Page 838«..1020..837838839840..850860..»

Editorial Article: Combating cancer: The incubation technology accelerating CAR-T cell therapy development – SelectScience

Posted: November 4, 2020 at 5:56 am

Gene and cell therapy expert Dr. Gerhard Bauer explores the powerful therapies that use a patient's own immune cells to treat cancer

In this article, we hear from Dr. Gerhard Bauer, Professor of Hematology-Oncology at the UC Davis Medical Center within the School of Medicine and Director and Designer of the UC Davis Good Manufacturing Practice Facility. Following his earlier research on stem cell gene therapy for HIV and severe combined immune deficiency (SCID), Bauer discusses his current work overseeing the development of life-saving CAR-T cells, highlights how new self-sterilizing instruments have been critical to his teams production of safe gene therapy products for patients, and shares his hopes for the future.

Tell us more about the Good Manufacturing Practice Lab at the UC Davis Institute, and your journey to becoming director

GB: In my early years, I helped operate a laboratory in Vienna testing laboratory blood products for HIV. Until finally, I thought, if I really want to do something about HIV and want to find a treatment or cure for it, then I need to do more than just testing test kits. I was subsequently hired by the University of Maryland at Baltimore to run the HIV laboratory. Whilst there I was able to find a predictor for HIV transmission, from mother to child, which at that time was a cell-based assay designed to predict the transmission rate. From this, we were able to demonstrate that higher viral load leads to more transmission.

I was then asked to move over to the Johns Hopkins University, where I started on the development of stem cell gene therapy for HIV. And then on to Dr. Donald Kohn's laboratory at Children's Hospital Los Angeles, where I was fortunate enough to be able to work on developing all the clinical-grade procedures to transport genes into hematopoietic stem and progenitor cells. This research led to the development of a completely new treatment for ADA-deficient SCID, severe combined immune deficiency.

After the success of the clinical-grade procedures, I was asked to go to Washington University in St. Louis, to build them a completely new Good Manufacturing Practice facility for cell and gene therapy. This was because I had built a GMP facility among the first academic GMP facilities at Children's Hospital Los Angeles. A few years later I moved to California to help build another GMP facility at University of California, Davis, where I am still conducting my research.

The UC Davis Medical Center is a manufacturing facility for cell and gene therapy products that are being used in clinical trials to help treat patients with currently incurable diseases. In this aspect, I overlook all the manufacturing efforts for novel clinical trials. Since 2010, we have been operating very successfully and have a whole pallet of applications, cell and gene therapy, and other applications that we manufacture here.

What are the main goals for your projects using homegrown CAR-T cell therapy approaches?

GB: A very interesting project that we have been tackling is CAR-T cells. Everybody talks about CAR-T cells these days because they have turned from an experimental project into commercialized applications. CAR-T cells are chimeric antigen receptor T cells. They are gene-modified immune cells from the patient. You can take a patient's immune cells, specifically T cells, out in a blood collection procedure, put them into a laboratory, and then insert genes that will produce a completely novel receptor on the cell surface that can recognize cancer cells. Chemotherapy and radiotherapy only kill the fast-growing tumor cells but often a patient will have a relapse. The relapse comes from cells that have survived the chemotherapy or radiation.

The immune system, if properly equipped, allows for the surveillance of all the cancer cells that may still be there even after chemotherapy. With CAR-T cells, we have developed such a weapon that allows the patient's own immune system to recognize the cancer and eliminate it. This can also be sustained elimination because the T cells develop memory T cells that will be reactivated when the cancer comes back.

In my career here at UC Davis, I have been involved in several CAR-T cell projects initiated by biotech companies. Also, another one initiated by UC Davis in collaboration with University of California, San Francisco. And we are manufacturing such CAR-T cells in the laboratory currently and we are initiating investigational new drug applications, INDs, with the FDA to apply these homegrown CAR-T cells as we call them to patients in San Francisco and also here at UC Davis.

What role do incubators play in cell and gene therapy development?

GB: Within a Good Manufacturing Practice laboratory, we need equipment that can be calibrated and that can maintain the operational status in a very precise way, from beginning to end of the process. Also, we must be able to clean these pieces of equipment appropriately. This means we maintain a very clean environment so as not to cross-contaminate or bring any other infections in. It is very important that we get laboratory equipment that can handle all of this.

I have had a good experience with the incubators that we have had over the years in our laboratories. Some had lasted for over 10 years until we replaced them with newer incubators with a unique feature. That feature is a self-sterilizing incubator, which has helped us tremendously in our efforts. We need to keep the time that we work on maintenance of the equipment low because our technicians are needed for making the products. We do not have to do an autoclaving step on the shelves and everything that is in there. We can leave everything in, and it sterilizes itself. It has saved us so much time and effort and our technicians are grateful for that.

Without these incubators, I do not think we would be able to efficiently produce as many products as we do currently. We also must make sure that we produce a safe and efficacious patient product if we do not have reliable incubators, we cannot make reliable products.

What is your vision for the future of gene therapy?

