients with some FM cells and other cells with PM. Indeed, patients with FM, PM, grey zone alleles and even alleles with normal size have been reported.40 The presence of size mosaicisms with PM and FM alleles is related with a less severe phenotype and a higher risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS).43

When exploring the possible relation between size mosaicisms and the intellectual functioning of patients with FXS disregarding sex, it was found that patients with FM/PM had better intellectual functioning and less maladaptive behavior, compared with FM-affected individuals.42 Interestingly, the same study found that ASD features and maladaptive behaviors were similar between FM-only and PM/FM mosaics within each sex, after controlling for overall intellectual functioning. A limitation of this study is that they used venous blood and real time PCR and Southern blot analysis to quantify the level of methylation.

Recently, methylation mosaicism has been taken into account as an important variable in phenotype traits. The most frequent mosaicism found in males is the presence of FM-methylated alleles and non-methylated FM and PM alleles (combination of size and methylation mosaicism).25,44 However, in patients with FM and not PM mosaicisms, methylated alleles do not express mRNA, while non-methylated alleles do. An aspect that highlights the importance of detecting the presence of this kind of mosaicism is the influence on phenotype severity. Additionally, according to some case reports, the presence of synthesized mRNA from PM and FM alleles increases the odds of developing the FXTAS phenotype.45,46 The final consequence of methylation mosaicism is the cells reduced ability to express FMR1 mRNA, measure mRNA and determine if there is a relation with phenotypic traits. When analyzing mRNA levels between males and females, it was found that females had higher levels. Also, in females, higher levels of FMR1 mRNA were related positively with age but not with intellectual functioning and autistic features. Males with FM that express FMR1 mRNA had significantly higher ADOS calibrated severity scores, when compared with males with fully methylated FM. Interestingly, no differences were found regarding intellectual functioning.41 Likewise, when contrasting FMR1 mRNA levels and scores on the Aberrant Behavior Checklist-Community-FXS version (ABC-CfX) it was found that in males with FM, higher values of FMR1 mRNA were related with elevated irritability and lower health-related quality of life scores.47 This association was not found in males with PM/FM, suggesting that for improved genotype/phenotype associations, it is essential to take into consideration not only sex but also size and methylation mosaicism.

Recent investigations explored simultaneously how FMR1 mRNA levels of FMRP are related to phenotypic alterations in males with PM and FM.48 In a study composed of 14 cases of patients with PM or PM and FM mosaicism and mental illnesses such as bipolar disorder, schizophrenia and psychosis, among others, low levels of FMRP and increased FMR1 mRNA were evident in these patients. This combination of characteristics in patients with FM, decreased FMRP, PM and increased FMR1 mRNA represents a dual mechanism of clinical significance that may generate characteristics of both FXS and FXTAS.48 In a clinic-based ascertained group of patients with FXS of both gender, a significant difference was found between FXS with ASD and low levels of FMRP when comparing concentrations of the protein in patients with FXS without ASD.29 They found that the mean full scale IQ and adaptive skills composite scores were significantly lower in males than in females (p = 0.016 and p = 0.001, respectively, MannWhitney). Additionally, all individuals with moderate or severe ID were males. Not surprisingly, ASD was present more frequently in males with FXS (46% vs 20% females). This association was not found in males with PM/FM, suggesting that for improved genotype/phenotype associations is essential to take into consideration not only sex but size and methylation mosaicism.29

There is a small proportion of FXS patients without expansions in the CGG-repeat tract. In this group, the condition is caused by missense or nonsense mutations,5,16 or deletions in FMR1.1,6 Patients with these mutations have similar physical, cognitive and behavioral characteristics to FXS patients. With the increasing availability of diagnostic methods based on next-generation sequencing and comparative genomic hybridization, a higher rate of diagnosis of mutations causing FMR1 function loss is expected. This will allow a clear delimitation of the phenotype caused by the loss of the protein in the absence of CGG tract expansions.

For many monogenic diseases it is known that, besides the allelic variance, the effect of modifier genes has an important role in incomplete penetrance and variable expressivity. The identification of modifier genes that affect the phenotype in monogenic diseases has many challenges that complicate their description. A genetic variant can modify the effect in the phenotype of another variant in many ways, including epistasis and genetic interactions.49,50

In studies using FXS murine models, important new evidence was acquired in order to establish the importance of potential modifier genes and their impact on FXS phenotype development. The knockout mouse model for FXS was generated in the last decade of the XX century. Fmr1 KO mice had learning deficits, abnormal synaptic connections, seizures, hyperactivity and macroorchidism.51,52 When describing the mouse phenotype in detail, it was evident that abnormal phenotypic characteristics depend, at least in some proportion, on their genetic background.53

During the identification of modifier genes in the FXS phenotype, a large proportion of the research has aimed towards the susceptibility to developing certain clinical behavioral characteristics, such as aggression, ASD and seizures.34,5459 All of the studies use a similar methodological design: they arrange groups of people with or without a specific phenotypic trait and establish the frequency of specific variants in modifier gene candidates.

The possibility that Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene may modulate the epilepsy phenotype in FXS patients has also been investigated. The replacement of a methionine for a valine in the 66th position of the BDNF protein interferes with normal intracellular traffic and BDNF dependent secretory activity in cortical neurons.60 This polymorphism has been related to cerebral anatomy alterations61 and neuropsychiatric disorders.62,63 In a sample of 27 males with FXS from Finland, it was found that all the patients with epilepsy (15%) had the Met66 allele, whereas the prevalence of this allele is 20% in the normal population. Research suggests that the Met66 allele in BDNF interacting with FM in FMR1 may partially explain the higher incidence of seizures in patients with FXS.56 In a more recent study with a higher number of males with FXS (77 patients), the results were not replicated and there was no association between seizures and Val66Met polymorphism.58 These results show the importance of validating studies about modifier genes in different populations.

In research about genes that affect mood and aggression, such as the serotonin transporter (5-HTTLPR), the monoamine oxidase A (MAOA-VNTR) and COMT, conflicting results were found. All of those genes are involved in regulatory pathways for different neurotransmitters, and their variants have been associated with the development of behavioral phenotypes in different contexts other than FXS. In one group of 50 males with FXS, the relationship of 5-HTTLPR and MAOA-VNTR polymorphisms with the frequency/severity of aggressive/destructive, self-injurious and stereotypic behaviors was studied. It was found that the high-transcribing long (L/L) genotype in 5-HTTLPR was related with a higher frequency of aggressive/destructive and stereotypic behavior, while patients with the short (S/S) genotype had less aggression. The MAOA-VNTR genotype had no effect on behavior.55 On the other hand, in a study of 64 males with FXS where the COMT gene was also included, the results of the previous study were not replicated. There was no association between behavioral characteristics and either 5-HTTL PR (serotonin) or MAOA genotypes. Nevertheless, the A/A genotype in COMT that modifies dopamine levels was associated with greater interest and pleasure in the environment, and with less risk of property destruction, stereotyped behavior and compulsive behavior.54 The authors of the study suggest that the non-reproducibility of the results regarding MAOA-VNTR can be explained by differences in the prevalence of aggressive and stereotyped behavior among the studied populations or by differences in the measurements used to characterize each behavior.

