Page 785«..1020..784785786787..790800..»

Vertex Announces FDA Clearance of Investigational New Drug (IND) Application for VX-880, a Novel Cell Therapy for the Treatment of Type 1 Diabetes…

Posted: February 2, 2021 at 11:50 pm

BOSTON--(BUSINESS WIRE)--Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced that the U.S. Food and Drug Administration (FDA) has cleared the IND, enabling the company to proceed with initiating a clinical trial for VX-880, an investigational stem cell-derived, fully differentiated pancreatic islet cell therapy to treat T1D. Vertex plans to initiate a Phase 1/2 clinical trial in the first half of 2021 in patients who have T1D with impaired hypoglycemic awareness and severe hypoglycemia.

As we celebrate the 100th anniversary of the discovery of insulin this year, we are excited to bring a first-in-class cell therapy to the clinic with the potential to meaningfully impact people living with T1D, said Bastiano Sanna, Ph.D., Executive Vice President and Chief of Cell and Genetic Therapies at Vertex. We look forward to getting our clinical program underway and testing our unique approach of replacing pancreatic islet cells, which are destroyed in people with type 1 diabetes, with our stem cell-derived fully differentiated insulin-producing pancreatic islet cells.

About VX-880VX-880, formerly known as STx-02, is an investigational allogeneic human stem cell-derived islet cell therapy that is being evaluated for patients who have T1D with impaired hypoglycemic awareness and severe hypoglycemia. VX-880 has the potential to restore the bodys ability to regulate glucose levels by restoring pancreatic islet cell function, including insulin production.

The VX-880 clinical trial will involve an infusion of fully differentiated, functional islet cells, as well as the chronic administration of concomitant immunosuppressive therapy, to protect the islet cells from immune rejection.

About the Phase 1/2 Clinical TrialThe clinical trial is a Phase 1/2, single-arm, open-label study in subjects who have T1D with impaired hypoglycemic awareness and severe hypoglycemia. This will be a sequential, multi-part clinical trial to evaluate the safety and efficacy of different doses of VX-880. Approximately 17 patients will be enrolled in the clinical trial.

About Type 1 DiabetesT1D results from the autoimmune destruction of insulin-producing islet cells in the pancreas, leading to loss of insulin production and impairment of blood glucose control. The absence of insulin leads to abnormalities in how the body processes nutrients, leading to high blood glucose levels. High blood glucose can lead to diabetic ketoacidosis and over time, to complications such as kidney disease/failure, eye disease (including vision loss), heart disease, stroke, nerve damage and even death. Due to the limitations and complexities of insulin delivery systems, it can be difficult to achieve and maintain balance in glucose control in patients with T1D. Hypoglycemia remains a critical limiting factor in glycemic management, and severe hypoglycemia can cause loss of consciousness, coma, seizures, injury, and can be fatal.

There are currently limited treatment options beyond insulin for the management of T1D.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of cell and genetic therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 11 consecutive years on Science magazine's Top Employers list and a best place to work for LGBTQ equality by the Human Rights Campaign. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Bastiano Sanna, Ph.D., in this press release, statements regarding the development, plans and expectations for our T1D pipeline program, including our plans to initiate a Phase 1/2 clinical trial in people with T1D and expected timeline of our clinical trials, statements regarding patient enrollment and dosing, statements regarding potential clinical trial results and anticipated benefits of VX-880, and our plans to provide further updates on our T1D pipeline program. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that the FDA may not approve our IND, that data from a limited number of patients may not be indicative of final clinical trial results, that data from the company's development programs may not support registration or further development due to safety, efficacy or other reasons, that the COVID-19 pandemic may impact the status or progress of our clinical trials, and other risks listed under the heading Risk Factors in Vertex's most recent annual report and subsequent quarterly reports filed with the Securities and Exchange Commission at http://www.sec.gov and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

Go here to see the original:
Vertex Announces FDA Clearance of Investigational New Drug (IND) Application for VX-880, a Novel Cell Therapy for the Treatment of Type 1 Diabetes...

Posted in Cell Therapy | Comments Off on Vertex Announces FDA Clearance of Investigational New Drug (IND) Application for VX-880, a Novel Cell Therapy for the Treatment of Type 1 Diabetes…

Keeping up with the developing regulatory requirements for gene and cell therapies – PMLiVE

Posted: February 2, 2021 at 11:50 pm

Since the approval of the first five gene or gene-modified cell therapies in the US Luxturna, Yescarta, Tecartus, Kymriah and Zolgensma this new technology has been evolving rapidly and more recent approval applications have faced challenges.

The FDAs requirement on Biomarin to provide an additional two years of clinical data of Valrox before approval signals an increase in regulatory scrutiny for the regenerative medicine industry.

Other safety and manufacturing events such as three patient deaths in the high-dose arm of the Audentes ASPIRO trial and an FDA refusal to review the biologics licence application for Bristol Myers Squibb and bluebird bios idecabtagene vicleucel CAR-T therapy further emphasise this point.

A crucial challenge faced by cell and gene therapy developers is the necessity to balance clinical considerations with logistical ones such as manufacturing.

Naturally, clinical considerations will always surpass logistical ones, but it is not so simple. Thats why manufacturers must guarantee the development of drug manufacturing processes that are vigorously in compliance with all relevant FDA guidance.

An example issue that the industry is facing is that drug developers are adopting different approaches to produce recombinant AAVs (rAAVs). The majority of AAV gene therapies in clinical trials are produced using transient transfection.

However, there is a challenge in scaling up such procedures, as it is not easy to maintain transient transfection consistency from batch to batch, especially at scales over 500 litres.

Thats why developers have started exploring other techniques, for example using a baculovirus with an insect producer cell, as done by BioMarin to produce its gene therapy for haemophilia.

While this provided greater scalability, using different platforms to produce AAVs could have clinical implications.When comparing rAAVs produced using transiently transfected human cells with baculovirus infected insect cells, alterations in several functionally relevant AAV characteristics are exposed, including post-translational modifications, such as glycosylation, acetylation, phosphorylation and methylation.

