Page 810«..1020..809810811812..820830..»

BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium – BioSpace

Posted: December 10, 2020 at 3:52 pm

NEW YORK, Dec. 10, 2020 (GLOBE NEWSWIRE) -- BeyondSpring (the Company or BeyondSpring) (NASDAQ: BYSI), a global biopharmaceutical company focused on the development of innovative cancer therapies, today announced the new data from its Phase 3 PROTECTIVE-2 Study 106 demonstrating that plinabulin in combination with pegfilgrastim offers greater protection against chemotherapy-induced neutropenia (CIN) than the standard of care, pegfilgrastim alone. The study not only met the primary and key secondary objectives, as previously disclosed on Nov. 16, 2020, but also demonstrated that the combination was 53% more effective than pegfilgrastim alone in reducing the incidence of profound neutropenia (absolute neutrophil count or ANC < 0.1 x 10E9 cells/L), 21.6% vs. 46.4%, respectively, p=0.0001, in patients with breast cancer undergoing chemotherapy with TAC (docetaxel, doxorubicin, and cyclophosphamide). Profound neutropenia (PN) is a well-known risk factor to increase the rates of infection, febrile neutropenia (FN), and hospitalization among patients undergoing chemotherapy. Of clinical importance, the combination has shown to reduce the odds of having FN by 41% in comparison to pegfilgrastim, based on reduction of profound neutropenia.

It is clinically meaningful to reduce FN risk by 41% in the combination, compared to pegfilgrastim alone, which is the only major breakthrough advancement in CIN prevention in the last 30 years. The CIN protection from plinabulin added to pegfilgrastim, particularly in the first week of chemotherapy when 75% of CIN-related complications occur before the effect of pegfilgrastim kicks-in in Week 2, fills the treatment gap in current standard of care, said Douglas Blayney, M.D., Professor of Medicine at Stanford Medical School, and global PI for the plinabulin CIN studies. The combination of plinabulin with pegfilgrastim represents a major advancement in offering protection against CIN, with the potential to reduce FN risk, in the care of cancer patients.

The data were presented via a poster at the 2020 San Antonio Breast Cancer Symposium (SABCS): Superior and Clinically Meaningful Protection Against Profound Neutropenia with the Plinabulin/Pegfilgrastim (Plin/Peg) Combination versus Peg In Breast Cancer Patients ReceivingTAC Chemotherapy. Profound neutropenia, an exploratory endpoint representing the most severe form of CIN, is associated with significant risk to patients and may require antibacterial or antifungal prophylaxis [Flowers JCO 2013]. It is attributed to both febrile neutropenia (48%) and infection (50%) [Bodey Cancer 1978]. In BeyondSprings PROTECTIVE-2 studies, patients with profound neutropenia had close to nine times the risk of FN compared to patients with no profound neutropenia. The new data presented at SABCS included:

This trial is a global, multicenter, randomized, double-blinded study in patients with breast cancer undergoing myelosuppressive chemotherapy with TAC (docetaxel at 75 mg/m2, doxorubicin at 50 mg/m2, and cyclophosphamide at 500 mg/m2) for the evaluation of protection against CIN, comparing plinabulin (40 mg) in combination with pegfilgrastim (6 mg) in 111 patients to pegfilgrastim alone (6 mg) in 110 patients. On Day 1, they received TAC and plinabulin or placebo, and on Day 2, they received pegfilgrastim. Topline data from the Protective-2 Phase 3 trial were reported on November 16, 2020 highlighting that the study met its primary endpoint as well as key secondary endpoints.

It is well recognized that CIN is directly related to chemotherapys ability to kill rapidly dividing cells. Unfortunately, fast dividing neutrophils in the bone marrow are adversely affected regardless of the chemotherapy type. As a result, we believe these outcomes are universally applicable to any chemotherapy, and are independent of cancer types, added Gordon Schooley, Ph.D., BeyondSprings Chief Regulatory Officer. As both the U.S. FDA and China NMPA recently awarded BeyondSprings Plinabulin CIN program with Breakthrough Therapy Designation status based on the interim phase 3 data of PROTECTIVE-2, and the Company now completing the PROTECTIVE-2 trial with positive and consistent results to the interim, we are well on track to submit our NDA for CIN in Q1 2021. The improved CIN prevention benefit of the Plinabulin/G-CSF combination would have the potential for CIN prevention of the myelosuppressive effects of different chemotherapeutic agents in millions of patients with multiple tumor types.

Ramon Mohanlal, M.D., Ph.D., BeyondSprings Chief Medical Officer and Executive Vice President, Research and Development concluded, Plinabulin represents a new treatment paradigm for CIN prevention, an area wherein G-CSF has established efficacy, but with short-comings due to its delayed onset of action, next day dosing requirement, bone pain induction, and platelet count reduction. Plinabulin has a fast onset mechanism of action, without causing relevant bone pain or thrombocytopenia, and can be given on the same day as chemotherapy. Plinabulin added to G-CSF offers superior prevention of CIN, and has the potential to avoid life-threatening infections and to improve short-term and long-term survival. Plinabulins anticancer activity from its immune-enhancing mechanism of action, together with its CIN preventive effects, has the potential to become a universal add-on to anti-cancer treatments in general.

The above data are available on BeyondSpringswebsite in the Posters section.

About PlinabulinPlinabulin, BeyondSprings lead asset, is a differentiated immune and stem cell modulator. Plinabulin is currently in late-stage clinical development to increase overall survival in cancer patients, as well as to alleviate chemotherapy-induced neutropenia (CIN). The durable anticancer benefits of Plinabulin have been associated with its effect as a potent antigen-presenting cell (APC) inducer (through dendritic cell maturation) and T-cell activation (Chem and Cell Reports, 2019). Plinabulins CIN data highlight the ability to boost the number of hematopoietic stem / progenitor cells (HSPCs), or lineage-/cKit+/Sca1+ (LSK) cells in mice. Effects on HSPCs could explain the ability of Plinabulin not only to treat CIN, but also to reduce chemotherapy-induced thrombocytopenia and increase circulating CD34+ cells in patients.

About CINPatients receiving chemotherapy typically develop chemotherapy-induced neutropenia (CIN), a severe side effect that increases the risk of infection with fever (also called febrile neutropenia, or FN), which necessitates ER/hospital visits. The updated National Comprehensive Cancer Network (NCCN) guidelines expanded the use of prophylactic G-CSFs, such as pegfilgrastim, to include not only high- risk patients (chemo FN rate>20%), but also intermediate-risk patients (FN rate between 10-20%) to avoid hospital/ER visits during the COVID-19 pandemic. The revision of the NCCN guidelines effectively doubles the addressable market of patients who may benefit from treatment with plinabulin, if approved, to approximately 440,000 cancer patients in the U.S. annually. Plinabulin is designed to provide protection against the occurrence of CIN and its clinical consequences in week 1, for early onset of action after chemotherapy. CIN is the primary dose-limiting toxicity in cancer patients who receive chemotherapy treatment.

About BeyondSpringBeyondSpring is a global, clinical-stage biopharmaceutical company focused on the development of innovative cancer therapies. BeyondSprings lead asset, plinabulin, a first-in-class agent as an immune and stem cell modulator, is in a Phase 3 global clinical trial as a direct anticancer agent in the treatment of non-small cell lung cancer (NSCLC) and Phase 3 clinical programs in the prevention of CIN. The U.S. FDA granted Breakthrough Therapy designation to plinabulin for concurrent administration with myelosuppressive chemotherapeutic regimens in patients with non-myeloid malignancies for the prevention of chemotherapy-induced neutropenia (CIN). BeyondSpring has strong R&D capabilities with a robust pipeline in addition to plinabulin, including three immuno-oncology assets and a drug discovery platform using the protein degradation pathway, which is being developed in a subsidiary company, Seed Therapeutics, Inc. The Company also has a seasoned management team with many years of experience bringing drugs to the global market. BeyondSpring is headquartered in New York City.

Cautionary Note Regarding Forward-Looking StatementsThis press release includes forward-looking statements that are not historical facts. Words such as "will," "expect," "anticipate," "plan," "believe," "design," "may," "future," "estimate," "predict," "objective," "goal," or variations thereof and variations of such words and similar expressions are intended to identify such forward-looking statements. Forward-looking statements are based on BeyondSpring's current knowledge and its present beliefs and expectations regarding possible future events and are subject to risks, uncertainties and assumptions. Actual results and the timing of events could differ materially from those anticipated in these forward-looking statements as a result of several factors including, but not limited to, difficulties raising the anticipated amount needed to finance the Company's future operations on terms acceptable to the Company, if at all, unexpected results of clinical trials, delays or denial in regulatory approval process, results that do not meet our expectations regarding the potential safety, the ultimate efficacy or clinical utility of our product candidates, increased competition in the market, and other risks described in BeyondSprings most recent Form 20-F on file with the U.S. Securities and Exchange Commission. All forward-looking statements made herein speak only as of the date of this release and BeyondSpring undertakes no obligation to update publicly such forward-looking statements to reflect subsequent events or circumstances, except as otherwise required by law.