The importance of identifying potential modifier genes was explored in a clinical trial. The researchers investigated the relation between polymorphisms in several genes and the response of sertraline in 51 children. They found that BDNF, MAOA, 5-HTTLPR, Cytochrome P450 2C19 and 2D6 polymorphisms had significant correlations with treatment response.64

Currently the knowledge about molecular causes of the variable phenotype in patients with FXS include characteristics associated with the FMR1 gene itself and to secondary, modifying gene effects.

Regarding FMR1, when the diagnosis is established, the type of mutation causing FXS is identified: CGG repeat tract expansion vs pathological variant causing loss of function in FMR1.

When the CGG is identified, is it expected that about half of the patients have size or methylation mosaicism or both.29 The presence of any of those mosaicisms determines the expression or not of FMR1 mRNA and FMRP. The quantity of FMRP is directly related with IQ.34,37,39 While the presence of size mosaicism is related with better intellectual functioning and less maladaptive behavior,29,42 elevated concentrations of FMR1 mRNA in patients with FM have been associated with a higher risk of developing FXTAS45,46,48 and with the severity of behavioral symptoms.47

The search for modifier genes affecting the phenotype has been carried out using the candidate genes strategy. Because high impact clinical manifestations in FXS are related with neurologic phenotypes, the studied candidate genes are involved in CNS development and the appearance of seizures (BNDF)56,6062 and associated with mood and aggression (5-HTTLPR, MAOA-VNTR y COMT).54,55 Recent research has been done with small groups of patients and there are no conclusive results about the importance of these variants in modifier genes.

Scientific and clinical evidence about molecular causes of variable expressivity in FXS is growing quickly. It is evident that aspects of the mutation type in FMR1 and the behavior of the CGG repeat tract are relevant in the presentation of the condition. Research about modifier genes is still emerging. There are important limitations such as sample size and comparability of different studies, mainly due to smaller groups of selected patients and the use of different tools for measuring the phenotypes.

Independent cohorts of patients with FXS across different continents have shown evidence that mosaicism, FMR1 mRNA or FMRP quantification are associated with the severity of the phenotype. However, this information cannot currently be used effectively in the integral management of patients. When intervention strategies become available in order to prevent the development of FXTAS, or when certain molecules can regulate levels of FMRP expression to measure FMR1 mRNA and FMRP, they could be crucial for selecting patients and identifying the best therapeutic intervention.

In clinical trials there is an important window of opportunity. Identifying mosaicism, measuring transcription/translation activity of FMR1 and stratifying patients by modifier genotypes29,65 will permit the identification of subgroups of patients with greater potential to respond to specific treatments.

The authors report no conflicts of interest in this work.

1. Coffee B, Keith K, Albizua I, et al. Incidence of Fragile X syndrome by newborn screening for methylated FMR1 DNA. Am J Hum Genet. 2009;85(4):503514. doi:10.1016/j.ajhg.2009.09.007

2. Saldarriaga W, Tassone F, Gonzlez-Teshima LY, Forero-Forero JV, Ayala-Zapata S. Fragile X Syndrome. Colomb Med. 2014;190198. doi:10.25100/cm.v45i4.1810

3. Bagni C, Tassone F, Neri G, Fragile HR. X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest. 2012;122(12):43144322. doi:10.1172/JCI63141

4. Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: clinical aspects and pathology. Neurobiol Dis. 2020;136:104740. doi:10.1016/j.nbd.2020.104740

5. Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: a review. Am J Med Genet Part A. 2018;176(1):1118. doi:10.1002/ajmg.a.38504

6. Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST. Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet Part A. 2008;146A(10):13581367. doi:10.1002/ajmg.a.32261

7. Tassanakijpanich N, Hagerman RJ, Worachotekamjorn J. Fragile X premutation and associated health conditions: a review. Clin Genet. 2021;99(6):751760. doi:10.1111/cge.13924

8. Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome. Nat Rev Dis Prim. 2017. doi:10.1038/nrdp.2017.65

9. Taha MS, Haghighi F, Stefanski A, et al. Novel FMRP interaction networks linked to cellular stress. FEBS J. 2021;288(3):837860. doi:10.1111/febs.15443

10. Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell. 1993;74(2):291298. doi:10.1016/0092-8674(93)90420-U

11. Ashley CT Jr, Wilkinson KD, Reines D, Warren ST. FMR1 protein contains conserved RNP-family domains and demonstrates selective RNA binding. Science (80-). 1993;262(5133):563566. doi:10.1126/science.7692601

12. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27(7):370377. doi:10.1016/j.tins.2004.04.009

13. Gatto CL, Broadie K. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci. 2010. doi:10.3389/fnsyn.2010.00004

14. Budimirovic DB, Haas-Givler B, Blitz R, et al. Consensus of the fragile X clinical and research consortium on clinical practices: autism Spectrum Disorder in Fragile X Syndrome. 2014;115.

15. Budimirovic DB, Subramanian M. Neurobiology of Autism and Intellectual Disability: fragile X Syndrome. 2 ed. In: Johnston M, Adams H, Fatemi A, editors. London: Oxford University Press;2016.doi:10.1093/med/9780199937837.001.0001

16. Saldarriaga W, Payn-Gmez C, Gonzlez-Teshima LY, Rosa L, Tassone F, Hagerman RJ. Double genetic hit: fragile X syndrome and partial deletion of protein patched homolog 1 antisense as cause of severe autism spectrum disorder. J Dev Behav Pediatr. 2020;41(9):724728. doi:10.1097/DBP.0000000000000850

17. Sherman SL, Kidd SA, Riley C, et al. Forward: a registry and longitudinal clinical database to study fragile X syndrome. Pediatrics. 2017;139(Supplement 3):S183S193. doi:10.1542/peds.2016-1159E

18. Loehr JP, Synhorst DP, Wolfe RR, Hagerman RJ. Aortic root dilatation and mitral valve prolapse in the fragile X syndrome. Am J Med Genet. 1986;23(12):189194. doi:10.1002/ajmg.1320230113

19. Rahit KMTH, Tarailo-Graovac M. Genetic modifiers and rare mendelian disease. Genes (Basel). 2020;11(3):239. doi:10.3390/genes11030239