It is vital that any baculoviruses used to produce the AAVs are entirely removed from the final product, as any such contamination would have very adverse effects in patients. Therefore, while one may achieve higher production, the incorporation of other manufacturing steps can add complication, and therapeutic dose may also need to increase.

At the same time, any adventitious viruses that could infect the producer cells must also be removed from the final product. Although no patient has contracted a viral infection from a monoclonal antibody or recombinant protein drug to date, this is because of the vigorous procedures in place to remove the unwelcome viruses.

At the same time, cell and gene therapies that utilise AAVs and lentiviruses could face difficulty employing these processes, as it would destroy the viral vector that is either the final drug product or crucial to producing it.

Drug developers are therefore turning to other methods of adventitious virus control such as pass all incoming process liquids through virus filters. These kinds of processes will only become more important in a climate of increasing regulatory examination.

These virus filters use a membrane barrier to remove virus particles. Its a size-based removal technique using a specially designed polymeric membrane to keep virus particles on the surface and within the pores of the membrane. The addition of viral filters to incoming media streams could help deliver a virus-control strategy that is suitable for these kinds of therapeutics.

The first cell and gene therapies were developed to treat rare and fatal diseases, which is why patients were possibly more likely to accept higher-risk treatment options.

But todays cell and gene therapies are being produced for more common diseases, to act as therapies that go beyond the traditional approach to disease treatment.For that reason, we must create manufacturing processes for cell and gene therapies that arent just rapidly scalable but also guarantee maximum patient safety.

Pall is a global supplier of filtration, separations and purification products for drug developers.

Clive Glover is Director, Strategy at Pall Corporation

See original here:
Keeping up with the developing regulatory requirements for gene and cell therapies - PMLiVE

Posted in Cell Therapy | Comments Off on Keeping up with the developing regulatory requirements for gene and cell therapies – PMLiVE

Avacta JV raises $7.3m for cell and gene therapy push | Business Weekly – Business Weekly

Posted: February 2, 2021 at 11:50 pm

A Cambridge UK-Korea joint venture promising great things in nextgen cell and gene therapy technology has been rewarded with major cash backing in a Series A round.

Avactas JV with Daewoong Pharmaceutical AffyXell Therapeutics has secured $7.3 million to further develop its pipeline of next generation cell and gene therapies.

AffyXell was established in January 2020 to develop novel mesenchymal stem cell therapies. The business is combining Avactas Affimer platform with Daewoongs MSC platform such that the stem cells are genetically modified to produce and secrete therapeutic Affimer proteins in situ in the patient.

The Affimer proteins are designed to enhance the therapeutic effects of the MSC creating a novel, next generation cell therapy platform.

The Series A funding has been raised from a group of venture funds including Samsung Venture Investment Corporation, Shinhan Venture Investment, Smilegate Investment, Shinhan Investment Corporation, Kolon Investment, Stonebridge Ventures and Gyeongnam Venture Investment.

The proceeds will be used by AffyXell to further the development of MSCs engineered to produce Affimer molecules generated by Avacta that suppress immune response and restore immune balance.

While initially focusing on inflammatory and autoimmune diseases and prevention of organ transplant rejection, longer term goals could also include applications in regenerative medicine, infectious diseases and oncology.

Avacta's R & D costs associated with the generation of the Affimer proteins are funded by AffyXell whilst Avacta retains the rights to commercialise the Affimer proteins outside the field of cell therapies.

Avacta CEO Dr Alastair Smith said: The potential for AffyXells new class of MSC therapies to deliver improved treatments for a wide range of inflammatory and autoimmune diseases is significant, in a market estimated to be worth $16 billionn by 2025.

We expect these novel engineered MSCs to show a more powerful therapeutic effect than existing antibodies and stem cells and they therefore have the potential to lead the rapidly growing field of cell and gene therapy.

AffyXell is uniquely positioned to develop novel and powerful cell therapies through the combination of two world-class technologies: Avactas Affimer platform and Daewoongs proprietary technology for generating off-the-shelf allogeneic MSC therapies.

Completion of the Series A funding is a strong validation of this concept and moves us closer to providing these new therapies to the patients who need them.

View post:
Avacta JV raises $7.3m for cell and gene therapy push | Business Weekly - Business Weekly

Posted in Cell Therapy | Comments Off on Avacta JV raises $7.3m for cell and gene therapy push | Business Weekly – Business Weekly

Lonza Announces High-Quality Cryopreserved Leukopaks for More Flexibility in Immunology and Cell Therapy Research – BioSpace

Posted: February 2, 2021 at 11:50 pm

Quote from Andrew Winner, Product Manager, Lonza Bioscience:"The short viability window of fresh Leukopaks means researchers are at the mercy of donor and shipping schedules and any logistical delays can wreak havoc on project costs and the quality of research results. By offering cryopreserved Leukopaks, we are expanding our ability to deliver high-viability cell products internationally, and the rapid availability of stored cryopreserved Leukopaks means our customers are better able to adhere to uncompromising research timelines."

Basel, Switzerland, 28 January 2021 Lonza has expanded its renowned human primary cell offerings with the launch of fully customizable, high-quality cryopreserved Leukopaks. The frozen Leukopaks will enable long-distance shipping of leukapheresis products without the concern of reduced cell viability encountered with fresh Leukopaks. Being suitable for long-term storage in research labs, the cryopreserved Leukopaks will also allow immediate access to viable cells for greater convenience and workflow flexibility. The cryopreserved Leukopaks come in a range of sizes, and multiple donor characteristics and testing options are available through a unique costing structure that allows customers to only pay for the customization that they need.

A Leukopak is an enriched leukapheresis-derived product containing high concentrations of peripheral blood mononuclear cells like T cells, B cells and monocytes. Such cells are a critical raw material in immunotherapy research and for optimizing cell therapy process development before progressing to full clinical manufacture. However, fresh Leukopaks can be hard to access and must be used rapidly to avoid cell degradation. International transportation options are thus severely limited, and logistical delays or donor cancellations can have catastrophic impacts on research costs and quality. Cryopreserved Leukopaks allow reliable global shipping while maintaining cell viability and functionality, and the ability to thaw cryopreserved Leukopaks when needed means researchers are better able to plan ahead for more cost-efficient therapy development.