Media Contacts

Investor Contact:Ashley R. RobinsonLifeSci Advisors, LLC+1 617-430-7577arr@lifesciadvisors.com

Media Contact:Darren Opland, Ph.D.LifeSci Communications+1 646-627-8387darren@lifescicomms.com

See more here:
BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium - BioSpace

Posted in Cell Medicine | Comments Off on BeyondSpring Announces New Positive PROTECTIVE-2 Phase 3 Registrational Trial Results at the 2020 San Antonio Breast Cancer Symposium – BioSpace

Kite’s YESCARTA (Axicabtagene Ciloleucel) Reimbursed in Ontario for the Treatment of Certain Types of Aggressive Non-Hodgkin Lymphoma – BioSpace

Posted: December 10, 2020 at 3:52 pm

MISSISSAUGA, ON, Dec. 10, 2020 /CNW/ -Gilead Sciences Canada, Inc. (Gilead Canada) announced today that YESCARTA(axicabtagene ciloleucel) is now available in Ontario as a treatment for adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not otherwise specified, primary mediastinal large B-cell lymphoma (PMBCL), high grade B-cell lymphoma, and DLBCL arising from follicular lymphoma.i YESCARTA will be manufactured by Kite, a Gilead Company (Kite) at its commercial manufacturing facility in El Segundo, California.

YESCARTA is a chimeric antigen receptor T-cell (CAR T) therapy, an individualized method of treatment that harnesses the power of the body's own immune system to target cancer cells. In CAR T therapy, T cells (a type of white blood cell) are removed from a patient (a process called apheresis) and modified so they can recognize and respond to a specific antigen, which is identified on cancer cells and signals cell death.ii This cell therapy can induce a complete response (no detectable cancer) in a proportion of patients with relapsed or refractory DLBCL and PMBCL, which are aggressive forms of non-Hodgkin lymphoma (NHL).iii Eligible patients in Ontario now have the option to be treated with YESCARTA at Princess Margaret Cancer Centre and The Ottawa Hospital.

"Today's announcement means that patients now have a much-needed new treatment option, which offers an exciting and innovative way to treat these types of blood cancer," saidMelissa Koomey, Vice President and General Manager, Gilead Canada. "Gilead will continue to work to provide final site certification to a number of specialized centres across Canada enabling them to make YESCARTA available to appropriate patients."

DLBCL is the most common form of NHL (a group of cancers that originate primarily in types of white blood cells)iv and accounts for approximately 30 per cent of newly diagnosed cases.v Based on previous rates of diagnosis, in Canada it is estimated that up to 4,000 new cases of DLBCL were diagnosed in 2019.vi,vii The prognosis for relapsed or refractory adult patients is very poor, with a median survival of just six months.viiiGilead Canada received approval for YESCARTA in Canada in February, 2019.

"CAR T therapy is a personalized treatment option that could offer a significant benefit to patients with certain rare and aggressive forms of relapsed or refractory non-Hodgkin lymphoma," said Dr. John Kuruvilla, MD, FRCPC, ZUMA-1 Investigator and Hematologist in the Division of Medical Oncology and Hematology at the Princess Margaret Cancer Centre. "For these patients, the prognosis is very poor, even a year or less. With access to YESCARTA, they have a new andpotentially life changing opportunity."

The approval of YESCARTA was based on one-year follow-up data (median of 15.4 months) from the pivotal ZUMA-1 trial of axicabtagene ciloleucel in adult patients with refractory large B-cell lymphoma. Data from the two-year (median of 27.1 months) follow-up of ZUMA-1 showed that 74 per cent (n=75/101) of adult patients with relapsed or refractory large B-cell lymphoma treated with a single infusion of YESCARTA responded to therapy, with 54 per cent achieving a complete response.ix

In the ZUMA-1 trial the most common Grade 3 or higher adverse reactions include encephalopathy (30%), unspecified pathogen infection (19%), hypotension (15%), fever (14%), cytokine release syndrome (12%), hypoxia (10%), bacterial infection (8%), aphasia (7%), arrhythmia (6%), viral infection (6%), delirium (6%), and hypertension (6%).xGrade 3 or higher prolonged cytopenias (still present at Day 30 or with an onset at Day 30 or beyond) included neutropenia (31%), thrombocytopenia (27%), and anemia (17%).xi

"Today's announcement offers new hope for patients with certain types of relapsed and refractory lymphomas, who previously faced a dire prognosis," said Antonella Rizza, CEO at Lymphoma Canada. "By taking this step, the Ontario government is ensuring Canadians in this province have access to this new and potentially transformative treatment option."

In the ZUMA-1 pivotal trial, Kite demonstrated a 99 per cent manufacturing success rate with a median manufacturing turnaround time of 17 daysxii.

Important Safety InformationThe YESCARTA Product Monograph has aSERIOUS WARNINGS AND PRECAUTIONS BOX regarding the risks of:

YESCARTA should be administered by experienced health professionals at specialized treatment centres.xv

For all important safety information for YESCARTA, including contraindications, warnings and precautions, adverse reactions and drug interactions, please see the Canadian Product Monograph at http://www.gilead.ca.

About Kite Kite, a Gilead Company, is a biopharmaceutical company based in Santa Monica, California. Kite is engaged in the development of innovative cancer immunotherapies. The company is focused on chimeric antigen receptor and T cell receptor engineered cell therapies. For more information on Kite, please visit http://www.kitepharma.com.

About Gilead Sciences Gilead Sciences, Inc. is a research-based biopharmaceutical company that discovers, develops and commercializes innovative medicines in areas of unmet medical need. The company strives to transform and simplify care for people with life-threatening illnesses around the world. Gilead has operations in more than 35 countries worldwide, with headquarters in Foster City, California. Gilead Sciences Canada, Inc. is the Canadian affiliate of Gilead Sciences, Inc., and was established in Mississauga, Ontario, in 2006. For more information on Gilead Sciences, please visit the company's website at http://www.gilead.com.

Forward-Looking StatementThis press release includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other factors, including the risk thatphysicians and patients may not see the benefits of YESCARTAas a treatment option for the indications for which it is approved; the ability to provide final site certification to specialized centres across Canada enabling them to make YESCARTA available to appropriate patients in the anticipated timelines or at all;the ability of Kite to continue to manufacture YESCARTA at the success rates experienced during clinical trials; and the possibility of unfavorable results from ongoing and additional clinical trials involving YESCARTA. All statements other than statements of historical fact are statements that could be deemed forward-looking statements. These risks, uncertainties and other factors could cause actual results to differ materially from those referred to in the forward-looking statements. The reader is cautioned not to rely on these forward-looking statements. These and other risks are described in detail in Gilead's Quarterly Report on Form 10-Q for the quarter endedSeptember 30, 2020 as filed with theU.S. Securities and Exchange Commission. All forward-looking statements are based on information currently available to Gilead, and Gilead assumes no obligation to update any such forward-looking statements.

YESCARTA, KITE PHARMA and the KITE LOGO, are trademarks of Kite Pharma, Inc. GILEAD, and the GILEAD LOGO are trademarks of Gilead Sciences, Inc., or its related companies.

Learn more about Gilead at http://www.gilead.com, follow Gilead on Twitter (@GileadSciences) or call Gilead Public Affairs at 1-800-GILEAD-5 or 1-650-574-3000. For more information on Kite, please visit the company's website atwww.kitepharma.com. Follow Kite on social media on Twitter (@KitePharma) and LinkedIn.

_________________

i YESCARTAproduct monograph, February 13, 2019, revised March 18, 2020 (www.gilead.ca).

iiLeukemia & Lymphoma Society (LLS). Chimeric antigen receptor (CAR) T-cell therapy. 2019. Available at: https://www.lls.org/treatment/types-of-treatment/immunotherapy/chimeric-antigen-receptor-car-t-cell-therapy. Accessed March 2020.

iii Locke F. et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. The Lancet Oncol. 2019 Jan; 20(1):31-42.

iv Lymphoma Research Foundation (LRF). Diffuse Large B-Cell Lymphoma (DLBCL). 2018. Available at: https://lymphoma.org/wp-content/uploads/2018/05/LRF_FACTSHEET_DIFFUSE_LRG_BCELL_LYMPHOMA_DLBCL.pdf. Accessed March 2020.

v Menon M. et al. The Histological and Biological Spectrum of Diffuse Large B-cell Lymphoma in the WHO Classification. Cancer J. 2012 Sept;18(5):411420.

vi Menon M. et al. The Histological and Biological Spectrum of Diffuse Large B-cell Lymphoma in the WHO Classification. Cancer J. 2012 Sept;18(5):411420.

viiCanadian Cancer Society: Non-Hodgkin Lymphoma statistics. Available at: https://www.cancer.ca/en/cancer-information/cancer-type/non-hodgkin-lymphoma/statistics/?region=on Accessed March 2020

viii Crump M. et al, Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017 Oct. 130(16): 18001808.

ix YESCARTAproduct monograph, February 13, 2019, revised March 18, 2020 (www.gilead.ca).

xIBID

xi IBID

xii Neelapu, SS, Locke, FL, Bartlett, NL, et al. New England Journal of Medicine. "Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma." Available at: http://www.bloodjournal.org/content/130/16/1800 https://www.nejm.org/doi/full/10.1056/NEJMoa1707447/. Accessed: May 14, 2020.

xiii YESCARTAproduct monograph, February 13, 2019, revised March 18, 2020 (www.gilead.ca).

xiv IBID

xv IBID

SOURCE Gilead Sciences Canada, Inc.