20. Li D, Yu J, Gu F, et al. The roles of two novel FBN1 gene mutations in the genotypephenotype correlations of marfan syndrome and ectopia lentis patients with marfanoid habitus. Genet Test. 2008;12(2):325330. doi:10.1089/gte.2008.0002

21. Fahed AC, Wang M, Homburger JR, et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat Commun. 2020;11(1). doi:10.1038/s41467-020-17374-3

22. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49(4):e322e322. doi:10.1038/emm.2017.10

23. Kraan CM, Baker EK, Arpone M, et al. Dna methylation at birth predicts intellectual functioning and autism features in children with fragile x syndrome. Int J Mol Sci. 2020;21(20):7735. doi:10.3390/ijms21207735

24. Pieretti M, Zhang F, Fu YH, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66(4):817822. doi:10.1016/0092-8674(91)90125-I

25. Nolin SL, Glicksman A, Houck GE, Brown WT, Dobkin CS. Mosaicism in fragile X affected males. Am J Med Genet. 1994;51(4):509512. doi:10.1002/ajmg.1320510444

26. Stger R, Genereux DP, Hagerman RJ, Hagerman PJ, Tassone F, Laird CD. Testing the FMR1 promoter for mosaicism in dna methylation among cpg sites, strands, and cells in FMR1-expressing males with fragile x syndrome. PLoS One. 2011;6(8):e23648. doi:10.1371/journal.pone.0023648

27. Pretto DI, Mendoza-Morales G, Lo J, et al. CGG allele size somatic mosaicism and methylation in FMR1 premutation alleles. J Med Genet. 2014;51(5):309318. doi:10.1136/jmedgenet-2013-102021

28. Jiraanont P, Kumar M, Tang H-T, et al. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn. 2017;17(11):10231032. doi:10.1080/14737159.2017.1377612

29. Budimirovic DB, Schlageter A, Filipovic-Sadic S, et al. A genotype-phenotype study of high-resolution FMR1 nucleic acid and protein analyses in fragile X patients with neurobehavioral assessments. Brain Sci. 2020;10(10):694. doi:10.3390/brainsci10100694

30. Tassone F, Hagerman RJ, Loesch DZ, Lachiewicz A, Taylor AK, Hagerman PJ. Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. Am J Med Genet. 2000;94(3):232236. doi:10.1002/1096-8628(20000918)94:3<232::aid-ajmg9>3.0.CO;2-H

31. Dolskiy AA, Yarushkin AA, Grishchenko IV, et al. miRNA expression and interaction with the 3UTR of FMR1 in FRAXopathy pathogenesis. Non-Coding RNA Res. 2021;6(1):17. doi:10.1016/j.ncrna.2020.11.006

32. Primerano B, Tassone F, Hagerman RJ, Hagerman P, Amaldi F, Bagni C. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations. RNA. 2002;8(12):14821488. doi:10.1017/S1355838202020642

33. Kaufmann WE, Abrams MT, Chen W, Reiss AL. Genotype, molecular phenotype, and cognitive phenotype: correlations in fragile X syndrome. Am J Med Genet. 1999. doi:10.1002/(SICI)1096-8628(19990402)83:4<286::aid-ajmg10>3.0.CO;2-H

34. Loesch DZ, Bui QM, Dissanayake C, et al. Molecular and cognitive predictors of the continuum of autistic behaviours in fragile X. Neurosci Biobehav Rev. 2007. doi:10.1016/j.neubiorev.2006.09.007

35. Backes M, Gen B, Schreck J, Doerfler W, Lehmkuhl G, Von Gontard A. Cognitive and behavioral profile of fragile X boys: correlations to molecular data. Am J Med Genet. 2000;95(2):150156. doi:10.1002/1096-8628(20001113)95:2<50::aid-ajmg11><50::aid-ajmg11>3.0.CO;2-1

36. Tassone F, Hagerman RJ, Ikl DN, et al. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am J Med Genet. 1999;84(3):250261. doi:10.1002/(SICI)1096-8628(19990528)84:3<250::aid-ajmg17>3.0.CO;2-4

37. Hall S, DeBernardis M, Reiss A. Social escape behaviors in children with fragile X syndrome. J Autism Dev Disord. 2006;36(7):935947. doi:10.1007/s10803-006-0132-z

38. Bagni C, Zukin RS, Synaptic A. Perspective of Fragile X syndrome and autism spectrum disorders. Neuron. 2019. doi:10.1016/j.neuron.2019.02.041

39. Kim K, Hessl D, Randol JL, et al. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One. 2019;14(12):e0226811. doi:10.1371/journal.pone.0226811

40. Aliaga SM, Slater HR, Francis D, et al. Identification of males with cryptic fragile x alleles by methylation-Specific quantitative melt analysis. Clin Chem. 2016;62(2):343352. doi:10.1373/clinchem.2015.244681

41. Baker EK, Arpone M, Aliaga SM, et al. Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Mol Autism. 2019;10(1). doi:10.1186/s13229-019-0271-7

42. Baker EK, Arpone M, Vera SA, et al. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord. 2019;11(1). doi:10.1186/s11689-019-9288-7

43. Kraan CM, Godler DE, Amor DJ. Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol. 2019;61(2):121127. doi:10.1111/dmcn.13985

44. Rousseau F, Heitz D, Biancalana V, et al. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. Obstet Gynecol Surv. 1992;47(5):306308. doi:10.1097/00006254-199205000-00008

45. Loesch DZ, Sherwell S, Kinsella G, et al. Fragile X-associated tremor/ataxia phenotype in a male carrier of unmethylated full mutation in the FMR1 gene. Clin Genet. 2012;82(1):8892. doi:10.1111/j.1399-0004.2011.01675.x

46. Santa Mara L, Pugin A, Alliende MA, et al. FXTAS in an unmethylated mosaic male with fragile X syndrome from Chile. Clin Genet. 2014;86(4):378382. doi:10.1111/cge.12278

47. Baker EK, Arpone M, Kraan C, et al. FMR1 mRNA from full mutation alleles is associated with ABC-CFX scores in males with fragile X syndrome. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-68465-6

48. Schneider A, Winarni TI, Cabal-Herrera AM, et al. Elevated FMR1-mRNA and lowered FMRP a double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl Psychiatry. 2020;10(1). doi:10.1038/s41398-020-00863-w

49. Dipple KM, McCabe ERB. Phenotypes of patients with Simple mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am J Hum Genet. 2000;66(6):17291735. doi:10.1086/302938

50. Schffer AA. Digenic inheritance in medical genetics. J Med Genet. 2013;50(10):641652. doi:10.1136/jmedgenet-2013-101713

51. Mineur YS, Sluyter F, De Wit S, Oostra BA, Crusio WE. Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus. 2002;12(1):3946. doi:10.1002/hipo.10005

52. Bakker CE, Verheij C; The Dutch-Belgian Fragile X Consorthium, et al. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell. 1994. doi:10.1016/0092-8674(94)90569-X