GB: Up to now we have been able to demonstrate that gene therapy is very safe. We have seen so many patients cured with ADA-deficient SCID safely. In CAR-T cell therapy, which is also a gene therapy, we have saved the lives of so many patients safely.

In the future, we need to expand these already working methods. We must make CAR-T cell therapy available for the many people that need it. Often scaling up is not possible because it is an autologous therapy. I would say scale out, not scale up. Scaling out means that you have many different laboratories where you can make these products and each product is being made in an efficient way. We are going to have to develop methods to efficiently manufacture these products side by side. This will be possible with automation.

Hopefully, in a few years down the road, we will be able to provide those who need it with cell and gene therapy. The second thing is that it is likely that genetic diseases will be curable with gene therapy, more of these cures are being worked on currently. Not only is cell therapy involved in that, but gene therapy vectors can also be administered directly into the patient to look for the cells they need to cure, and then illicit the cure directly without having to transplant cells. So, the future is very interesting, and having seen it from the very beginning to where we are now is something that I really enjoy.

More on the impact of PHCbi technology:

Find out more about Dr. Gerhard Bauers research here>>

Do you use PHCbi products in your lab? Write a review today for your chance to win a $400 Amazon gift card>>

Continue reading here:
Editorial Article: Combating cancer: The incubation technology accelerating CAR-T cell therapy development - SelectScience

Posted in Cell Therapy | Comments Off on Editorial Article: Combating cancer: The incubation technology accelerating CAR-T cell therapy development – SelectScience

Cell Banking Outsourcing Market: High Demand for Stem Cell Therapies to Trigger Growth of the Market – BioSpace

Posted: November 4, 2020 at 5:56 am

Global Cell Banking Outsourcing Market: Overview

The global cell banking outsourcing market is likely to be driven by the rising demand for biopharmaceutical production targeting novel active sites, stem cell therapy, and gene therapy. A cell bank is a facility storing cells extracted from various organ tissue and body fluids so as to cater to the needs of the future. The cell banks make storage of cells with an elaborate characterization of the entire cell line as it reduces the possibilities of cross contamination. These benefits are estimated to fuel expansion of the global cell banking outsourcing market over the timeframe of assessment, from 2020 to 2030.

Read Report Overview - https://www.transparencymarketresearch.com/cell-banking-outsourcing-market.html

Cell banking outsourcing industries engage testing, characterization, storage, and collection of tissues, cell lines, and the cells. These activities are done to assist in the production of biopharmaceuticals and in the research and development activities so as to ensure minimum adverse effects and high effectiveness. The procedure of the cell storage involves first proliferation of cells, which then multiplies in a huge number of identical cells and is then put inside cryovials safety for use in future. Cells are primarily utilized in the production of regenerative medicine. A surge in the number of cell banks together with the high demand for stem cell therapies is likely to work in favor of the global cell banking outsourcing market over the tenure of analysis, from 2020 to2030.

The global cell banking outsourcing market has been segmented on the basis of four important parameters, which are bank type, phase, cell type, and region.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=79685

Global Cell Banking Outsourcing Market: Notable Developments

The global cell banking outsourcing market is considered a fairly competitive market and is marked with the presence of many leading market players. The companies in this market are forging mergers, partnerships, and collaborations so as to gain larger revenue and market share. The following development is expected to play an important role in the market:

Request for Analysis of COVID-19 Impact on Cell Banking Outsourcing Market- https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1645

Global Cell Banking Outsourcing Market: Key Trends

The global cell banking outsourcing market is characterized by the presence of the following restraints, drivers, and opportunities.

High Demand for Stem Cell Therapies to Trigger Growth of the Market

The rising number of stem cell therapies across the globe primarily influences the global cell banking outsourcing market. According to a survey conducted by World Network for Blood and Marrow Transplantation (WBMN), nearly 1 million hematopoietic stem cell transplantation processes were conducted in between 2006 to 2014. These figure comprised removal of stem cells procedures from peripheral blood or bone marrow, proliferating, and then finally storing them cell banks for future use by patients. Stem cell therapies are able to multiple disease, such as amyotrophic lateral sclerosis, type 1 diabetes, cancer, Alzheimer's disease, Parkinson's disease, and so on. Ability to cure such a wide variety of diseases is expected to propel growth of the global cell banking outsourcing market in the years to come.

Request for Custom Research - https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=1645

Global Cell Banking Outsourcing Market: Geographical Analysis

North America is expected to dominate the global cell banking outsourcing market throughout the timeframe of analysis, from 2020 to 2030. Such high growth of the North America market is ascribed to the increased production of antibiotics, therapeutics protein, and vaccines. In addition, presence of several biopharmaceutical companies in the region is anticipated to foster growth of the cell banking outsourcing market in North America in the near future.