View original post here:
Kite's YESCARTA (Axicabtagene Ciloleucel) Reimbursed in Ontario for the Treatment of Certain Types of Aggressive Non-Hodgkin Lymphoma - BioSpace

Posted in Cell Medicine | Comments Off on Kite’s YESCARTA (Axicabtagene Ciloleucel) Reimbursed in Ontario for the Treatment of Certain Types of Aggressive Non-Hodgkin Lymphoma – BioSpace

Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…

Posted: December 10, 2020 at 3:52 pm

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from Group C of its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy (bb1111) for adult and adolescent patients with sickle cell disease (SCD) show a complete elimination of severe VOEs and VOEs between six and 24 months of follow-up. These data are being presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020.

Now with more than two years of data, we continue to observe promising results in our studies of LentiGlobin for SCD that further illustrate its potential to eliminate the symptoms and devastating complications of sickle cell disease. Consistently achieving the complete resolution of severe vaso-occlusive events (VOEs) and VOEs between Month 6 and Month 24 follow-up is unprecedented other than with allogeneic stem cell transplantation. Importantly, our data show the potential for LentiGlobin for SCD to produce fundamentally disease-modifying effects with sustained pancellular distribution of gene therapy-derived anti-sickling HbAT87Q and improvement of key markers of hemolysis that approach normal levels, said David Davidson, M.D., chief medical officer, bluebird bio. In addition to these clinical outcomes, for the first time with a gene therapy we now have patient-reported outcomes through the validated PROMIS-57 tool, showing reduction in pain intensity at 12 months after treatment with LentiGlobin for SCD. These results provide insight into the potential real-life impact LentiGlobin for SCD may offer patients.

SCD is a serious, progressive and debilitating genetic disease. In the U.S., the median age of death for someone with sickle cell disease is 43 46 years. SCD is caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOEs.

In the HGB-206 study of LentiGlobin for SCD, VOEs are defined as episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than two hours and severe enough to require care at a medical facility. This includes acute episodes of pain, acute chest syndrome (ACS), acute hepatic sequestration and acute splenic sequestration. A severe VOE requires a 24-hour hospital stay or emergency room visit or at least two visits to a hospital or emergency room over a 72-hour period, with both visits requiring intravenous treatment.

LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.

As a hematologist, I regularly see the debilitating effects of pain events caused by sickle cell disease. Pain has an overwhelmingly negative impact on many facets of my patients lives and can lead to prolonged hospitalizations, said presenting study author Alexis A. Thompson, M.D., professor of pediatrics at Northwestern University Feinberg School of Medicine and head of hematology at Ann and Robert H. Lurie Childrens Hospital of Chicago. The results observed with LentiGlobin gene therapy for SCD include the complete elimination of severe vaso-occlusive pain episodes, which is certainly clinically meaningful, but also for the first time, we have documented patients reporting that they are experiencing improved quality of life. This degree of early clinical benefit is extraordinarily rewarding to observe as a provider."

As of the data cut-off date of August 20, 2020, a total of 44 patients have been treated with LentiGlobin for SCD in the HGB-205 (n=3) and HGB-206 (n=41) clinical studies. The HGB-206 total includes: Groups A (n=7), B (n=2) and C (n=32).

HGB-206: Group C Updated Efficacy Results

The 32 patients treated with LentiGlobin for SCD gene therapy in Group C of HGB-206 had up to 30.9 months of follow-up (median of 13.0; min-max: 1.1 30.9 months).

In patients with six or more months of follow-up whose hemoglobin fractions were available (n=22), median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin at Month 6. At last visit reported, total hemoglobin ranged from 9.6 15.1 g/dL and HbAT87Q levels ranged from 2.7 8.9 g/dL. At Month 6, the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin; median HbS was 50% and remained less than 60% at all follow-up timepoints. All patients in Group C were able to stop regular blood transfusions by three months post-treatment and remain off transfusions as of the data cut-off.

Nineteen patients treated in Group C had a history of severe VOEs, defined as at least four severe VOEs in the 24 months prior to informed consent (annualized rate of severe VOE min-max: 2.0 10.5 events) and at least six months follow-up after treatment with LentiGlobin for SCD. There have been no reports of severe VOEs in these Group C patients following treatment with LentiGlobin for SCD. In addition, all 19 patients had a complete resolution of VOEs after Month 6.

Hemolysis Markers

In SCD, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells, called hemolysis, occurs normally in the body. However, in sickle cell disease, hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.

Patients treated with LentiGlobin for SCD in Group C demonstrated near-normal levels in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 25 patients with 6 months of follow-up.

The medians for reticulocyte counts (n=23), lactate dehydrogenase (LDH) levels (n=21) and total bilirubin (n=24) continued to improve compared to screening values and stabilized by Month 6. In patients with Month 24 data (n=7), these values approached the upper limit of normal by Month 24. These results continue to suggest that treatment with LentiGlobin for SCD may improve biological markers to near-normal levels for SCD.

Pancellularity

As previously reported, assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells, as well as to assess if HbAT87Q was pancellular, or present throughout all of a patients red blood cells. In 25 patients with at least six months of follow-up, on average, more than 80% of red blood cells contained HbAT87Q, suggesting near-complete pancellularity of HbAT87Q distribution and with pancellularity further increasing over time.

HGB-206: Improvements in Health-Related Quality of Life

Health-related quality of life (HRQoL) findings in Group C patients treated with LentiGlobin for SCD in the HGB-206 study were generated using the Patient Reported Outcomes Measurement Information System 57 (PROMIS-57), a validated instrument in SCD.

Data assessing pain intensity experienced by nine Group C patients were analyzed according to baseline pain intensity scores relative to the general population normative value: 2.6 on a scale of 0-10, where 10 equals the most intense pain. Data were assessed at baseline, Month 6 and Month 12.

Of the five patients with baseline scores worse than the population normative value average, four demonstrated clinically meaningful reductions in pain intensity at Month 12; the group had a mean score of 6.0 at baseline and a mean score of 2.4 at Month 12. Of the four patients with better than or near population normative values at baseline, two reported improvement and two remained stable with a mean score of 2.3 at baseline and 0.8 at Month 12.

HGB-206: Group C Safety Results

As of August 20, 2020, the safety data from Group C patients in HGB-206 remain generally consistent with the known side effects of hematopoietic stem cell collection and myeloablative single-agent busulfan conditioning, as well as underlying SCD. One non-serious, Grade 2 adverse event (AE) of febrile neutropenia was considered related to LentiGlobin for SCD. There were no serious AEs related to LentiGlobin for SCD.

One patient with significant baseline SCD-related and cardiopulmonary disease died 20 months post-treatment; the treating physician and an independent monitoring committee agreed his death was unlikely related to LentiGlobin for SCD and that SCD-related cardiac and pulmonary disease contributed.

LentiGlobin for SCD Data at ASH

The presentation of HGB-206 Group C results and patient reported outcomes research are now available on demand on the ASH conference website:

About HGB-206

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=32). A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

About LentiGlobin for SCD (bb1111)

LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.

The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.

LentiGlobin for SCD is investigational and has not been approved in any geography.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for LentiGlobin for Sickle Cell Disease to treat SCD; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials; the risk that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidates, resulting in delay to our anticipated timelines for regulatory submissions, including our applications for marketing approval; and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Original post:
Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe...

Posted in Cell Medicine | Comments Off on Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…

Cognitive, Emotional Measures Linked to Sickle Cell Healthcare Utilization – MD Magazine

Posted: December 10, 2020 at 3:52 pm

Cognitive and emotional functions in pediatric patients should not be overlooked when assessing potential for sickle cell disease self-management practices and healthcare utilization.

A study, presented at the American Society of Hematology (ASH) 2020 Annual Meeting, specifically investigated the extent to which these functions contribute to rates of pain-related visits to the hospital or emergency department.

A team led by Zaria Williams, Howard University College of Medicine, conducted an analysis of pediatric patients representing all genotypes of sickle cell disease. Using existing data from a previous study on computerized working memory training, they gathered cognitive abilities, socioeconomic status, and emotional functioning to determine whether such variables were predictive of healthcare utilization.

Cognitive measures were based on the Wechsler Intelligence Scale for Children (WISC-V) Full Scale IQ as well as a computerized cognitive assessment.

Williams and team measured emotional functioning using the Worry and Emotions domains of the child- and parent-rated Pediatric Quality of Life Inventory Sickle Cell Disease Module.

And finally, they measured heartcare utilization according to chart reviewwhich they separated into emergency department visits for pain and hospitalizations for pain 1 year and 3 years following study enrollment.

Thus, they assessed a total of 112 children, where the mean age was 10.61 years. A majority (58%) were female. Further, 74% had sickle cell anemia (HbSS or HbS0 thalassemia).

For the entire population, the median number of emergency department visits was 1 across 1 year (IQR, 2) following enrollment. After 3 years, the median was 3 visits (IQR, 6).