53. Errijgers V, Kooy RF. Genetic modifiers in mice: the example of the fragile X mouse model. Cytogenet Genome Res. 2004;105(24):448454. doi:10.1159/000078218

54. Crawford H, Scerif G, Wilde L, et al. Genetic modifiers in rare disorders: the case of fragile X syndrome. Eur J Hum Genet. 2021;29(1):173183. doi:10.1038/s41431-020-00711-x

55. Hessl D, Tassone F, Cordeiro L, et al. Brief report: aggression and stereotypic behavior in males with fragile X syndrome - Moderating secondary genes in a single gene disorder. J Autism Dev Disord. 2008;38(1):184189. doi:10.1007/s10803-007-0365-5

56. Louhivuori V, Arvio M, Soronen P, Oksanen V, Paunio T, Castrn ML. The Val66Met polymorphism in the BDNF gene is associated with epilepsy in fragile X syndrome. Epilepsy Res. 2009;85(1):114117. doi:10.1016/j.eplepsyres.2009.01.005

57. Stepniak B, Kstner A, Poggi G, et al. Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Mol Med. 2015;7(12):15651579. doi:10.15252/emmm.201505696

58. Tondo M, Poo P, Naud M, et al. Predisposition to epilepsy in fragile X syndrome: does the Val66Met polymorphism in the BDNF gene play a role? Epilepsy Behav. 2011;22(3):581583. doi:10.1016/j.yebeh.2011.08.003

59. Wassink TH, Hazlett HC, Davis LK, Reiss AL, Piven J. Testing for association of the monoamine oxidase a promoter polymorphism with brain structure volumes in both autism and the fragile X syndrome. J Neurodev Disord. 2014;6(1). doi:10.1186/1866-1955-6-6

60. Chen ZY, Patel PD, Sant G, et al. Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci. 2004;24(18):44014411. doi:10.1523/JNEUROSCI.0348-04.2004

61. Szeszko PR, Lipsky R, Mentschel C, et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry. 2005;10(7):631636. doi:10.1038/sj.mp.4001656

62. Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science (80-). 2006;314(5796):140143. doi:10.1126/science.1129663

63. Gratacs M, Gonzlez JR, Mercader JM, de Cid R, Urretavizcaya M, Estivill X. Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry. 2007;61(7):911922. doi:10.1016/j.biopsych.2006.08.025

More:
Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press

Posted in Genetics | Comments Off on Genetic mapping of subsets of patients with fragile X syndro | TACG – Dove Medical Press

Mouse Embryo With Beating Heart Created From Stem Cells By Scientists – IFLScience

Posted: July 6, 2021 at 1:56 am

Stem cells have long been heralded for their regenerative potential and implications in studying development and disease theyve already had some success treating spinal cord injuries and diabetes. And now, in a new study at the University of Virginia (UVA) School of Medicine, mouse embryonic stem cells have been used to make the most sophisticated in vitro (in a dish) model of a mammal ever created in such a way. The mouse embryoid features a beating heart and is in the process of developing its muscles, blood vessels, gut, and nervous system allin a petri dish.

Stem cells are a type of cell whose fate is not predetermined. They have the ability to develop into many in some cases any of the more than 200 cell types in our bodies. This gives them massive potential in the treatment of disease and growth and repair of tissues. Harnessing their ability to differentiate into a single cell type is challenging enough, but using them to build complex models with multiple cell types is a different ball game the team at UVA really had their work cut out.

The research, published in Nature Communications, builds on previous work by the same authors in their 2014 study, they identified the conditions necessary to artificially develop a zebrafish embryo from scratch. This knowledge was to become crucial in overcoming the multitude of challenges faced in stem cell modeling. Namely, failure to develop properly or organize correctly, as happened in previous models. The current study, however, generated a well-developed mouse embryo with correctly organized cells and tissues: notochord (which will go on to become the backbone), digestive tract, beating heart, and neural tube (which will later become the brain and spinal cord). The latter is a precursor to the central nervous system and represents the first time this has been successfully developed in vitro.

"What is amazing is that we can get the variety of tissues that are present in an authentic mouse embryo," study author Christine Thisse, PhD, said in a statement.

The artificial tissues are not only present, but they are also functional: "Human organs are made of multiple cell types that originate from different parts of the growing embryo," Bernard Thisse, PhD, also an author on the paper, explained. "The only way to have all the variety of cells necessary to the formation of functional organs is to develop systems in which all precursor cells are present. The embryo-like entities we have engineered using stem cells are providing just this."

While this is undoubtedly a huge step towards scientists using stem cells to successfully mimic mammalian development, it is by no means the end of the road. "The embryoids we are currently producing lack the anterior brain domains," Bernard Thisse said. Because of this, their developmentstops in the middle of gestation. So we might not yet be at the point where we can grow a tiny baby mouse in a dish using just a handful of cells, but the great strides made by the study will advance the field of stem cell research significantly. The authors remain optimistic that the techniques theyve developed will allow them, in future, to generate embryoids that contain all tissues and organs, including the anterior brain.

For now, this remarkable model will shed light on mammalian development and be a powerful tool in other in vitro studies, as well as in disease modeling. It could, potentially, aid in the creation of new drugs, and be used to grow tissues and organs for transplant patients.

Receive our biggest science stories to your inbox weekly!

See the article here:
Mouse Embryo With Beating Heart Created From Stem Cells By Scientists - IFLScience

Posted in Stem Cells | Comments Off on Mouse Embryo With Beating Heart Created From Stem Cells By Scientists – IFLScience

Sleeper cells, cells of origin and hematopoietic stem cells – Brain Tumour Research

Posted: July 6, 2021 at 1:56 am

Firstly, two news items on glioblastoma that will be of particular interest to scientists at our Research Centre at Queen Mary, University of London. This brain tumour type is the most aggressive and most common primary high-grade tumour diagnosed in adults.

We begin with some fascinating research into a new stage of the stem cell life cycle could be the key to unlocking new methods of brain cancer treatment. Following brain stem cell analysis, through single-cell RNA sequencing, data mapped out a circular pattern that has been identified as all of the different phases of the cell cycle. A new cell cycle classifier tool then took a closer, high-resolution look at what's happening within the growth cycles of stem cells and identified genes that can be used to track progress through this cell cycle. When the research team analysed cell data for Gliomas, they found the tumour cells were often either in the Neural G0 or G1 growth state and that as the tumours became more aggressive, fewer and fewer cells remained in the resting Neural G0 state. They correlated this data with the prognosis for patients with Glioblastoma and found those with higher Neural G0 levels in tumour cells had less aggressive tumours. So, if more cells could be pushed into this quiescent, or sleepy, state tumours would become less aggressive. Current cancer drug treatments focus on killing cancer cells. However, when the cancer cells are killed, they release cell debris into the surrounding area of the tumour, which can cause the remaining cells to become more resistant to drugs. If, instead of killing cells, we put them to sleep could that potentially be a better way forward?