Lonzas cryopreserved Leukopaks are available in a range of sizes, including packs of 2.5, 5 and 9.5 billion cells, which can be subdivided into separate smaller bags for greater convenience. Specific donor characteristics like age, gender and Human Leukocyte Antigen (HLA) type are also available, with a wide range of recallable donors and several product testing options. Customization follows a unique, tailored pricing structure, where customers only pay for the customization they require. Customers will also have access to Lonzas globally renowned technical support services to facilitate optimized product usage and greater research success.

To find out more about Lonzas cryopreserved Leukopak offerings, please clickhere.

About LonzaLonza is the preferred global partner to the pharmaceutical, biotech and nutrition markets. We work to prevent illness and enable a healthier world by supporting our customers to deliver new and innovative medicines that help treat a wide range of diseases. We achieve this by combining technological insight with world-class manufacturing, scientific expertise and process excellence. These enable our customers to commercialize their discoveries and innovations in the healthcare sector.

Founded in 1897 in the Swiss Alps, today Lonza operates across three continents. With approximately 14,000 full-time employees, we are built from high-performing teams and of individual talent who make a meaningful difference to our own business, as well as to the communities in which we operate. The company generated sales of CHF 4.5 billion in 2020 with a CORE EBITDA of CHF 1.4 billion. Find out more atwww.lonza.com

Follow @Lonza onLinkedInFollow @LonzaGroup onTwitter

Lonza Contact Details

Dr. Sanna FowlerHead of External CommunicationsLonza Group LtdTel +41 61 316 8929sanna.fowler@lonza.com

Dirk OehlersInvestor RelationsLonza Group LtdTel +41 79 421 1609dirk.oehlers@lonza.com

Additional Information and DisclaimerLonza Group Ltd has its headquarters in Basel, Switzerland, and is listed on the SIX Swiss Exchange. It has a secondary listing on the Singapore Exchange Securities Trading Limited ("SGX-ST"). Lonza Group Ltd is not subject to the SGX-STs continuing listing requirements but remains subject to Rules 217 and 751 of the SGX-ST Listing Manual.

Certain matters discussed in this news release may constitute forward-looking statements. These statements are based on current expectations and estimates of Lonza Group Ltd, although Lonza Group Ltd can give no assurance that these expectations and estimates will be achieved. Investors are cautioned that all forward-looking statements involve risks and uncertainty and are qualified in their entirety. The actual results may differ materially in the future from the forward-looking statements included in this news release due to various factors. Furthermore, except as otherwise required by law, Lonza Group Ltd disclaims any intention or obligation to update the statements contained in this news release.

Continue reading here:
Lonza Announces High-Quality Cryopreserved Leukopaks for More Flexibility in Immunology and Cell Therapy Research - BioSpace

Posted in Cell Therapy | Comments Off on Lonza Announces High-Quality Cryopreserved Leukopaks for More Flexibility in Immunology and Cell Therapy Research – BioSpace

Stem Cell Therapy for Osteoarthritis Market Research Report 2021: Market Competition Trend and Price by Manufacturers till 2026 with key players…

Posted: February 2, 2021 at 11:50 pm

The Stem Cell Therapy for Osteoarthritis Market grew in 2019, as compared to 2018, according to our report, Stem Cell Therapy for Osteoarthritis Market is likely to have subdued growth in 2020 due to weak demand on account of reduced industry spending post Covid-19 outbreak. Further, Stem Cell Therapy for Osteoarthritis Market will begin picking up momentum gradually from 2021 onwards and grow at a healthy CAGR between 2021-2025.

Deep analysis about Stem Cell Therapy for Osteoarthritis Market status (2016-2019), competition pattern, advantages and disadvantages of products, industry development trends (2019-2025), regional industrial layout characteristics and macroeconomic policies, industrial policy has also been included. From raw materials to downstream buyers of this industry have been analysed scientifically. This report will help you to establish comprehensive overview of the Stem Cell Therapy for Osteoarthritis Market

Get a Sample Copy of the Report at: https://i2iresearch.com/download-sample/?id=13821

The Stem Cell Therapy for Osteoarthritis Market is analysed based on product types, major applications and key players

Key product type:MonotherapyCombination Therapy

Key applications:Osteoarthritis (unspecified)Knee OsteoarthritisShoulder OsteoarthritisHip Osteoarthritis

Key players or companies covered are:MesoblastRegeneusU.S. Stem CellAnterogenAsterias Biotherapeutics

The report provides analysis & data at a regional level (North America, Europe, Asia Pacific, Middle East & Africa , Rest of the world) & Country level (13 key countries The U.S, Canada, Germany, France, UK, Italy, China, Japan, India, Middle East, Africa, South America)

Inquire or share your questions, if any: https://i2iresearch.com/need-customization/?id=13821

Key questions answered in the report:1. What is the current size of the Stem Cell Therapy for Osteoarthritis Market, at a global, regional & country level?2. How is the market segmented, who are the key end user segments?3. What are the key drivers, challenges & trends that is likely to impact businesses in the Stem Cell Therapy for Osteoarthritis Market?4. What is the likely market forecast & how will be Stem Cell Therapy for Osteoarthritis Market impacted?5. What is the competitive landscape, who are the key players?6. What are some of the recent M&A, PE / VC deals that have happened in the Stem Cell Therapy for Osteoarthritis Market?

The report also analysis the impact of COVID 19 based on a scenario-based modelling. This provides a clear view of how has COVID impacted the growth cycle & when is the likely recovery of the industry is expected to pre-covid levels.

Contact us:i2iResearch info to intelligenceLocational Office: *India, *United States, *GermanyEmail: [emailprotected]Toll-free: +1-800-419-8865 | Phone: +91 98801 53667

https://murphyshockeylaw.net/

See the article here:
Stem Cell Therapy for Osteoarthritis Market Research Report 2021: Market Competition Trend and Price by Manufacturers till 2026 with key players...