In terms of hospital admissions, the median number of visits was 0 after 1 year (IQR, 1) and 1 after 3 years (IQR, 4).

Cognitive, Emotional Abilities and Healthcare Visits

Linear regression models indicated that there was a significant association between attentional abilities and emergency department visits and hospitalizations for painboth for 1 year and 3 years following enrollment (P<.009 for both).

According to the investigators, better performance on the Constate attention task was associated with fewer emergency department visits and hospitalizations.

Furthermore, child-rated emotional quality of life significantly predicted emergency department visits for pain over 1 year (P = .004) and hospitalizations for pain over 3 years (P = .013). Similarly, higher emotional quality of life was predictive of fewer emergency department and hospital visits.

Parent-rated emotional quality of life was predictive of hospitalizations for pain over 3 years (P = .020).

Lastly, the investigators noted that neither sickle cell disease genotype nor socioeconomic status had any significant influence on healthcare utilization.

Results demonstrate that childrens cognitive and emotional functioning play an important role in pain management and should be an integral part of comprehensive pain management plans for children with sickle cell disease, they wrote.

Implications and New Perspectives on Sickle Cell Care

Williams and colleagues indicated that attentional abilities appeared to be a reliable predictor of pain-related healthcare utilization. Poor attention may make it difficult to implement strategies that could distract the child from pain.

Further, these findings can be suggestive of the fact that children with poor attention may struggle with behavioral aspects of disease-self management, such as medication adherence and avoidance of pain triggers.

They believed that these considerations should be taken seriously in the treatment of this already high-risk population.

Clinicians and researchers should consider cognitive and emotional factors when evaluating risk for pain in sickle cell disease and incorporate these factors when developing strategies to reduce healthcare utilization and costs, the team concluded.

The study, Cognitive and Emotional Factors and Pain-Related Outcomes in Youth with Sickle Cell Disease, was presented at ASH 2020.

Read more:
Cognitive, Emotional Measures Linked to Sickle Cell Healthcare Utilization - MD Magazine

Posted in Cell Medicine | Comments Off on Cognitive, Emotional Measures Linked to Sickle Cell Healthcare Utilization – MD Magazine

Increased Attention on Testing for Oncogenic Drivers in NSCLC Advances the Promise of Precision Medicine – Targeted Oncology

Posted: December 10, 2020 at 3:52 pm

Identification of key oncogenic drivers and the development of targeted therapies with clinical activity in patients harboring actionable mutations have revolutionized the treatment paradigm in nonsmall cell lung cancer (NSCLC), redirecting attention toward advances in biomarker testing methodologies. This new focus is poised to foster granular refinement of precise, targeted treatment of lung tumors.

Advances in NSCLC research have enabled an understanding of the disease as a collection of molecular subgroups. The proliferation of alteration-matched therapies specific to these subgroups is a prime example of a precision medicine approach. In addition to oncogenic driver mutations, therapeutic response biomarkers have been identified, such as PD-L1 expression as a predictor of immunotherapy efficacy.

Underscoring the importance of biomarker-guided treatment approaches, guidelines for molecular testing in NSCLC include an extensive list of alterations, such as sensitizing EGFR mutations and ALK gene fusions.1,2 The list continues to expand beyond these established canonical markers, with the addition of variants such as MET exon 14 skipping mutations and tumor mutational burden. In fact, the FDA recently approved therapies specific for tumors with these molecular characteristics.3,4

The rapid pace of biomarker discovery, characterization of molecular subtypes of NSCLC, development of matched targeted therapies, and regulatory approval of companion diagnostic tests has accelerated progress in the delivery of optimal care for patients with advanced NSCLC. Areas where continued optimization is particularly emphasized include determining which type of sample(s) should be tested, which biomarkers should be analyzed in different patient subsets, and which assays are most appropriate for specific (sets of) markers, as well as logistical and administrative factors, such as turnaround times and cost/reimbursement considerations.1,5,6

As biomarker testing in NSCLC evolves, investigators continue to evaluate testing approaches with the goal of standardizing the process of oncogenic driver identification.

At the 2020 Molecular Analysis for Precision Oncology (MAP) Virtual Congress, held October 9 to 10, 2020, presentations focused on recent developments in molecular testing, including the results of studies comparing testing methods for aberrations in the MET and NTRK genes.

MET Exon 14 Skipping

Gain-of-function alterations in MET, which encodes a receptor tyrosine kinase, drive oncogenesis. One such alteration with important implications for NSCLC is MET exon 14 skipping, resulting from several types of mutation in either exon 14 itself, the adjacent introns, or the flanking splice sites. Regardless, the effect is the same: a critical ubiquitination site is lost, which leads to MET protein accumulation and activation, enhancing MET pathway signal transduction and culminating in tumorigenesis. Previously, immunohistochemistry was typically performed to detect MET overexpression due to copy number changes. However, next-generation sequencing (NGS) is now the preferred testing method because it can also identify MET exon 14 skipping mutations, the primary driver of oncogenesis.7

MET exon 14 skipping mutations are actionable because the resultant protein is responsive to MET inhibition using tyrosine kinase inhibitors (TKIs) such as capmatinib (Tabrecta),7 which was approved in May 2020 for use in adult patients with metastatic NSCLC harboring a MET exon 14 skipping mutation.3 Compared with their sensitivity to specific TKIs, this subset of patients has exhibited lower rates of response to immunotherapy despite frequent tumor expression of PD-L1,8 suggesting a dual predictive role for the MET exon 14 skipping mutation as a biomarker.

In a study presented at MAP 2020, tumor samples from patients with NSCLC and no other driver mutations were tested for MET exon 14 skipping mutations over a period of 14 months. The investigators compared 2 DNA-based methods: NGS on the Ion Proton platform using AmpliSeq technology and fragment analysis using polymerase chain reaction (PCR) and size-based electrophoretic separation of the amplicons for detection of large deletions.9

Of the 87 patient samples tested, 13 were determined to have a MET exon 14 skipping alteration, with 5 harboring splice variants and 8 carrying deletions affecting the splice site. Two of these deletions were large, spanning 41 and 66 base pairs; they were detected by fragment analysis but not NGS. Although NGS is widely considered superior to single-gene assays, these data indicate that it may have limitations in detecting specific alterations and that complementary methods or large-coverage intron screening could be an alternative for optimal detection of MET alterations to inform selection of first-line treatment, according to lead study author Romain Loyaux, from the Molecular Oncology Department of Georges-Pompidou European HospitalAPHP in Paris, France.

Commenting on the failure of the NGS assay to detect large MET exon 14 deletions, Loyaux stated that fragment analysis is a cheap and robust method to detect large deletions, especially when no RNA is available (FIGURE).9-11 He noted that anchored, multiplex, targeted RNA-based NGS, like the technology developed by the Archer company, may be a good alternative when RNA is available; however, it has a 20% failure rate.12

NTRK Fusion Detection

Fusions involving the NTRK genes, which encode a family of receptor tyrosine kinases, result in a constitutively activated chimeric protein that promotes oncogenesis and therefore, can be therapeutically targeted with TKIs.7 Two FDA-approved TKIs, entrectinib (Rozlytrek) and larotrectinib (Vitrakvi), have activity in NTRK fusionpositive solid tumors.13,14

Broad, hybrid-capture DNA-based NGS, with RNA-based anchored multiplex PCR as an adjunct, are currently the primary methods of detecting NTRK gene fusions in patients with lung cancer.7 The availability of entrectinib and larotrectinib will likely foster further development of NTRK fusion detection methods for use in routine clinical practice.

A recent study presented at MAP 2020 evaluated the analytical performancenamely, sensitivity, specificity, and precisionof 3 commonly available RNA-based NGS assays. The assays examined were TruSight Oncology 500 (TSO500) by Illumina, Oncomine Focus Assay (OFA) by Thermo Fisher Scientific, and Fusion- Plex Lung (AFL) by Archer.15

The limits of sensitivity and precision were assessed using droplet digital PCR with admixtures of both NTRK fusionpositive and negative samples, whereas specificity was evaluated using NTRK fusionnegative clinical samples. The data showed that all 3 NGS assays successfully detected NTRK fusions; however, technical differences between the assays may impact their performance. For instance, although all tested assays demonstrated strong specificity, the sample metrics were variable. Quality control (QC) success rates for OFA and TSO500 were 83% and 77%, respectively, but only 43% of samples on AFL passed all assay QC metrics. Notably, the different assays missed specific NTRK fusions; OFA failed to detect NTRK1-LMNA, NTRK1-TFG, and NTRK2- PAN3, and TSO500 failed to report NTRK3-ETV6 (E5N14) and NTRK3-ETV6 (E5N15).15

Clinical Utility of NGS Panels of Different Sizes

It has been established that multigene panels are superior to single-gene assays for biomarker testing in NSCLC2; however, data to inform clinicians selection of specific NGS gene panels have been lacking.