For the first time, scientists have discovered stem cells of the hematopoietic system in glioblastomas. These hematopoietic stem cells promote division of the cancer cells and at the same time suppress the immune response against the tumour so Glioblastomas. In tissue samples of 217 Glioblastomas, 86 WHO grade II and III Astrocytomas, and 17 samples from healthy brain tissue, researchers used computer-assisted transcription analysis to draw up profiles of the cellular composition. The tissue samples were taken directly from the post-surgery, resection margins - where remaining tumour cells and immune cells meet. The team were able to distinguish between signals from 43 cell types, including 26 different types of immune cells. To their great surprise, the researchers discovered hematopoietic stem and precursor cells in all the malignant tumour samples, while this cell type was not found in healthy tissue samples. An even more surprising observation was that these blood stem cells seem to have fatal characteristics: They suppress the immune system and at the same time stimulate tumour growth. When the researchers cultured the tumour-associated blood stem cells in the same petri dish as Glioblastoma cells, cancer cell division increased. At the same time, the cells produced large amounts of the PD-L1 molecule, known as an "immune brake", on their surface.

On diagnosis of an Ependymoma an adult is often treated with surgery followed by radiation. When a tumour comes back, there had been no standard treatment options. Recently, thats changed, thanks to results from the first prospective clinical trial for adults with Ependymoma, which showed the benefits of a combination regimen including a targeted drug and chemotherapy.

Also of relevance to our Research Centre at QMUL, a study may have identified the cell of origin of Medulloblastoma. Using organoids to simulate tumour tissue in 3D an approach also used by researchers at QMUL - this organoid model has enabled researchers to identify the type of cell that can develop into Medulloblastoma. These cells express Notch1/S100b, and play a key role in onset, progression and prognosis.

Research has been looking at how Medulloblastoma travels to other sites within the central nervous system and has shown that an enzyme called GABA transaminase, abbreviated as ABAT, aids metastases in surviving the hostile environment around the brain and spinal cord and in resisting treatment. These findings may provide clues to new strategies for targeting lethal Medulloblastoma metastases.

You can register to join an online lecture on the molecular analysis of paediatric Medulloblastoma and vulnerabilities, the development of models that recapitulate the patients diseases and how models allow to identify new therapies using a pre-clinical pipeline. It is on July 13th.

From the 12 15 of August you can watch The Masters Live World Course in Brain and Spine Tumour Surgery this event wont be streamed or saved on social media and registration is free.

Still focussing on neuro surgery this link takes you to a Neurosurgeon's guide to Cognitive Dysfunction in Adult Glioma

Grounds for optimism to end with as a prominent clinician/scientist believes Glioblastoma outcomes could change for the better soon. Frederick F. Lang Jr, MD, chair of neurosurgery at The University of Texas MD Anderson Cancer Centre, and a co-leader of the institutions Glioblastoma Moon Shot programme says I am optimistic that we are going to see changes in the survival as we start to [better] understand the groups of people we're treating, and as we separate out the tumours more precisely and classify them better. Then, as we understand the biology of [the disease] better and better, we're going to see changes in the near future terms of survival. The University of Texas MD Anderson Cancer Centre is pursuing several novel approaches, including viro-immunotherapy and genetically engineered natural killer cells to treat patients with GBM, while also conducting tumour analysis to better comprehend the disease.

Whether to find out more about the Glioblastoma tumour microenvironment work or research into Medulloblastoma carried out at our Queen Mary University of London (QMUL) centre, the techniques at the forefront of tumour neurosurgery being employed by Consultant Neurosurgeon Kevin ONeill at our Imperial College, London Centre or the work into Meningioma and Acoustic Neuroma ( Thursday was Acoustic Neuroma Awareness Day) that Professor Oliver Hanemann focuses on at our University of Plymouth Centre, it is always worth checking our Research News pages and for an overview of our research strategy check out Brain Tumour Research our research strategy.

Finally, a request for you all to support our #StopTheDevastation campaign click through, find out more, get involved and say #NoMore to brain tumours.

Related reading:

If you found this story interesting or helpful,sign up to our weekly e-newsand keep up to date with all the latest from Brain Tumour Research.

Go here to read the rest:
Sleeper cells, cells of origin and hematopoietic stem cells - Brain Tumour Research

Posted in Stem Cells | Comments Off on Sleeper cells, cells of origin and hematopoietic stem cells – Brain Tumour Research

Palm Desert resident meets the woman whose life she saved with bone marrow transplant – Desert Sun

Posted: July 6, 2021 at 1:56 am

Keila Torres knew during a conference trip to Florida she was going to meet the woman who saved her life. What she didn't expect was to see someone so familiar.

Torres, 44,of Worcester, Massachusetts,desperately needed a bone marrow transplant in 2016, when she was 39, to beatacute myeloid leukemia, a cancerthat starts in the bone marrow but often moves into the blood.

A bone marrow transplant isa treatment option for people withblood cancers, such as leukemia, and it replacesunhealthy blood-forming cells with healthy ones from a donor, according to Be The Match, a nonprofit that pairs peoplewith a donor.

She had slightly less than a 50% chance, according to Be The Match. But she beat thoseodds, thanks to Palm Desert resident Odalis Trinidad.

When the two women met on June 23, Torreshad a realization. Her body had been changing since the transplant, and now it started to make sense.

"My blood type changed to Odalis blood type.I developed allergies after the transplant, and she has allergies," Torres said. "Her hair is long, beautiful and really curly, and when my hair started to grow back, it was very curly, very tight curls. When I saw her, I was like, 'Wow, that's why my hair is like that.'"

"You basically become your donor. She lives in me," she added.

Dr. Ayad Hamdan, a bone marrow transplant specialist and board certified hematologist with the Eisenhower Lucy Curci Cancer Center, explained that since new stem cells from adonor replace the stem cells in a patients bone marrow, which is the "factory of our blood cells," the patient will have the same blood type as the donor.

He added it is possible for patients to develop allergies, and"most patients who receive chemotherapy or a transplant have the experience that their hair may grow back with a different texture," but the hair follicles themselves don't change.

Not only do the two women share hair textures and occasionally stuffy noses, they're driven by their desire to inspire others to help those in need.

Most 19-year-oldsare focused on having good times with their friends, not necessarily providing life-saving donations.

Trinidadsaid she tried to donate blood as often as she could, even though the process was always a bit uncomfortable either her arm would stop pumping enough blood, or her arm would be too sensitive. During one of her visits, she noticed a poster for Be The Match and decided to do some more research.