Posted in Cell Therapy | Comments Off on Stem Cell Therapy for Osteoarthritis Market Research Report 2021: Market Competition Trend and Price by Manufacturers till 2026 with key players…

SQZ Biotechnologies Announces FDA Clearance of IND Application to Allow for Clinical Trial with SQZ Activating Antigen Carriers (SQZ AACs) in Patients…

Posted: February 2, 2021 at 11:50 pm

WATERTOWN, Mass.--(BUSINESS WIRE)--SQZ Biotechnologies (NYSE: SQZ), a cell therapy company developing novel treatments for multiple therapeutic areas, today announced that the companys Investigational New Drug (IND) application for SQZTM Activating Antigen Carriers (SQZ AACs) in HPV+ tumors was cleared by the U.S. Food and Drug Administration (FDA). The clinical trial will investigate SQZ-AAC-HPV, a cell therapy candidate generated from red blood cells (RBCs) engineered with tumor-specific antigen to treat HPV+ tumors. This trial, SQZ-AAC-HPV-101, marks the first clinical program from the companys wholly-owned SQZ AAC platform.

SQZ AACs are a novel cellular immunotherapy candidate designed to transport tumor-specific antigen and TLR agonists to the patients endogenous, professional, antigen presenting cells in vivo. These antigen presenting cells are capable of potent T cell activation that could potentially drive an anti-tumor effect. In preclinical studies, SQZ AACs in mouse models have demonstrated robust immune responses, CD8 T cell infiltration, and correlated tumor reduction.

Advancing our SQZ AAC program into the clinic is a significant milestone for our team, said Armon Sharei, PhD, founder and chief executive officer of SQZ Biotechnologies. This program further illustrates the broad cell engineering capabilities of our core technology and the diversity of our pipeline. SQZ AACs potentially open another dimension of biology where SQZ cell therapy candidates could drive patient impact.

The Phase 1 multi-center trial will enroll multiple cohorts to assess SQZ-AAC-HPV as both monotherapy and in combination with other immunoncology therapies. HLA-A*02+ patients with recurrent, locally advanced or metastatic HPV16+ head & neck, cervical, anal, penile, vulval and vaginal cancers are all eligible for the study.

We are dedicated to leveraging our unique capabilities and novel cell therapy candidates to try to improve patients lives by offering them potential outcomes that they need and deserve. SQZ AACs are our next approach for a potential differentiated cell therapy targeting solid tumors that could represent an exciting evolution in the cancer patient experience, said Oliver Rosen, MD, chief medical officer.

About SQZ-AAC-HPV

SQZ AACs are generated by squeezing red blood cells (RBCs) with an antigen and activating adjuvant. The process is tuned to make the engineered RBCs appear aged. Once administered to patients, SQZ AACs aim to be rapidly taken up by professional antigen presenting cells through a natural process to destroy aged RBCs in the body known as eryptosis. To take advantage of this process, SQZ AACs are designed to act as a Trojan horse to deliver significant quantities of antigen and activation factors to the professional, endogenous antigen presenting cells in the lymphoid organs and drive subsequent activation of T cells specific to HPV+-tumors. SQZ-AAC-HPV is the first product candidate from the SQZ AAC platform.

About SQZ Biotechnologies

SQZ Biotechnologies is a clinical-stage biotechnology company developing transformative cell therapies for patients with cancer, infectious diseases, and other serious conditions. Using its proprietary technology, SQZ Biotechnologies offers the unique ability to deliver multiple materials into many patient cell types to engineer what we believe can be an unprecedented range of potential therapeutics for a variety of diseases. SQZ Biotechnologies has the potential to create well-tolerated cell therapies that can provide therapeutic benefit for patients and to improve the patient experience over existing cell therapy approaches. With accelerated production timelines under 24 hours and the opportunity to eliminate preconditioning and lengthy hospital stays, our goal is to use the SQZ approach to establish a new paradigm for cell therapies. Our first therapeutic applications aim to leverage the potential to generate target-specific immune responses, both in activation for the treatment of solid tumors and immune tolerance for the treatment of unwanted immune reactions and autoimmune diseases. For more information please visit http://www.sqzbiotech.com.

Forward Looking Statement

This press release may contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained that do not relate to matters of historical fact should be considered forward-looking statements, including statements relating to upcoming events and presentations, our product candidates, preclinical and clinical activities, regulatory requirements, clinical efficacy and therapeutic impact. These forward-looking statements are based on management's current expectations. The words may, will, should, expect, plan, anticipate, could, intend, target, project, estimate, believe, predict, potential or continue or the negative of these terms or other similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this press release.

These and other important factors discussed under the caption "Risk Factors" in our Form 10Q filed with the U.S. Securities and Exchange Commission (SEC) on December 10, 2020 and our other filings with the SEC could cause actual results to differ materially from those indicated by the forward-looking statements. Any forward-looking statements represent management's estimates as of this date. New risk factors and uncertainties may emerge from time to time, and it is not possible to predict all risk factors and uncertainties. While we may elect to update forward-looking statements in the future, except as required by law, we disclaim any obligation to do so, even if subsequent events cause our views to change. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct.

Certain information contained in this press release relates to or is based on studies, publications, surveys and other data obtained from third-party sources and our own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this press release, we have not independently verified, and we make no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources.

Read more here:
SQZ Biotechnologies Announces FDA Clearance of IND Application to Allow for Clinical Trial with SQZ Activating Antigen Carriers (SQZ AACs) in Patients...

Posted in Cell Therapy | Comments Off on SQZ Biotechnologies Announces FDA Clearance of IND Application to Allow for Clinical Trial with SQZ Activating Antigen Carriers (SQZ AACs) in Patients…

How Coronavirus Damages Lung Cells Within Mere Hours And What Drugs Could Halt COVID-19 Infection – SciTechDaily

Posted: February 1, 2021 at 8:54 am

Human lung cells (blue) infected with SARS-CoV-2 (red). Courtesy of Hekman, et al. Credit: Courtesy of Hekman, et al.

Multipronged BU research team finds 18 FDA-approved drugs that could halt coronavirus infection earlier.

What if scientists knew exactly what impact the SARS-CoV-2 virus had inside our lung cells, within the first few hours of being infected? Could they use that information to find drugs that would disrupt the virus replication process before it ever gets fully underway? The discovery that several existing FDA-approved drugsincluding some originally designed to fight cancercan stop coronavirus in its tracks indicates the answer is a resounding yes.