In a recent study presented at MAP 2020, a literature review was conducted to compare 2 commercially available DNA-based NGS gene panels: the Ion AmpliSeq Cancer Hotspot Panel, covering hotspots in 50 genes (Panel 50); and the FoundationOne panel, covering the complete exons of 315 genes (Panel 315). The clinical utility of each panel was determined based on the number of detectable actionable alterations in various solid tumor types that it contained. The data showed a substantial gain in actionability using the larger gene panel, which matched more actionable genetic mutations to FDA-approved or experimental drugs; the number of actionable alterations in various solid tumor types using Panel 315 was a median 50% higher compared with Panel 50 (t test, P <.001). The authors attributed this gain to the inclusion of more genes related to homologous recombination repair deficiency and microsatellite instability/immunotherapy response in the larger panel.16

In the current era of precision medicine in lung cancer, defined histological subtyping, oncogenic driver testing, and analysis of tumor PD-L1 expression/immunotherapy sensitivity are crucial steps prior to therapeutic decision-making in NSCLC. As additional targeted agents are investigated in clinical trials and the incidence of their molecular targets are characterized in patient populations, expanded molecular testing may become necessary.

Molecular pathologists will continue to play an integral role in the continuum of care in NSCLC, from diagnosis to clinical decision-making based on biomarker detection. Molecular testing is likely to expand rapidly, and additional molecular subtypes will be identified that help match more patients with the optimal targeted therapies, providing highly personalized treatment plans.

Details of analytical procedures and assays will continue to be refined.17 By combining defined sets of biomarkers with appropriate protocols for collecting NSCLC samples and optimized methods for assessing specific changes, clinicians will be able to actualize the promise of precision medicine for patients with this challenging malignancy.

References:

1. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321-346. doi:10.5858/arpa.2017-0388-CP

2. NCCN. Clinical Practice Guidelines in Oncology. Non-small cell lung cancer, version 8.2020. Accessed October 26, 2020. https://bit.ly/2TKomAj

3. FDA grants accelerated approval to capmatinib for metastatic nonsmall cell lung cancer. FDA. May 6, 2020. Accessed November 2, 2020. https://bit.ly/360o7Xg

4. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. FDA. June 16, 2020. Accessed November 2, 2020. https://bit.ly/2HWB64q

5. Smeltzer MP, Wynes MW, Lantuejoul S, et al. The International Association for the Study of Lung Cancer global survey on molecular testing in lung cancer. J Thorac Oncol. 2020;15(9):1434-1448. doi:10.1016/j.jtho.2020.05.002

6. Wempe MM, Stewart MD, Glass D, et al. A national assessment of diagnostic test use for patients with advanced NSCLC and factors influencing physician decision-making. Am Health Drug Benefits. 2020;13(3):110-119

7. Sabari JK, Santini F, Bergagnini I, Lai WV, Arbour KC, Drilon A. Changing the therapeutic landscape in non-small cell lung cancers: the evolution of comprehensive molecular profiling improves access to therapy. Curr Oncol Rep. 2017;19(4):24. doi:10.1007/s11912-017-0587-4

8. Sabari JK, Montecalvo J, Chen R, et al. PD-L1 expression and response to immunotherapy in patients with MET exon 14-altered non-small cell lung cancers (NSCLC). J Clin Oncol. 2017;35(suppl 15):8512. doi:10.1200/JCO.2017.35.15_suppl.8512

9. Loyaux R, Blons H, Garinet S, Urban P, Leger C, Bastide M. MET exon 14 screening strategy: how not to miss large deletions. Ann Oncol. 2020;31(suppl 5): S1217-S1239. doi:10.1016/j.annonc.2020.08.2163

10. Pruis MA, Geurts-Giele WRR, von der TJH, et al. Highly accurate DNAbased detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer. 2020;140:46-54. doi:10.1016/j.lungcan.2019.11.010

11. Davies KD, Lomboy A, Lawrence CA, et al. DNA-based versus RNAbased detection of MET exon 14 skipping events in lung cancer. J Thorac Oncol. 2019;14(4):737-741. doi:10.1016/j.jtho.2018.12.020

12. Cohen D, Hondelink LM, Solleveld-Westerink N, et al. Optimizing mutation and fusion detection in NSCLC by sequential DNA and RNA sequencing. J Thorac Oncol. 2020;15(6):1000-1014. doi:10.1016/j.jtho.2020.01.019

13. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC. FDA. Published August 15, 2019. Accessed October 28, 2020. https://bit.ly/3mPhUEB

14. FDA approves larotrectinib for solid tumors with NTRK gene fusions. FDA. Published November 26, 2018. Accessed October 28, 2020. https://bit.ly/381dXZe

15. Bormann Chung C, Lee J, Barritault M, et al. Evaluating targeted next-generation sequencing (NGS) assays and reference materials for NTRK fusion detection. Ann Oncol. 2020;31(suppl 5):S1221. doi:10.1016/j.annonc.2020.08.2172

16. zdemir B, Charrier M, Gerard CL, et al. Comparison of the clinical utility of two different size next generation sequencing (NGS) gene panels for solid tumours. Ann Oncol. 2020;31(suppl 5):S1219. doi:10.1016/j.annonc.2020.08.2166

17. Pennell NA, Arcila ME, Gandara DR, West H. Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices. Am Soc Clin Oncol Educ Book. 2019;39:531-542. doi:10.1200/EDBK_237863

Read the original post:
Increased Attention on Testing for Oncogenic Drivers in NSCLC Advances the Promise of Precision Medicine - Targeted Oncology

Posted in Cell Medicine | Comments Off on Increased Attention on Testing for Oncogenic Drivers in NSCLC Advances the Promise of Precision Medicine – Targeted Oncology

Cord blood banks sell parents on promising stem cell research, but with no guarantees – The Arizona Republic

Posted: December 9, 2020 at 1:59 am

Stem cell treatment promise sells pregnant parents on cord blood banks Arizona Republic

Moments after Linda Buzans son Luca is born, her OB-GYN goes to work. She carefully cuts the white umbilical cord, then clamps it shut before any blood can escape. Once the cord is cleaned, she carefully inserts a needle with a long tube attached and lets the umbilical cord blood pump into a collection bag.

From there, the sample will travel in a labeled collection box to Tucson, where a laboratory for one of the oldest and biggest private cord blood banking companies nationwide is located. There, at the Cord Blood Registry laboratory, or CBR,baby Lucas umbilical cord blood will be frozen in a metal tank at less than minus 320 degrees, joining almost 900,000 other samples in storage,including that of his older sister, Lola.

Umbilical cord blood is full of stem cells, so it can be transplanted into patients to treat certain types of cancers, diseases and blood disorders. Umbilical cord blood works as an alternative for many patients who cant find bone marrow transplants.

Butthe odds that either Lola or Luca will develop a disease like cancer that would require an umbilical cord blood transplant are slim,about one in 1,000 or one in 2,000, according to University of Arizona umbilical cord blood stem cell researcher David Harris.

Its difficult to reconcile saving for yourself because youre afraid of cancer, Harris said. Do it based on facts, not fear.

Stem cells in umbilical cord blood could have another purpose: regenerative medicine. Current clinical trials show promise for the use of umbilical cord blood to treat a host of conditions such as neurological disorders, orthopedic injuriesand even diabetes. These potential usages are a new draw for parents to bank their childs umbilical cord blood.

The odds of use for these regenerative medicine applications is much, much higher, Harris said.

He estimates the odds of developing a disease that could be treated by umbilical cord blood stem cells is about one in ten.

Butthe science is still developing, which meanscompanies are selling parents ona product they may never be able to use.

In the past two decades, Harris has been involved with studies to treat kids with conditions like cerebral palsy, strokes, traumatic brain injuries and diabetes.

When you now start to talk about being able to treat a knee injury or a heart attack, or a stroke the ability to actually do that and then to see that it works is very exciting, he said. And thats really where the use of cord blood is going.

So far, Harris said hes seen the most success with orthopedic injuries and in treating children that have suffered from strokes.

With strokes, Harris said he observed children go from being completely paralyzed on one side to being fully functioning.

DONATIONS:Donated cord blood saved Sophie Lee's life, but most parents throw it away

Though some initial results show promise, Harris acknowledges that to move forward with any of these treatments, researchers need to demonstrate a good success rate.

The big question when it comes to using cord blood for regenerative medicine is when it will be incorporated into actual medical practice. For safety reasons, FDA approval for new treatments can take years,if not decades.

Currently, the only way to use umbilical cord blood stem cells for FDA-approved regenerative medicine is to qualify for and register in clinical trials to treat specific conditions. Harris has banked his owns sons cord blood on his belief that more and more umbilical cord blood treatments will become commercially available in the future. Buzan has done the same.

Brandon Buzan packages up his newborn son's umbilical cord blood to be shipped to the Cord Blood Registry lab for storage.(Photo: Amanda Morris)

Its not something that you want to say I wish I had done this, because you cant do it later.You have this one shot,"Buzan said."Even its like one percent of saving their life or helpingI mean for your child, youd do anything as a parent.

In Arizona, obstetrics health providers are required by law to educateexpectant parents about the options to publicly donate or privately bank cord blood. YetDr. Jaime Shamonki, the Chief Medical Officer of CBR, estimates that less than 5% of the population chooses to bank cord blood. A small percentage donate the blood, but a much larger percentage simply throws it away.