The process to join the donor registryseemed "really easy" for Trinidad, now 24.She received a registration kit to give a swab of cheek cells and sent it back in October 2015. Then camethe waiting period.

"If you get called, you get called; if you don't, well, at least you tried, right?" the Palm Desert resident said.

People between the ages of 18 and 44 can join the Be The Match donor registry. Cells from younger donors have the best chance of successful donations, according to the Mayo Clinic.

Due to a lack of diversity on the donor registry, white patients have a better chance of finding a match on the registry than do people of other races. According to the site, African Americans have a 29% chance, Asians and Pacific Islanders 47%, Latinos 48%, Native Americans 60% and whites 79%.

In July 2015, Torres, 38 at the time, learned she was diagnosed with Stage 3 breast cancer. With two young sons, ages 15 months and 5 years old at the time, she knew she had to fight to be there for her boys. After chemotherapy, radiation, lymph node removal and a bilateral mastectomy, she was declared cancer-free a year later.

The good news, unfortunately, was spoiled in September 2016.

"I felt like I was fine. I was recovering, I was spending time with my kids, I was going to work, my hair was growing back and I felt great," Torres said. While undergoing a bone marrow biopsy, she was told "there was something wrong" with routine lab work.She remembered asking her oncologist, "What's the worst that could happen?"

"If we find leukemia," Torres recalled her oncologist saying. "When I heard leukemia, I was like, 'Oh,that's not going to be me, it's probably something else.'"

But the biopsy showed she hadacute myeloid leukemia. It isa common type of leukemia in adults, although it accounts for just 1% of all cancers,according to Cancer.org.It is also generally uncommon to find in people younger than 45. Torres was 39.

"I was in shock. I was devastated. I had already gone through so many things," Torres said, "but in the back of my head I was thinking, 'I've been through breast cancer, I can do this.'"

But the gravity of the situation didn't hit her until she met the leukemia team at Massachusetts General Hospital. Walking into one of the clinic rooms, she remembers feeling "very claustrophobic,"like she was "running out of breath."

Torres began chemotherapy atMassachusetts General, but to have a betterchance at beating leukemia, she would need a bone marrow transplant.

The two women had plenty in common even before the transplant,Torres said, almost as if Trinidad was always her"missing puzzle piece." They both have birthdays in October, mothers from Guatemala (Torres grew up there as well) and they're both mothers.

The best match for a bone marrow transplant is when a patient and donor'shuman leukocyte antigen closely match. HLA"is a marker on our stem cells thatdetermines how our immune system responds," explained Hamdan. Those markers are used by an individual's immune system to know which cells belong in the body and which ones don't, according to Be The Match.

Doctors first looked to Torres' brother to see if he was a match. Siblings have a one in four chance of being a match since half of an individual's HLA markers are inheritedfrom their mother and the other halffrom their father, according to Be The Match. About seven out of 10 people won't have a close match with a family member, as was thecase with Torres. That's when people look to thedonor registry.

After Trinidad completed her cheek swab in October 2015, she essentially forgot about it since she didn't hear back from the registry. She received a phone call a year later.

"'Hey, I don't know if you remember you signed up for this, but this is what we do and we're calling to let you know that you have a possibility of saving someone's life,'" Trinidad recalled hearing.The only information she was given was the person needing the donationwas a female, 40 years old (Torres turned 40 in October 2016) and the type of leukemia. Nothing more, not even a name.

So, yes or no? It wastime to decide.

"I called them (the next day to learn) what did I need to do, what did they need from meto make sure it could be successful," she said.

Trinidad had blood work and other tests done prior to donation day. Her family was very supportive of her decision to help save a life, she said, whileit was a bit "hard for my friends to be on board."

"We were all 19, so they were like, 'You're crazy, you don't even know them and you're going to have this whole surgery for them?'I was like, "Well, yeah, I can save someone's life,'" Trinidad recalled. "You would want someone to do it for you, so how could you not do it?"

On donation day, donorsare put undergeneral anesthesia and marrow cells are taken from the back of the pelvicbone.

"The donor lies face down, and a large needle is put through the skin and into the back of the hip bone. Its pushed through the bone to the center and the thick, liquid marrow is pulled out through the needle," according to Cancer.org.Around 10%, or 2 pints, of marrow are collected, and the procedure takes up to two hours. The donor's body replaces those cells within four to six weeks.

Trinidad described the day in December 2016 as "nerve-racking,"but not because of the giant needle.

"I know everything that they're doing to me, but I can't, I literally cannot, know her perspective, what she is going through, how it is going to get to her," she said. "During this whole procedure, I'm nervous, I'm thinking, 'I hope it works, I hope it works.'I'm a match, but her body might not (accept the cells)well. I want to be sure that I'm doing the best I can so that it's the best for her."

To begin the transplant process, a receiving patient must undergo a conditioning regimen, which includes chemotherapy and sometimes radiation, to "wipe out" their immune system and leukemia cells, according to Hamdan.On transplant day, also called Day Zero, patients receive the donated cells through a blood transfusion.From Day Zero onward, the donated cells grow and make new blood cells, which is called engraftment, according to Be The Match.

Torres, admitted to the hospital on Thanksgiving, had a week straight of chemotherapy. Day Zero, which she considers one of her birthdays and her "rebirth," was Dec. 2, 2016.

It's normal for patients to feel weak, and Torres remembers being "sick to my stomach" the first few days after the transfusion. But her red and white blood counts started growing, she said, and slowly started feeling better. She was released from the hospital on Dec. 23, just in time for the holidays.

Both women had played a big part in each other's lives, and yet they still didn't know anything about one another.

Transplant recipients and donors have to wait one year before they can have direct contact with each other in the United States, according to Be The Match.

"This could only work if both of us want to know," Trinidad said."It was hard because I wanted to know her recovery, I wanted to know if it worked. What if it didn't work and they just didn't tell me anything at all?"

By the time the one-year mark came, the two women were ready to know something, anything,about each other.

It was an instant connection, almost as if they had known each other their entire lives, they both said. Finallyconnected on Facebook, they could get a glimpse of the other's family and see what they were up to. They talked and texted whenever they could.

It wasn't until a few weeks after their initial contact that Torres revealed to Trinidad that doctorsfound leukemia once again in January 2018.Torres would have to go through the transplant process all over again, but this time witha different donor.

Hamdan explained: "Transplants are most of the time the only chance for patients to be cured, and although there is a good chance of success, the cancer can come back. (It) depends on the disease, the age of the patient, the type of transplant."

Torres still wouldn't change a thing.

"She gave me life the first time around. I was able to come home and be with my kids for a year," Torres said. "Even if I had relapsed or not, Im so grateful for her for doing an act of kindness. At 20,Iwasnt thinking about stuff like that."