A team of Boston University researchershailing from BUs National Emerging Infectious Diseases Laboratories (NEIDL), the Center for Regenerative Medicine (CReM) at BUs Medical Campus, and BUs Center for Network Systems Biology (CNSB)embarked on a months-long, collaborative and interdisciplinary quest, combining multiple areas of expertise in virology, stem cellderived lung tissue engineering, and deep molecular sequencing to begin answering those questions. They simultaneously infected tens of thousands of human lung cells with the SARS-CoV-2 virus, and then tracked precisely what happens in all of those cells during the first few moments after infection. As if that was not complicated enough, the team had to cool their entire high-containment research facility inside the NEIDL to a brisk 61 degrees Fahrenheit.

The result of that challenging and massive undertaking? The BU team has revealed the most comprehensive map to date of all the molecular activities that are triggered inside lung cells at the onset of coronavirus infection. They also discovered there are at least 18 existing, FDA-approved drugs that could potentially be repurposed to combat COVID-19 infections shortly after a person becomes infected. Experimentally, five of those drugs reduced coronavirus spread in human lung cells by more than 90 percent. Their findings were recently published in Molecular Cell.

Now, academic and industry collaborators from around the world are in contact with the team about next steps to move their findings from bench to bedside, the researchers say. (Although COVID-19 vaccines are starting to be rolled out, its expected to take the better part of a year for enough people to be vaccinated to create herd immunity. And there are no guarantees that the current vaccine formulations will be as effective against future SARS-CoV-2 strains that could emerge over time.) More effective and well-timed therapeutic interventions could help reduce the overall number of deaths related to COVID-19 infections.

What makes this research unusual is that we looked at very early time points [of infection], at just one hour after the virus infects lung cells. It was scary to see that the virus already starts to damage the cells so early during infection, says Elke Mhlberger, one of the studys senior investigators and a virologist at BUs NEIDL. She typically works with some of the worlds most lethal viruses like Ebola and Marburg.

The most striking aspect is how many molecular pathways are impacted by the virus, says Andrew Emili, another of the studys senior investigators, and the director of BUs CNSB, which specializes in proteomics and deep sequencing of molecular interactions. The virus does wholesale remodeling of the lung cellsits amazing the degree to which the virus commandeers the cells it infects.

Viruses cant replicate themselves because they lack the molecular machinery for manufacturing proteinsthats why they rely on infecting cells to hijack the cells internal machinery and use it to spread their own genetic material. When SARS-CoV-2 takes over, it completely changes the cells metabolic processes, Emili says, and even damages the cells nuclear membranes within three to six hours after infection, which the team found surprising. In contrast, cells infected with the deadly Ebola virus dont show any obvious structural changes at these early time points of infection, and even at late stages of infection, the nuclear membrane is still intact, Mhlberger says.

The nuclear membrane surrounds the nucleus, which holds the majority of a cells genetic information and controls and regulates normal cellular functions. With the cell nucleus compromised by SARS-CoV-2, things rapidly take a bad turn for the entire cell. Under siege, the cellswhich normally play a role in maintaining the essential gas exchange of oxygen and carbon dioxide that occurs when we breathedie. As the cells die, they also emit distress signals that boost inflammation, triggering a cascade of biological activity that speeds up cell death and can eventually lead to pneumonia, acute respiratory distress, and lung failure.

I couldnt have predicted a lot of these pathways, most of them were news to me, says Andrew Wilson, one of the studys senior authors, a CReM scientist, and a pulmonologist at Boston Medical Center (BMC), BUs teaching hospital. At BMC, Bostons safety net hospital, Wilson has been on the front lines of the COVID-19 pandemic since March 2020, trying to treat and save the sickest patients in the hospitals ICU. Thats why our [experimental] model is so valuable.

Science is the answerif we use science to ask the lung cells what goes wrong when they are infected with coronavirus, the cells will tell us. Darrell Kotton

The team leveraged the CReMs organoid expertise to grow human lung air sac cells, the type of cell that lines the inside of lungs. Air sac cells are usually difficult to grow and maintain in traditional culture and difficult to extract directly from patients for research purposes. Thats why much coronavirus research to date by other labs has relied on the use of more readily available cell types, like kidney cells from monkeys. The problem with that is kidney cells from monkeys dont react the same way to coronavirus infection as lung cells from humans do, making them a poor model for studying the viruswhatever is learned from them doesnt easily translate into clinically relevant findings for treating human patients.

Our organoids, developed by our CReM faculty, are engineered from stem cellstheyre not identical to the living, breathing cells inside our bodies, but they are the closest thing to it, says Darrell Kotton, one of the studys senior authors. He is a director of the CReM and a pulmonologist at BMC, where he has worked alongside Wilson in the ICU treating COVID-19 patients. The two of them often collaborated with Mhlberger, Emili, and other members of their research team via Zoom calls that they managed to join during brief moments of calm in the ICU.

In another recent study using the CReMs engineered human lung cells, the research team confirmed that existing drugs remdesivir and camostat are effective in combating the virus, though neither is a perfect fix for controlling the inflammation that COVID-19 causes. Remdesivir, a broad-use antiviral, has already been used clinically in coronavirus patients. But based on the new studys findings that the virus does serious damage to cells within hours, setting off inflammation, the researchers say theres likely not much that antiviral drugs like remdesivir can do once an infection has advanced to the point where someone would need to be put on a ventilator in the ICU. [Giving remdesivir] cant save lives if the disease has already progressed, Emili says.

Seeing how masterfully SARS-CoV-2 commandeers human cells and subverts them to do the manufacturing work of replicating the viral genome, it reminded the researchers of another deadly invader.

I was surprised that there are so many similarities between cancer cells and SARS-CoV-2-infected cells, Mhlberger says. The team screened a number of cancer drugs as part of their study and found that several of them are able to block SARS-CoV-2 from multiplying. Like viruses, cancer cells want to replicate their own genomes, dividing over and over again. To do that, they need to produce a lot of pyrimidine, a basic building block for genetic material. Interrupting the production of pyrimidineusing a cancer drug designed for that purposealso blocks the SARS-CoV-2 genome from being built. But Mhlberger cautions that cancer drugs typically have a lot of side effects. Do we really want to use that heavy stuff against a virus? she says. More studies will be needed to weigh the pros and cons of such an approach.