Kelly Helms, a Scottsdale-based OB-GYN, said the most common reasonher patients give for not banking their childs cord blood is the cost.

Buzan, who is one of her patients, said she got a discount to bank her childrens samples with CBR because of a connection her familyhad with the company. She paid a little over $1,000 for the initial processing and storage fee for both samples, and continues to pay an annual storage fee of about $120 for each one.

To bank one sample of cord blood and cord blood tissue, the initial cost is$2,830, according to CBR, with a $360 annual storage fee after that. To bank just the cord blood, not the tissue, the initial cost is $1,680, with a $180annual storage fee. Both cord blood and cord tissue have different types of stem cells that are thought to potentially repair the body in different ways.

The stem cells and potential treatments for both sources arent fully understood yet, so there are no guarantees that parents or children will actually be able to use the samplesthey pay to store.

Of the nearly 900,000 samples CBR keeps in storage, Shamonki estimates about 600 have been released for customers to use,representing a usage rate of less than 1 percent. According to Shamonki, the low sample release rate is due to FDA regulations, which stipulate that umbilical cord blood can only be used in approved treatments or clinical trials.

If we didnt have the FDA, then I would be able to release like thousands of units, she said. Its really a regulatory problem, its not a utility problem.

To boost usage of the samples, CBR maintains a registry to match eligible customers to clinical trials and has partnered with research institutions to sponsor clinical trials.

Despite FDA regulations, which Shamonki acknowledges are important to protect public health, she said CBR is releasing more and more units every year. Of the samples taken out, about 83% are used for regenerative medicine purposes, according to CBR.

What I know is that in the next fiveyears, next 10 years, there will be so many more opportunities, Shamonki said. So just because you dont have 100 different clinical trials you can sign up for tomorrow doesnt mean that these applications wont exist in fiveor 10 years, and your child might need it.

CBR is one of many companies that market cord blood banking to new parentsand is one of the biggest. Helms said she always recommends her patients to do their research and pick one of the larger, more established cord blood banking companies. Such companies might includeCBR, Cryo-cell, or ViaCord.

I've had patients lose their cord blood, privately banked blood, because they went with a small company and now they closed down, Helms said.

Even with some of the larger companies, the process of cord blood banking doesnt always run smoothly.

Although she couldn't have her daughter's cord blood stored, Chelsea Radford says she paid over $1,000 to ViaCord for processing fees.(Photo: Amanda Morris)

The first time Phoenix-resident Chelsea Radford heard about cord blood banking, she was already pregnant and facingmyriaddecisions that were sometimes overwhelming. She had never heard of it before reading some pamphlets from her gynecologist, but she was quickly sold on the idea of banking her daughters cord blood and tissue with ViaCord.

Radford has a history of Alzheimers disease in her family, and said she was initially interested in what potential treatments cord blood and tissue might offer for the disease. In 2015, one study suggested that human umbilical cord blood cells could have therapeutic benefitsin mice with Alzheimers disease.

In addition to researching studies, Radford said she spent hours looking at different cord blood banking companies and asking representatives questions about the process. Of all the companies, she found ViaCord to be the most responsive and willing to answer her questions in-depth.

Having the communication and the availability that is what sold me on ViaCord. But that really quickly ended there with the sale, she said.

On the day of her daughter Brylees birth in July2018,Radford went to a hospital that ViaCord had assured her was familiar with collecting cord blood. Soon after, she got a call from the company saying her sample couldnt be stored because not enough blood was collected. Shestill owed ViaCord over $1,000 for a lab processing fee.

Radford wanted more information before she would agree to pay, and said she spent monthscalling, leaving the company messages, and getting no response.

After the birth, nobody responds to anything, she said.

The company called her three months later to tell her that if she didnt pay her bill, they would send it to collections.

I got pissed! Radford said. The only thing they seem to care about is the moneythey dont care about is having a conversation with me about why and how this sample didnt turn out the way it shouldve. All they want to talk to me about is the money.

Still, Radford said she refused to pay a dime until she got an explanation. She contacted the doctor who delivered her baby and said she learned the doctor had never done a cord blood collection before and had never been trained on how to do one.

Finally, she spoke with a ViaCord representative, who she saidtold her this sometimes happens, butthe company wasnt responsible for the fact that the doctor who took her sample didnt take enough blood.

Frustrated and inundated with other responsibilities that come with caring for a newborn, Radford said she decided to pay the fee so that she could move on.

We paid a company to do nothing for us just to get them to leave us alone and not send a bill to collections that I dont feel like we shouldve had to foot in the first place, she said.

If she had a second child, Radford said she wouldnt choose to cord blood bank again, and doesnt recommend it to other moms.

You can still get stem cell help without using your own banked blood and tissueThis is just a costly option that is not a given that its going to work out 100% in your favor, she said. You could have a newborn and be responsible to pay thousands of dollars for nothing.

ViaCord did not respondto multiple requests for comment.

If parents decide to pay for private banking, Radford said they should be careful about making sure the doctors delivering their children know how to collect the samples. Shesaid blood banking companies should be more responsible in making sure that doctors are trained in blood collection.

While Helms is comfortable doing cord blood collection, she was never formally taught how to do it while studying and training to be an OB-GYN.

It was basically taught by the company, she said. Each kits a little different.

Helms said the procedure is fairly simple, but every once in a while, she comes across a company shes never heard of, and a kit she is unfamiliar with. Sometimes she needs to take on the extra responsibility of making sure she understands the directions for that particular kit.

Each company really should take on the responsibility, she said. I can't surf the Internet and look for every YouTube video on every cord blood banking company, she said.

Another potential complication in banking cord blood orblood tissue is that the blood or tissue can become infected.

Birth is not that clean of a process and ideally when you take that needle and you drain the umbilical cord, youll have cleaned that umbilical cord first and you hope that no bacteria get in to the cord blood unit, but its possible, it does happen on a number of occasions, Shamonki said.

Shamonki says CBR tests for any bacterial contamination before storing the tissue and works with parents who have infected samples to discuss possibilities of being able to use the unit in the future.

A Cord Blood Registry worker processes cord blood for storage in the company's Tucson laboratory.(Photo: Amanda Morris)

Nobody knows when regenerative medicine applications for cord blood will become readily available as FDA-approved mainstreamtreatments. New applications for cord blood are being tested every year and new technologies to expand and utilize stem cells in cord blood are constantly being developed.

We dont really know what the limits are, but there are limits to what (umbilical cord blood stem cells) can do, Harris said.

Because cord blood banking is so new it has only been around since 1989 its unclear how long samples can be stored and remain effective.

According to Harris, cord blood samples can still work after being stored for about two decades.

We recently took one out that was 24, 25 years old, he said.

He speculates that properly stored cord blood samples could probably work throughout a person's lifetime, if not longer.

Buzan is aware that stem cells and cord blood treatments are still a new science with no guarantees, but she also believes in the treatments future potential.

Every month, she and her husband receive email updates from CBR that explain some of the new clinical trials and research discoveries involving cord blood.

To be honest the most exciting thing is the unknown the unknown of what the cord blood could do, what theyre looking into now, thats fascinating, she said. Im just so glad we live in a time that where this is available to use this was not an option for my parents or my grandparents.

Amanda Morris covers all things bioscience, which includeshealth care,technology, new researchand the environment. Send her tips, story ideas, or dog memes at amorris@gannett.com and follow her on Twitter @amandamomorris for the latest bioscience updates.

Independent coverage of bioscience in Arizona is supported by a grant from the Flinn Foundation.

Support local journalism.Subscribe to azcentral.com today.

Read or Share this story: https://www.azcentral.com/story/news/local/arizona-science/2020/12/07/stem-cell-treatment-promise-sells-pregnant-parents-cord-blood-banks/3099167001/

Read the original here:
Cord blood banks sell parents on promising stem cell research, but with no guarantees - The Arizona Republic

Posted in Stem Cell Research | Comments Off on Cord blood banks sell parents on promising stem cell research, but with no guarantees – The Arizona Republic

Procyon Technologies LLC and Novo Nordisk A/S to Collaborate on the Development of a Stem-Cell Based Therapy for Type 1 Diabetes – PRNewswire

Posted: December 9, 2020 at 1:59 am

TUCSON, Ariz., Dec. 8, 2020 /PRNewswire/ --Procyon Technologies LLC today announced that it has entered into an exclusive research collaboration and license agreement with Novo Nordisk A/S to develop an implantable cell encapsulation device to be used in Novo Nordisk's development of a novel therapy for Type 1 diabetes.

The collaboration brings together Procyon Technologies' expertise with development of oxygen enabled implantable cell encapsulation devices and Novo Nordisk's expertise in stem cell-derived insulin-secreting cells.

The partners will work together to further optimize the device and cells for clinical testing and accelerate the path to First Human Dose with the joint vision of delivering a functional cure for people living with Type 1 diabetes.

Under the terms of the agreement, Procyon Technologies, a startup founded to commercialize innovations developed at the University of Arizona College of Medicine Tucson, will receive an upfront license fee and will be eligible for further payments relating to preclinical, clinical and regulatory milestones. In addition, Procyon Technologies will receive tiered sales milestones and royalties on the annual net sales of the products resulting from the collaboration.