Trinidad, now a mother herself to3-month-old son Jimmy,said having her own child put thedonation into a whole new perspective.

"I really just am happy to give her that time with her kids. I now know how important and valued that time is," she said.

But thatwasn't the end of the journey.

They both had meeting each other in-person on their bucket lists, and when an opportunity came at aHOSA Future Health Professionals convention last month in Orlando, Floridaboth said "it was meant to be."

Representatives from Be The Match reached out to the two women and asked if they'd want to share their story to the students attending the conference. Trinidad was also a member of HOSA when she attended Palm Springs High School.

After years of texting, calling and social media lurking, they hugged on stage at the conference for quite a long time, admitted Trinidad, and "neither of us wanted to let go." She describedthe moment as "surreal,"finally seeing "the life that I gave her."

And for Torres, to see the woman who went froman anonymous lifesaver to a dear friend and a bit of a look-alike,saying thank you in-personis a moment she'll never forget.

"Theres no way that Iwill ever be able to repay her because theres no price with what she did," Torres said. "Im think I'm still kind of digesting all the emotions that came with it, but the one thing I know isIm full of gratitude for what she did for me.

Trinidad hopes more people will join the donor registry "it's so easy," she reiterated and be there to answer the call if they end up being someone's best match.

"I'm a donor because I wanted to be one," Trinidad said. "I know it required me physically giving up some bone marrow, but itsaved someones life, and I would do it again."

Torres, too, can attest to that: "If it hadnt been for her the first time around, honestly I dont think Iwould be here."

HOW TO JOIN THE BE THE MATCH REGISTRY

Visithttps://bethematch.org/to learnhow to join the registry, request a cheek swab and what the next steps are if you're a match.

Ema Sasic covers health in the Coachella Valley. Reach her at ema.sasic@desertsun.com or on Twitter @ema_sasic.

Read more from the original source:
Palm Desert resident meets the woman whose life she saved with bone marrow transplant - Desert Sun

Posted in Stem Cells | Comments Off on Palm Desert resident meets the woman whose life she saved with bone marrow transplant – Desert Sun

Cell Therapy Global Market Report 2021: COVID-19 Growth and Change to 2030 – ResearchAndMarkets.com – Business Wire

Posted: July 6, 2021 at 1:56 am

DUBLIN--(BUSINESS WIRE)--The "Cell Therapy Global Market Report 2021: COVID-19 Growth and Change to 2030" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market is expected to grow from $7.2 billion in 2020 to $7.82 billion in 2021 at a compound annual growth rate (CAGR) of 8.6%.

Major players in the cell therapy market are Fibrocell Science Inc., JCR Pharmaceuticals Co. Ltd., PHARMICELL Co. Ltd., Osiris Therapeutics Inc., MEDIPOST, Vericel Corporation, Anterogen Co. Ltd., Kolon TissueGene Inc., Stemedica Cell Technologies Inc., and AlloCure.

The growth is mainly due to the companies resuming their operations and adapting to the new normal while recovering from the COVID-19 impact, which had earlier led to restrictive containment measures involving social distancing, remote working, and the closure of commercial activities that resulted in operational challenges. The market is expected to reach $12.06 billion in 2025 at a CAGR of 11%.

The cell therapy market consists of sales of cell therapy and related services. Cell therapy (CT) helps repair or replace damaged tissues and cells. A variety of cells are used for the treatment of diseases includes skeletal muscle stem cells, hematopoietic (blood-forming) stem cells (HSC), lymphocytes, mesenchymal stem cells, pancreatic islet cells, and dendritic cells.

The cell therapy market covered in this report is segmented by technique into stem cell therapy; cell vaccine; adoptive cell transfer (ACT); fibroblast cell therapy; chondrocyte cell therapy. It is also segmented by therapy type into allogeneic therapies; autologous therapies, by application into oncology; cardiovascular disease (CVD); orthopedic; wound healing; others.

The high cost of cell therapy hindered the growth of the cell therapy market. Cell therapies have become a common choice of treatment in recent years as people are looking for the newest treatment options. Although there is a huge increase in demand for cell therapies, they are still very costly to try. Basic joint injections can cost about $1,000 and, based on the condition, more specialized procedures can cost up to $ 100,000. In 2020, the average cost of stem cell therapy can range from $4000 - $8,000 in the USA. Therefore, the high cost of cell therapy restraints the growth of the cell therapy market.

Key players in the market are strategically partnering and collaborating to expand the product portfolio and geographical presence of the company. For instance, in April 2018, Eli Lilly, an American pharmaceutical company entered into a collaboration agreement with Sigilon Therapeutics, a biopharmaceutical company that focused on the discovery and development of living therapeutics to develop cell therapies for type 1 diabetes treatment by using the Afibromer technology platform.

Similarly, in September 2018, CRISPR Therapeutics, a biotechnological company that develops transformative medicine using a gene-editing platform for serious diseases, and ViaCyte, a California-based regenerative medicine company, collaborated on the discovery, development, and commercialization of allogeneic stem cell therapy for diabetes treatment.

In August 2019, Bayer AG, a Germany-based pharmaceutical and life sciences company, acquired BlueRock Therapeutics, an engineered cell therapy company, for $1 billion. Through this transaction, Bayer AG will acquire complete BlueRock Therapeutics' CELL+GENE platform, including a broad intellectual property portfolio and associated technology platform including proprietary iPSC technology, gene engineering, and cell differentiation capabilities. BlueRock Therapeutics is a US-based biotechnology company focused on developing engineered cell therapies in the fields of neurology, cardiology, and immunology, using a proprietary induced pluripotent stem cell (iPSC) platform.

The rising prevalence of chronic diseases contributed to the growth of the cell therapy market. According to the US Centers for Disease Control and Prevention (CDC), chronic disease is a condition that lasts for one year or more and requires medical attention or limits daily activities or both and includes heart disease, cancer, diabetes, and Parkinson's disease.

Stem cells can benefit the patients suffering from spinal cord injuries, type 1 diabetes, Parkinson's disease (PD), heart disease, cancer, and osteoarthritis. According to Cancer Research UK, in 2018, 17 million cancer cases were added to the existing list, and according to the International Diabetes Federation, in 2019, 463 million were living with diabetes.

According to the Parkinson's Foundation, every year, 60,000 Americans are diagnosed with PD, and more than 10 million people are living with PD worldwide. The growing prevalence of chronic diseases increased the demand for cell therapies and contributed to the growth of the market.