The findings of their latest study took the four senior investigators and scientists, postdoctoral fellows, and graduate students from their laboratories almost four months, working nearly around the clock, to complete the research. Of critical importance to the teams leaders was making sure that the experimental setup had rock-solid foundations in mimicking whats actually happening when the SARS-CoV-2 virus infects people.

Science is the answerif we use science to ask the lung cells what goes wrong when they are infected with coronavirus, the cells will tell us, Kotton says. Objective scientific data gives us hints at what to do and has lessons to teach us. It can reveal a path out of this pandemic.

Hes particularly excited about the outreach the team has received from collaborators around the world. People with expertise in supercomputers and machine learning are excited about using those tools and the datasets from our publication to identify the most promising drug targets [for treating COVID-19], he says.

Kotton says the theme thats become obvious among COVID-19 clinicians and scientists is understanding that timing is key. Once a patient is on a ventilator in the ICU, we feel limited in what we can do for their body, he says. Timing is everything, its crucial to identify early windows of opportunity for intervention. You can keep guessing and hope we get luckyor you [do the research] to actually understand the infection from its inception, and take the guesswork out of drug development.

Reference: Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2 by Ryan M. Hekman, Adam J. Hume, Raghuveera Kumar Goel, Kristine M. Abo, Jessie Huang, Benjamin C. Blum, Rhiannon B. Werder, Ellen L. Suder, Indranil Paul, Sadhna Phanse, Ahmed Youssef, Konstantinos D. Alysandratos, Dzmitry Padhorny, Sandeep Ojha, Alexandra Mora-Martin, Dmitry Kretov, Peter E.A. Ash, Mamta Verma, Jian Zhao, J.J. Patten, Carlos Villacorta-Martin, Dante Bolzan, Carlos Perea-Resa, Esther Bullitt, Anne Hinds, Andrew Tilston-Lunel, Xaralabos Varelas, Shaghayegh Farhangmehr Ulrich Braunschweig, Julian H. Kwan, Mark McComb, Avik Basu, Mohsan Saeed, Valentina Perissi, Eric J. Burks, Matthew D. Layne, John H. Connor, Robert Davey, Ji-Xin Cheng, Benjamin L. Wolozin, Benjamin J. Blencowe, Stefan Wuchty, Shawn M. Lyons, Dima Kozakov, Daniel Cifuentes, Michael Blower, Darrell N. Kotton, Andrew A. Wilson, Elke Mhlberger and Andrew Emili, 18 November 2020, Molecular Cell.DOI: 10.1016/j.molcel.2020.11.028

This research was funded by the National Institutes of Health, the Australian National Health and Medical Research Council, the Pulmonary Fibrosis Foundation, the Massachusetts Consortium on Pathogen Readiness, the C3.ai Digital Transformation Institute, the Canadian Institutes of Health Research, and Fast Grants.

The rest is here:
How Coronavirus Damages Lung Cells Within Mere Hours And What Drugs Could Halt COVID-19 Infection - SciTechDaily

Posted in Massachusetts Stem Cells | Comments Off on How Coronavirus Damages Lung Cells Within Mere Hours And What Drugs Could Halt COVID-19 Infection – SciTechDaily

Orchard Therapeutics Outlines Comprehensive Presence at 2021 WORLDSymposium – GlobeNewswire

Posted: February 1, 2021 at 8:54 am

Nine abstracts accepted demonstrating potential of HSC gene therapy to treat multiple neurodegenerative disorders

New clinical data from all eight patients treated with OTL-203 for Mucopolysaccharidosis type I (MPS I)

Biomarker data from first three patients treated with OTL-201 for Mucopolysaccharidosis type IIIA (MPS-IIIA or Sanfilippo Syndrome Type A)

Multiple abstracts highlighting clinical and real-world data for OTL-200 and Metachromatic Leukodystrophy (MLD)

Company to host virtual investor webinar to review symposium data on Tuesday, February 9, 2021 at 4:30 p.m. ET

BOSTON and LONDON, Jan. 28, 2021 (GLOBE NEWSWIRE) -- Orchard Therapeutics(Nasdaq: ORTX), a global gene therapy leader, today outlined nine upcoming presentations from its neurodegenerative portfolio to be featured at the 17th Annual WORLDSymposium being held on February 8-12, 2021. Accepted abstracts include clinical data from three of its hematopoietic stem cell (HSC) gene therapy programs OTL-200 for MLD, OTL-203 for MPS-I and OTL-201 for MPS-IIIA as well as data supporting Orchards multi-pronged patient identification and market access strategies for eligible MLD patients in Europe.

Together with our clinical partners, were proud of our presence at the upcoming WORLDSymposium, which for the first time features clinical data on cognitive function and growth in all eight MPS-I patients treated with gene therapy, said Bobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. Alongside emerging data in MPS-IIIA and our extensive body of clinical and real-world data in MLD, our programs are establishing a clear picture of the transformative potential of HSC gene therapy across multiple fatal neurodegenerative conditions.

The presentations are listed below and the full preliminary program is available online on the WORLDSymposium website. The ePosters will open at 2:30 p.m. ET on Monday, February 8, 2021 and will remain open throughout WORLDSymposium 2021.

Orchard is planning to host a virtual investor webinar on Tuesday, February 9th, 2021 at 4:30 p.m. ET to review the data from its neurodegenerative programs presented at the WORLDSymposium. A live webcast will be available under Events in the Investors & Media section of the companys website at http://www.orchard-tx.com and a replay of the webcast will be archived following the event.