Novo Nordisk will be responsible for the development, manufacturing and commercialization of the products resulting from the collaboration for Type 1 diabetes.

The right cells and the right device

Type 1 diabetes is an autoimmune disease in which insulin-producing beta cells in the pancreas are mistakenly destroyed by the body's immune system. For people with Type 1 diabetes, life-long daily administration of insulin to control their blood sugar and constant blood glucose monitoring is the burden of reality.

"If we are able to offer a treatment that safely and effectively replaces the insulin-producing cells that people with Type 1 diabetes have lost, we could essentially offer them a functional cure for their disease," said Jacob Sten Petersen,DMSc, corporate vice president and head of stem cell research and development for Novo Nordisk.

Since 2008, Novo Nordisk has invested in human stem cell technology and worked on generating a protocol for stem cell-derived insulin producing islet-like clusters for the treatment of Type 1 diabetes.

But having the right cells is only half the solution; the cells also need to be protected from the recipient's immune system to avoid rejection, as well as from the autoimmunity of Type 1 diabetes.

For the last two decades, Procyon Technologies co-founder Klearchos Papas, PhD, a professor in the Department of Surgery and director of the Institute for Cellular Transplantation at the University of Arizona College of Medicine Tucson, has been working on a solution to the second part of that challenge.

"As a pancreas transplant surgeon, the idea of replacing beta cell function in a diabetic patient to prevent progression of diabetic complications makes perfect sense," said Michael M.I. Abecassis, MD, MBA, dean of the UArizona College of Medicine Tucson and professor of surgery and immunobiology. "Therefore, the notion of doing this without the need for major surgery and without the need for anti-rejection drugs by leveraging the assets of academia with those of industry represents the next frontier in curing Type 1 diabetes and preventing its complications."

With support from JDRF International and the National Institute of Diabetes and Digestive and Kidney Diseases, and utilizing key University of Arizona facilities and infrastructure (such as the BIO5 Institute device prototyping lab), Dr. Papas and his team developed oxygen enabled implantable immuno-isolation device technology with a focus on safety, practicality, and the maintenance of viability and functionality of encapsulated cells.

"We are delighted and excited to join forces with Novo Nordisk and provide the 'implantable encapsulation device' part of the functional cure for people suffering from Type 1 diabetes. Novo Nordisk is a leader in the development of stem cell-derived insulin producing islet-like clusters, has demonstrated strong commitment, and has the capacity, infrastructure and most importantly, the shared vision and interest in seeking to bring this functional cure to patients," said Dr. Papas.

"The combination of the implantable encapsulation device with islet-like clusters provides a unique opportunity to develop a novel cell therapy for diabetes. This announcement reinforces the value of JDRF in supporting science and technologies that can be further advanced in partnerships," said Esther Latres, PhD, assistant vice president of research at JDRF.

"Dr. Papas' work exemplifies our research mission in the Department of Surgery. The collaboration between our investigators and clinicians allows for the development of innovative, cutting-edge solutions to the clinical problems we treat every day," said Taylor S. Riall, MD, PhD, chair of the UArizona Department of Surgery. "The partnership between Procyon Technologies and Novo Nordisk represents the culmination of years of hard work and will revolutionize the care of people with Type 1 diabetes."

A therapeutic implant

The Procyon cell encapsulation device is a small, flat, thin, highly durable, flexible implantable chamber. It mitigates foreign body response, promotes the formation of vascular structures on its surface enabling the rapid diffusion of nutrients to the cells inside and the rapid absorption of insulin (or other therapeutic molecules) secreted by the encapsulated cells while providing a barrier protecting them from attacks by the body's immune system without the need for immunosuppressive drugs. The Procyon technology, designed with practical clinical use as a driver, includes integration of oxygen delivery to the implantable device, which enables tighter packing of cells while maintaining their viability and functionality.

About Procyon Technologies LLC:

Procyon Technologies LLC (https://procyon-technologies.com) was founded in Arizona in 2016. Klearchos Papas, PhD, Allison F. Corkey, MS, Thomas Loudovaris, PhD, and Robert C. Johnson, PhD, are co-founders and worked with Tech Launch Arizona, the University of Arizona commercialization arm, to protect the intellectual property and license the platform technology suitable for the implantation of a variety of therapeutic cells aimed at treating a number of disorders. In addition to being highly respected researchers in the field of diabetes and encapsulation therapy for decades, Dr. Johnson, a part-time research professor in the Department of Surgery at the University of Arizona, has had Type 1 diabetes for nearly 51 years and Dr. Loudovaris is the father of two children with the disease.

Contact:Allison F. Corkey[emailprotected]520-329-1425

SOURCE Procyon Technologies LLC

Home

Here is the original post:
Procyon Technologies LLC and Novo Nordisk A/S to Collaborate on the Development of a Stem-Cell Based Therapy for Type 1 Diabetes - PRNewswire

Posted in Stem Cell Research | Comments Off on Procyon Technologies LLC and Novo Nordisk A/S to Collaborate on the Development of a Stem-Cell Based Therapy for Type 1 Diabetes – PRNewswire

Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price – Being Patient

Posted: December 9, 2020 at 1:59 am

Groundbreaking research in stem cells has propelled scientists understanding of neurodegenerative diseases, including Parksinsons. Could stem cell therapies one day help cure Alzheimers?

Clinical trials of stem cell therapies are now underway to repair the damaged cells of people with Parkinsons disease and age-related macular degeneration. Being Patient spoke with Jack Price, professor of developmental neurobiology at Kings College London and author of the book The Future of Brain Repair, about the potential and challenges of repairing the brain with stem cell therapy.

Being Patient: What is stem cell therapy?

Prof. Jack Price: Its the transplantation of stem cells, either directly into the brain or in a way that gives them access to the brain and influence the brain, to bring about a therapeutic effect.

Being Patient: Are there stem cells in the brain?

Prof. Jack Price: For many years, neuroscientists didnt think there were stem cells in the brain. We now know there are. We know about a population [of stem cells] thats become very important in our understanding of Alzheimers disease and in mood disorders like anxiety and depression. These are stem cells that are found in a part of the brain called the hippocampus.

But by and large, the brain doesnt have stem cells, unlike skin and other tissues in the body. The blood is the classic [example]: Theres a population of stem cells in the bone marrow that regenerates blood all the time.

Being Patient: What makes stem cells so special and why are they a focus of research?

Prof. Jack Price: The definition of stem cells is a population of cells that gives rise to other types of cells. In neural stem cells, precursor cells can make adult brain cells, nerve cells, glial cells, all the different cell types that make up the brain. If you have a disease like Alzheimers or any other neurodegenerative disease, where we know the key pathology is the loss of nerve cells, your brain doesnt normally have the ability to replace those lost brain cells. The idea was [that] if you put stem cells where the loss of brain cells has taken place, maybe those stem cells would replace the lost cells.

Being Patient: What is the potential of stem cell therapy in treating neurodegenerative diseases?

Prof. Jack Price: Theres a piece of absolutely brilliant stem cell science that was done by Shinya Yamanaka in Kyoto in 2006. He showed you could effectively take any cell through a very straightforward genetic manipulation that he discovered, [and] turn them into what we call pluripotent stem cells, which are cells that can make any cell type in the body. They also have an ability that other stem cells generally dont: They can build tissue. If you grow them in a little culture dish, they can start to make little pieces of brain called organoids or cerebroids. This was a groundbreaking technology.

In Parkinsons disease, theres enormous progress and clinical trials are underway now. We know more about the pathology of Parkinsons disease [than in Alzheimers]. The pathology of Alzheimers turns out to be quite complex, and weve had, over the years, quite a few ideas about how it worked. But [turning] those into actual therapies hasnt quite worked as we expected, and we keep having to go back and rethink whats going on in Alzheimers.

The pathology of Parkinsons disease is also difficult. Its not trivial. But at the same time, one thing is clear: a lot of the pathology is associated with the loss of a particular population of nerve cells the midbrain dopaminergic cells. We can start with these pluripotent stem cells and make them make precisely the right type of dopaminergic cell that we know is lost in Parkinsons disease.

This is built on 30 [to] 40 years of research of people trying to find exactly the right cell type to work [with] in Parkinsons disease. They had some early success and fell backwards. But this technology looks much more precise than everything anybodys ever tried before.

In age-related macular degeneration, the disease of the eye where you lose your retinal photoreceptors, there are very clever strategies now where people are using these pluripotent stem cells to make a thing called a retinal pigment epithelium. It lies behind the retina, but its what supports the photoreceptors. It turns out, thats what goes wrong in age-related macular degeneration.

Being Patient: Are there any stem cell therapy approved to treat brain disorders?

Prof. Jack Price: There are no licensed stem cell therapy for any brain disorders anywhere in the world for the simple reason [that] nobody has shown one works. There are a lot of stem cell clinics in the U.S. and somewhat fewer elsewhere who are offering cell therapies that are untested. Theyll put stem cells into you for any disorder youve got. Those cell therapies do not work.

A lot of genuine companies are trying to get these cell therapies to work in clinical trials and falling flat on their face quite often, despite their best efforts. 90% of clinical trials fail, and thats clinical trials of conventional drugs by drug companies that know what theyre doing.