Key Topics Covered:

1. Executive Summary

2. Cell Therapy Market Characteristics

3. Cell Therapy Market Trends And Strategies

4. Impact Of COVID-19 On Cell Therapy

5. Cell Therapy Market Size And Growth

5.1. Global Cell Therapy Historic Market, 2015-2020, $ Billion

5.2. Global Cell Therapy Forecast Market, 2020-2025F, 2030F, $ Billion

6. Cell Therapy Market Segmentation

6.1. Global Cell Therapy Market, Segmentation By Technique, Historic and Forecast, 2015-2020, 2020-2025F, 2030F, $ Billion

6.2. Global Cell Therapy Market, Segmentation By Therapy Type, Historic and Forecast, 2015-2020, 2020-2025F, 2030F, $ Billion

6.3. Global Cell Therapy Market, Segmentation By Application, Historic and Forecast, 2015-2020, 2020-2025F, 2030F, $ Billion

7. Cell Therapy Market Regional And Country Analysis

7.1. Global Cell Therapy Market, Split By Region, Historic and Forecast, 2015-2020, 2020-2025F, 2030F, $ Billion

7.2. Global Cell Therapy Market, Split By Country, Historic and Forecast, 2015-2020, 2020-2025F, 2030F, $ Billion

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/719lux

See the original post:
Cell Therapy Global Market Report 2021: COVID-19 Growth and Change to 2030 - ResearchAndMarkets.com - Business Wire

Posted in Stem Cells | Comments Off on Cell Therapy Global Market Report 2021: COVID-19 Growth and Change to 2030 – ResearchAndMarkets.com – Business Wire

Allogeneic Mesenchymal Stem Cells Market Will Escalate Rapidly in the Near Future: Aastrom Biosciences, Inc. Mesoblast Ltd The Manomet Current – The…

Posted: July 6, 2021 at 1:56 am

Oneup Business Insights offers a complete understanding of the Allogeneic Mesenchymal Stem Cells Market in its latest research report.

The reports goal is to identify, explain, and forecast the size of the market based on type(), application(), end-use industry(), and area. Info graphics and diagrams are included in the study to make it more powerful and understandable. Furthermore, it has a variety of strategies and growth plans that are summarized. It examines the markets technological obstacles, other challenges, and cost-effectiveness. However, due to the worldwide lockdown addressed in the report, the Covid-19 pandemic and its impact in the industry, the economies have slowed down.

Note In order to provide more accurate market forecast, all our reports will be updated before delivery by considering the impact of COVID-19.

Get sample copy of thisreport @

https://www.oneupbusinessinsights.com/request_sample.php?tname=6136

Top key players @ Aastrom Biosciences, Inc. Mesoblast Ltd., Celgene Corporation, and StemCells, Inc.

The main goal for the dissemination of this information is to give a descriptive analysis of how the trends could potentially affect the upcoming future of Allogeneic Mesenchymal Stem Cells market during the forecast period. This markets competitive manufactures and the upcoming manufactures are studied with their detailed research. Revenue, production, price, market share of these players is mentioned with precise information.

Allogeneic Mesenchymal Stem Cells Market: Regional Segment Analysis

This report provides pinpoint analysis for changing competitive dynamics. It offers a forward-looking perspective on different factors driving or limiting market growth. It helps in understanding the key product segments and their future and helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments.

Key questions answered in the report include:

What will the market size and the growth rate be in 2026?

What are the key factors driving the Allogeneic Mesenchymal Stem Cells Market?

What are the key market trends impacting the growth of the Allogeneic Mesenchymal Stem Cells Market?

What are the challenges to market growth?

Who are the key vendors in the Allogeneic Mesenchymal Stem Cells Market?

What are the market opportunities and threats faced by the vendors in the Allogeneic Mesenchymal Stem Cells Market?

Trending factors influencing the market shares of the Americas, APAC, Europe, and MEA.

More Information:

https://www.oneupbusinessinsights.com/enquiry_before_buying.php?tname=6136

The report includes six parts, dealing with:

1.) Basic information;

2.) The Asia Allogeneic Mesenchymal Stem Cells Market;

3.) The North American Allogeneic Mesenchymal Stem Cells Market;

4.) The European Allogeneic Mesenchymal Stem Cells Market;

5.) Market entry and investment feasibility;

6.) The report conclusion.

All the research report is made by using two techniques that are Primary and secondary research. There are various dynamic features of the business, like client need and feedback from the customers. Before (company name) curate any report, it has studied in-depth from all dynamic aspects such as industrial structure, application, classification, and definition.

The report focuses on some very essential points and gives a piece of full information about Revenue, production, price, and market share.

Allogeneic Mesenchymal Stem Cells Market report will enlist all sections and research for each and every point without showing any indeterminate of the company.

Reasons for Buying this Report

This report provides pin-point analysis for changing competitive dynamics

It provides a forward looking perspective on different factors driving or restraining market growth

It provides a six-year forecast assessed on the basis of how the market is predicted to grow

It helps in understanding the key product segments and their future

It provides pin point analysis of changing competition dynamics and keeps you ahead of competitors

It helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments

TABLE OF CONTENT:

1 Report Overview

2 Global Growth Trends

3 Market Share by Key Players

4 Breakdown Data by Type and Application

5 United States

6 Europe

7 China

8 Japan

9 Southeast Asia

10 India

11 Central & South America

12 International Players Profiles

13 Market Forecast 2019-2025

14 Analysts Viewpoints/Conclusions

15 Appendix

Get Up to 20% Discount on this Premium Report @

https://www.oneupbusinessinsights.com/askfor_discount.php?tname=6136

If you have any special requirements, please let us know and we will offer you the report as you want.

About Us:

Oneup Business Insights is an obligated organization and a global groundbreaker in research, analytics and advisory. We create advance informative reports that will assist you to transform your business, amend your approach and take decisions valiantly.

Oneup Business Insights is one of the top resellers of market research reports, including market intelligence, data solutions, competitive positioning, and custom intelligence to an array of organizations globally. Our customer portfolio includes business organizations from fortune 500 companies, SMEs, start-ups, financial technology start-ups, and venture capitalists.

We attain particular and niche demand of the industry while stabilize the quantum of standard with specified time and trace crucial movement at both the domestic and universal levels. The particular products and services provided by Oneup Business Insights cover vital technological, scientific and economic developments in industrial, pharmaceutical and high technology companies.

Contact Us:

Vick Batho

(Assistant Manager Business Development)

US: +1 315 675 7779

3811 Ditmars Blvd, Astoria, NY-1115

sales@oneupbusinessinsights.com

http://oneupbusinessinsights.com/

Continued here:
Allogeneic Mesenchymal Stem Cells Market Will Escalate Rapidly in the Near Future: Aastrom Biosciences, Inc. Mesoblast Ltd The Manomet Current - The...

Posted in Stem Cells | Comments Off on Allogeneic Mesenchymal Stem Cells Market Will Escalate Rapidly in the Near Future: Aastrom Biosciences, Inc. Mesoblast Ltd The Manomet Current – The…

Page 710«..1020..709710711712..720730..»