Platform Oral Presentation Details:

Ex-vivo autologous stem cell gene therapy clinical trial for mucopolysaccharidosis type IIIA: Update on phase I/II clinical trialPresenting Author: Jane Kinsella, Royal Manchester Childrens Hospital 2021 Young Investigator Award RecipientDate/Time: Tuesday, February 9, 2021, 11:12 a.m. ET

Ex vivo hematopoietic stem cell gene therapy for mucopolysaccharidosis type I (Hurler syndrome)Presenting Author: Bernhard Gentner, San Raffaele Telethon Institute for Gene TherapyDate/Time: Tuesday, February 9, 2021, 11:24 a.m. ET

Lentiviral hematopoietic stem and progenitor cell gene therapy provides durable clinical benefit in early-symptomatic early juvenile metachromatic leukodystrophyPresenting Author: Francesca Fumagalli, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific InstituteDate/Time: Wednesday, February 10, 2021, 11:36 a.m. ET

ePoster Presentation Details:

Lentiviral haematopoietic stem cell gene therapy for metachromatic leukodystrophy: Results in nine patients treated with a cryopreserved formulation of OTL-200Abstract Number: 25Presenting Author: Valeria Calbi, San Raffaele Telethon Institute for Gene TherapyDate/Time: Wednesday, February 10, 2021, 2:30 3:30 p.m. ET

Initial signs and symptoms of metachromatic leukodystrophy: A caregiver perspectiveAbstract Number: 64Presenting Author: Florian Eichler, Massachusetts General HospitalDate/Time: Thursday, February 11, 2021, 2:30 3:30 p.m. ET

Demographic and clinical characteristics of patients with metachromatic leukodystrophy in the United Kingdom: Interim results from an observational real-world studyAbstract Number: 110Presenting Author: Simon Jones, Manchester Centre for Genomic Medicine Date/Time: Thursday, February 11, 2021, 2:30 3:30 p.m. ET

Quality of life of patients with metachromatic leukodystrophy and their caregivers in the US, UK, Germany and FranceAbstract Number: 186Presenting Author: Francis Pang, Orchard TherapeuticsDate/Time: Thursday, February 11, 2021, 2:30 3:30 p.m. ET

Health-related quality of life in metachromatic leukodystrophy based on a societal utility study in the UKAbstract Number: 187Presenting Author: Francis Pang, Orchard TherapeuticsDate/Time: Thursday, February 11, 2021, 2:30 3:30 p.m. ET

Newborn screening for metachromatic leukodystrophy in Northern Germany - a prospective studyAbstract Number: 269Presenting Author: Thomas Wiesinger, ARCHIMEDlifeDate/Time: Thursday, February 11, 2021, 2:30 3:30 p.m. ET

About Libmeldy / OTL-200Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells (HSPC) transduced ex vivo using a lentiviral vector encoding the human arylsulfatase-A (ARSA) gene), also known as OTL-200, has been approved by the European Commission for the treatment of MLD in eligible early-onset patients characterized by biallelic mutations in the ARSA gene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD.

The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability.

For more information about Libmeldy, please see the Summary of Product Characteristics (SmPC) available on the EMA website.

Libmeldy is not approved outside of the European Union, UK, Iceland, Liechtenstein and Norway. OTL-200 is an investigational therapy in the US.

Libmeldy was developed in partnership with the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy.

About OrchardOrchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy in Milan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, please visit http://www.orchard-tx.com, and follow us on Twitter and LinkedIn.

Availability of Other Information About OrchardInvestors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (Twitter andLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.

Forward-Looking StatementsThis press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, and the therapeutic potential of Orchards product candidates, including the product candidate or candidates referred to in this release. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates, will be insufficient to support regulatory submissions or marketing approval in the US or EU, as applicable, or that long-term adverse safety findings may be discovered; the risk that any one or more of Orchards product candidates, including the product candidates referred to in this release, will not be approved, successfully developed or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; the inability or risk of delays in Orchards ability to commercialize its product candidates, if approved, or Libmeldy in the EU; the risk that the market opportunity for Libmeldy, or any of Orchards product candidates, may be lower than estimated; and the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedSeptember 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Contacts

InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com

MediaChristine HarrisonVice President, Corporate Affairs+1 202-415-0137media@orchard-tx.com

See more here:
Orchard Therapeutics Outlines Comprehensive Presence at 2021 WORLDSymposium - GlobeNewswire

Posted in Massachusetts Stem Cells | Comments Off on Orchard Therapeutics Outlines Comprehensive Presence at 2021 WORLDSymposium – GlobeNewswire

Valentina Greco Receives the 2021 ISSCR Momentum Award < Yale School of Medicine – Yale School of Medicine

Posted: January 27, 2021 at 10:56 pm

The International Society for Stem Cell Research (ISSCR) will present this years ISSCR Momentum Award to Valentina Greco, PhD, Carolyn Walch Slayman Professor of Genetics and member of the Yale Stem Cell Center. The prize recognizes the exceptional achievements of an investigator whose innovative research has established a major area of stem cell-related research with a strong trajectory for future success. Greco will present her science during a special lecture on June 25 during ISSCR 2021 Virtual, the worlds leading meeting of global innovators in stem cell science and regenerative medicine.

Studies from Grecos lab are redefining scientific understanding of the complex mechanisms that organize and regulate the skin stem cell niche and the behavior of normal and mutant cells in the epidermis under physiologic challenge and with aging. Her groups body of work exploring cell biology in vivo determined that the niche, rather than the stem cells, are required for tissue growth, that location in the niche dictates stem cell fate, that the niche exploits stem cell plasticity to maintain homeostasis, and that homeostatic correction battles disease emergence. These breakthroughs pave the way for new concepts in mammalian regenerative biology.

Valentina is a wonderful ambassador for the stem cell community and in particular for young, female scientists in our field, said Christine Mummery, PhD, ISSCRs president. She has a confidence and skill to pursue bold new ideas. Not only is she a pioneer in live cell imaging, but she also has made multiple important discoveries regarding the mechanisms that regulate epithelial stem cell function. We are honored to recognize Valentina for her momentous achievements.

Beyond her creativity and scientific talent, Greco has shown great leadership. She is deliberate in her commitment to career development and the training of young faculty and her lab members, and brings tremendous enthusiasm to her work. Throughout her career, Greco has sought out new ways to enhance her effectiveness as a mentor by pursuing education from others, thereby establishing a strong foundation for making fundamental scientific discoveries in partnership with her lab members. She shared her perspectives and experiences as a woman and an immigrant working in science in Stem Cell Reports, Women in Stem Cell Science, Part 1.