What do you suppose is the chance with a stem cell therapy [that] we dont really understand how it works, [that] we dont quite know how to manufacture it properly, [and that] we dont quite know what cells we really want, of working? The chance is almost zero.

The interview has been edited for length and clarity.

Contact Nicholas Chan at nicholas@beingpatient.com

Continue reading here:
Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price - Being Patient

Posted in Stem Cell Research | Comments Off on Repairing the Brain With Stem Cells? A Conversation With Prof. Jack Price – Being Patient

How do you donate stem cells? Donating cells can help treat cancer, blindness and other conditions – heres how – The Scotsman

Posted: December 9, 2020 at 1:59 am

HealthA new stem cell treatment could restore eyesight in some people

Friday, 4th December 2020, 3:18 pm

Researchers discovered that the cells of damaged retinas could be repaired by injecting genetically modified stem cells into the eye.

Sign up to our public interest bulletins - get the latest news on the Coronavirus

Sign up to our public interest bulletins - get the latest news on the Coronavirus

The news comes as comedian Al Murray pushed for stem cell donors to come forward, ahead of a charity gig for blood cancer organisation DKMS.

Heres everything you need to know about the scientific discovery - and how you can donate your own stem cells to save the lives of people with blood cell diseases.

Stem cells are produced by bone marrow, and they have the ability to grow into different types of blood cells such as red and white blood cells and platelets.

A stem cell or bone marrow transplant replaces damaged blood cells with healthy ones and can be used to treat conditions affecting the blood cells, like leukaemia and lymphoma.

The transplant involves destroying the unhealthy blood cells and replacing them with the stem cells removed from the blood or bone marrow.

Often, stem cells are taken from one person - usually a close family member or a match with the same or similar tissue type - and they are transferred to the person that needs them.

How could they be used to treat vision damage?

Researchers in Barcelona recently discovered that modified stem cells could potentially help to cure problems with vision.

They found that the cells of damaged eye retinas send out a rescue signal to attract the stem cells that can repair damage.

Stem cells were genetically engineered to make them more sensitive to those signals.

The modified stem cells were transplanted back into mice and human tissue samples and the researchers found that they flocked to the retina cells in large numbers.

In turn, that kept the tissue of the retina alive and functioning.

The new technique is a breakthrough in stem cell research as it suggests stem cells could help to improve sight, and potentially could cure blindness in the future.

Retinal damage is currently incurable and can cause visual disabilities and blindness, especially in older people.

How can stem cells treat conditions?

Stem cells can already be used to treat a number of conditions where the bone marrow is damaged and unable to produce its own healthy blood cells.

Transplants can be used to treat people suffering from different forms of cancer, with someone elses tem cells replacing the patients blood cells that are damaged or destroyed.

Conditions that stem cell transplants can treat include leukemia and lymphoma, which are cancers affecting white blood cells, myeloma, which affects plasma cells, severe aplastic anaemia (bone marrow failure), and other blood disorders.

A stem cell transplant will usually only be carried out if other treatments have been exhausted, but it could save someones life.

How can I donate stem cells?

When its not possible to use someones own stem cells to treat their condition, they need to come from a donor.

However, to improve the chances of the transplant being successful, the donated cells need to have a very similar genetic marker to the patients.

As the number of donors has recently decreased, charities are urgently encouraging healthy people to donate stem cells.

You are able to register to be a donor on the NHS Blood and Transplant website.

The Anthony Nolan charity also takes sign ups, and is specifically looking for younger donors between age 16 and 30.

You will be asked to fill out an application form and will be sent a swab pack so you can be added to the register.

If you ever come up as a match for a patient, you will be contacted by the charity.

Even if you cant join the register, you can donate to Anthony Nolan to help to grow the stem cell register.

View post:
How do you donate stem cells? Donating cells can help treat cancer, blindness and other conditions - heres how - The Scotsman

Posted in Stem Cell Research | Comments Off on How do you donate stem cells? Donating cells can help treat cancer, blindness and other conditions – heres how – The Scotsman

Genetic engineering transformed stem cells into working mini-livers that extended the life of mice with liver disease – The Conversation US

Posted: December 9, 2020 at 1:59 am

Takeaways

Scientists have made progress growing human liver in the lab.

The challenge has been to direct stems cells to grow into a mature, functioning adult organ.

This study shows that stem cells can be programmed, using genetic engineering, to grow from immature cells into mature tissue.

When a tiny lab-grown liver was transplanted into mice with liver disease, it extended the lives of the sick animals.

Imagine if researchers could program stem cells, which have the potential to grow into all cell types in the body, so that they could generate an entire human organ. This would allow scientists to manufacture tissues for testing drugs and reduce the demand for transplant organs by having new ones grown directly from a patients cells.

Im a researcher working in this new field called synthetic biology focused on creating new biological parts and redesigning existing biological systems. In a new paper, my colleagues and I showed progress in one of the key challenges with lab-grown organs figuring out the genes necessary to produce the variety of mature cells needed to construct a functioning liver.

Induced pluripotent stem cells, a subgroup of stem cells, are capable of producing cells that can build entire organs in the human body. But they can do this job only if they receive the right quantity of growth signals at the right time from their environment. If this happens, they eventually give rise to different cell types that can assemble and mature in the form of human organs and tissues.

The tissues researchers generate from pluripotent stem cells can provide a unique source for personalized medicine from transplantation to novel drug discovery.

But unfortunately, synthetic tissues from stem cells are not always suitable for transplant or drug testing because they contain unwanted cells from other tissues, or lack the tissue maturity and a complete network of blood vessels necessary for bringing oxygen and nutrients needed to nurture an organ. That is why having a framework to assess whether these lab-grown cells and tissues are doing their job, and how to make them more like human organs, is critical.

Inspired by this challenge, I was determined to establish a synthetic biology method to read and write, or program, tissue development. I am trying to do this using the genetic language of stem cells, similar to what is used by nature to form human organs.

I am a researcher specializing in synthetic biology and biological engineering at the Pittsburgh Liver Research Center and McGowan Institute for Regenerative Medicine, where the goals are to use engineering approaches to analyze and build novel biological systems and solve human health problems. My lab combines synthetic biology and regenerative medicine in a new field that strives to replace, regrow or repair diseased organs or tissues.

I chose to focus on growing new human livers because this organ is vital for controlling most levels of chemicals like proteins or sugar in the blood. The liver also breaks down harmful chemicals and metabolizes many drugs in our body. But the liver tissue is also vulnerable and can be damaged and destroyed by many diseases, such as hepatitis or fatty liver disease. There is a shortage of donor organs, which limits liver transplantation.

To make synthetic organs and tissues, scientists need to be able to control stem cells so that they can form into different types of cells, such as liver cells and blood vessel cells. The goal is to mature these stem cells into miniorgans, or organoids, containing blood vessels and the correct adult cell types that would be found in a natural organ.

One way to orchestrate maturation of synthetic tissues is to determine the list of genes needed to induce a group of stem cells to grow, mature and evolve into a complete and functioning organ. To derive this list I worked with Patrick Cahan and Samira Kiani to first use computational analysis to identify genes involved in transforming a group of stem cells into a mature functioning liver. Then our team led by two of my students Jeremy Velazquez and Ryan LeGraw used genetic engineering to alter specific genes we had identified and used them to help build and mature human liver tissues from stem cells.

The tissue is grown from a layer of genetically engineered stem cells in a petri dish. The function of genetic programs together with nutrients is to orchestrate formation of liver organoids over the course of 15 to 17 days.

I and my colleagues first compared the active genes in fetal liver organoids we had grown in the lab with those in adult human livers using a computational analysis to get a list of genes needed for driving fetal liver organoids to mature into adult organs.

We then used genetic engineering to tweak genes and the resulting proteins that the stem cells needed to mature further toward an adult liver. In the course of about 17 days we generated tiny several millimeters in width but more mature liver tissues with a range of cells typically found in livers in the third trimester of human pregnancies.

Like a mature human liver, these synthetic livers were able to store, synthesize and metabolize nutrients. Though our lab-grown livers were small, we are hopeful that we can scale them up in the future. While they share many similar features with adult livers, they arent perfect and our team still has work to do. For example, we still need to improve the capacity of the liver tissue to metabolize a variety of drugs. We also need to make it safer and more efficacious for eventual application in humans.

[Deep knowledge, daily. Sign up for The Conversations newsletter.]

Our study demonstrates the ability of these lab livers to mature and develop a functional network of blood vessels in just two and a half weeks. We believe this approach can pave the path for the manufacture of other organs with vasculature via genetic programming.

The liver organoids provide several key features of an adult human liver such as production of key blood proteins and regulation of bile a chemical important for digestion of food.

When we implanted the lab-grown liver tissues into mice suffering from liver disease, it increased the life span. We named our organoids designer organoids, as they are generated via a genetic design.

Read the original:
Genetic engineering transformed stem cells into working mini-livers that extended the life of mice with liver disease - The Conversation US

Posted in Stem Cell Research | Comments Off on Genetic engineering transformed stem cells into working mini-livers that extended the life of mice with liver disease – The Conversation US

Page 810«..1020..809810811812..820830..»