My lab and I are honored to be recognized with this award, Greco said. Our science is inspired by the previous insights of incredible scientists that have paved the way for our contributions including the inspiring work of Cristina Lo Celso, David Scadden, Charles Lin, and Shosei Yoshida and their pioneering live imaging of mammalian stem cells in blood regeneration and spermatogenesis.

Greco was also awarded the ISSCR Dr. Susan Lim Outstanding Young Investigator Award in 2014.

Submitted by Robert Forman on January 25, 2021

Read the original here:
Valentina Greco Receives the 2021 ISSCR Momentum Award < Yale School of Medicine - Yale School of Medicine

Posted in Cell Medicine | Comments Off on Valentina Greco Receives the 2021 ISSCR Momentum Award < Yale School of Medicine – Yale School of Medicine

‘Smart’ cartilage cells programmed to release drugs when stressed Washington University School of Medicine in St. Louis – Washington University…

Posted: January 27, 2021 at 10:56 pm

Visit the News Hub

New technology could lead to treatments for osteoarthritis

Researchers at Washington University School of Medicine in St. Louis have engineered cartilage cells to release an anti-inflammatory drug in response to stresses such cells undergo when they are compressed during weight bearing and movement. Here, the cell, called a chondrocyte, is stimulated with a very small glass pipette, about 1/5 the diameter of a human hair. When these cells undergo compression, they release the drug that combats inflammation.

Working to develop new treatments for osteoarthritis, researchers at Washington University School of Medicine in St. Louis have genetically engineered cartilage to deliver an anti-inflammatory drug in response to activity similar to the bending of a knee or other motions that put stress on joints.

Among the early symptoms of osteoarthritis is pain in response to such movements motions that involve the so-called mechanical loading of a joint. Joint pain that accompanies bending or lifting can make it difficult to perform normal activities. But by altering genes in cartilage cells in the laboratory, the researchers have been able to program them to respond to the mechanical stress associated with movement and weight-bearing by producing a drug to combat inflammation.

The study is published online Jan. 27 in the journal Science Advances.

Drugs such as ibuprofen and naproxen that ease joint pain and lower systemic inflammation are the main treatments for osteoarthritis pain, but there are no therapies that actually prevent damage in the joints of patients with this debilitating form of arthritis, said senior investigator Farshid Guilak, PhD, the Mildred B. Simon Professor of Orthopaedic Surgery. Weve developed a new field of research called mechanogenetics, where we can engineer cartilage cells to respond to the mechanical loading of the joint. Every time cells are under that stress, they produce an anti-inflammatory, biologic drug to reduce inflammation and limit arthritis-related damage.

With his team, Guilak, a co-director of the Washington University Center of Regenerative Medicine and director of research at Shriners Hospitals for Children St. Louis, first conducted experiments in the lab using cartilage cells from pigs to figure out how those cells sense when they are being mechanically stressed.

Studying these cells in the lab, we were able to identify key pathways in the cells that respond to stress from loading and the gene circuits in cartilage that are activated by mechanical loading, said co-first author Robert J. Nims, PhD, a postdoctoral researcher in Guilaks laboratory.

Like the touch sensor on a smartphone, cartilage cells sense when stress is being applied, and the inflammation associated with the excessive stress of arthritis causes cartilage to break down. The cells developed in these experiments, however, responded to that stress by secreting an anti-inflammatory drug that blocked cartilage damage.

We altered snippets of DNA in the cells to tell them to do something different than normal when they sense a load, Guilak said. That is, to make an arthritis-fighting drug.

Its kind of like turning on a light, said co-first author Lara Pferdehirt, a biomedical engineer and graduate research assistant in Guilaks lab. With a light, you flip a switch, and a lightbulb turns on. But in this case, the switch is the mechanical loading of a joint, and the bulb is the anti-inflammatory drug.

The cells were engineered to release interleukin-1 receptor antagonist a drug called anakinra (Kineret) thats used to treat rheumatoid arthritis and shows promise for treating post-traumatic osteoarthritis that occurs following joint injury. Prior studies of the drug in patients with osteoarthritis have shown it to be safe but ineffective when only injected into a joint one time. Guilak believes that is because to work well, the drug must be released in arthritic joints over longer periods, while mechanical loading is occurring.

This drug doesnt seem to work unless its delivered continuously for years, which may be why it hasnt worked well in clinical trials involving patients with osteoarthritis, he said. In our experiments in cells in the lab, we used existing signaling systems in the cartilage cells that we engineered so that they would release the drug whenever its needed. Here, we are using synthetic biology to create an artificial cell type that we can program to respond to what we want it to respond to.

In addition to reducing inflammation in arthritic joints, having specific cartilage cells deliver the drug only when and where its needed should make it possible to avoid side effects associated with long-term delivery of a strong anti-inflammatory drug to the entire body. Those side effects can include stomach pain, diarrhea, fatigue and hair loss.

Guilaks team plans to use the same technique to alter other types of cells to make different drugs.

We can create cells that automatically produce pain-relieving drugs, anti-inflammatory drugs or growth factors to make cartilage regenerate, Guilak said. We think this strategy could be a framework for doing what we might need to do to program cells to deliver therapies in response to a variety of medical problems.

Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, Kassab J, Ross AK, OConnor CJ, Liedke WB, Zhang B, McNulty AL, Guilak F. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Science Advances, Jan. 27, 2021.

This work was supported by Shriners Hospitals for Children and by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institute on Aging of the National Institutes of Health (NIH). Grant numbers AR76665, AG46927, AG15768, AR74240, AR73752, AR074992, AG28716. Additional support from the Nancy Taylor Foundation, the Arthritis Foundation, the National Science Foundation (an NSF EAGER Award and NSF Graduate Research Fellowship Program DGE-1745038), The Phillip and Sima Needleman Fellowship, the Duke School of Medicine and a Duke Clinical and Translational Science Award.

Washington University School of Medicines 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.

The rest is here:
'Smart' cartilage cells programmed to release drugs when stressed Washington University School of Medicine in St. Louis - Washington University...

Posted in Cell Medicine | Comments Off on ‘Smart’ cartilage cells programmed to release drugs when stressed Washington University School of Medicine in St. Louis – Washington University…

Page 785«..1020..784785786787..790800..»