Pre Book Cell Banking Outsourcing Market Report - https://www.transparencymarketresearch.com/checkout.php?rep_id=1645&ltype=S

Browse More Trending Reports by Transparency Market Research:

Healthcare Fraud Detection Market: https://www.transparencymarketresearch.com/healthcare-fraud-detection-market.html

Epinephrine Injection Market: https://www.transparencymarketresearch.com/epinephrine-injection-market.html

Dermal Regeneration Matrix Device Market: https://www.transparencymarketresearch.com/dermal-regeneration-matrix-device-market.html

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

ContactMr. Rohit BhiseyTransparency Market ResearchState Tower,90 State Street,Suite 700,Albany NY - 12207United StatesUSA - Canada Toll Free: 866-552-3453Email: sales@transparencymarketresearch.comWebsite: https://www.transparencymarketresearch.com/

Read the original here:
Cell Banking Outsourcing Market: High Demand for Stem Cell Therapies to Trigger Growth of the Market - BioSpace

Posted in Cell Therapy | Comments Off on Cell Banking Outsourcing Market: High Demand for Stem Cell Therapies to Trigger Growth of the Market – BioSpace

Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia – GlobeNewswire

Posted: November 4, 2020 at 5:56 am

Basel, October 30, 2020 Novartis today announced the receipt of marketing authorization from Japans Ministry of Health, Labor and Welfare (MHLW) for Foundation for Biomedical Research and Innovation at Kobe ("FBRI") to manufacture and supply commercial Kymriah (tisagenlecleucel) for patients in Japan. This approval makes FBRI the first and only approved commercial manufacturing site for CAR-T cell therapy in Asia.

Behind our efforts to reimagine medicine with CAR-T cell therapy lies a commitment to build a manufacturing network that brings treatment closer to patients, commented Steffen Lang, Global Head of Novartis Technical Operations. The expertise and infrastructure of FBRI, a world-leading manufacturing organization, allows us to bring CAR-T manufacturing to Asia. With the Japan MHLW commercial manufacturing approval, the recent capacity expansion in the US and our ongoing efforts to optimize and evolve our processes, we are well-positioned to deliver this potentially curative treatment option to more patients around the world.

Novartis has the largest geographical CAR-T cell therapy manufacturing network in the world, including seven CAR-T manufacturing facilities, across four continents. Commercial manufacturing for Kymriah now takes place at five sites globally including at the Morris Plains, New Jersey facility, where the US Food and Drug Administration (FDA) recently approved a further increase in manufacturing capacity.

Kymriah is the first-ever FDA-approved CAR-T cell therapy, and the first-ever CAR-T to be approved in two distinct indications. It is a one-time treatment designed to empower patients immune systems to fight their cancer. Kymriah is currently approved for the treatment of r/r pediatric and young adult (up to 25 years of age) acute lymphoblastic leukemia (ALL), and r/r adult diffuse large B-cell lymphoma (DLBCL)1. Kymriah, approved in both indications by the Japan MHLW in 2019, is currently the only CAR-T cell therapy approved in Asia. Clinical manufacturing began at FBRI in 2019 and will continue alongside commercial manufacturing.

Kymriah was developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, a strategic alliance between industry and academia, which was first-of-its-kind in CAR-T research and development.

About Novartis Commitment to Oncology Cell & Gene Novartis has a mission to reimagine medicine by bringing curative cell & gene therapies to patients worldwide. Novartis has a deep CAR-T pipeline and ongoing investment in manufacturing and supply chain process improvements. With active research underway to broaden the impact of cell and gene therapy in oncology, Novartis is going deeper in hematological malignancies, reaching patients with other cancer types and evaluating next-generation CAR-T cell therapies that focus on new targets and utilize new technologies.

Novartis was the first pharmaceutical company to significantly invest in pioneering CAR-T research and initiate global CAR-T trials. Kymriah, the first approved CAR-T cell therapy, developed in collaboration with the Perelman School of Medicine at the University of Pennsylvania, is the foundation of Novartis commitment to CAR-T cell therapy. Kymriah is currently approved for use in at least one indication in 26 countries and at more than 260 certified treatment centers, with the ambition for further expansion to help fulfill the ultimate goal of bringing CAR-T cell therapy to every patient in need.

The Novartis global CAR-T manufacturing footprint spans seven facilities, across four continents. This comprehensive, integrated footprint strengthens the flexibility, resilience and sustainability of the Novartis manufacturing and supply chain. Commercial and clinical trial manufacturing is now ongoing at Novartis-owned facilities in Stein, Switzerland, Les Ulis, France and Morris Plains, New Jersey, USA, as well as at the contract manufacturing sites at Fraunhofer-Institut for cell therapy and immunology (Fraunhofer-Institut fr Zelltherapie und Immunologie) facility in Leipzig, Germany, and now FBRI in Kobe, Japan. Manufacturing production at Cell Therapies in Australia and Cellular Biomedicine Group in China is forthcoming.

ImportantSafety information from the Kymriah SmPC

EU Name of the medicinal product:

Kymriah 1.2 x 106 6 x 108 cells dispersion for infusion

Important note: Before prescribing, consult full prescribing information.

Presentation: Cell dispersion for infusion in 1 or more bags for intravenous use (tisagenlecleucel).

Indications: Treatment of pediatric and young adult patients up to and including 25 years of age with B-cell acute lymphoblastic leukemia (ALL) that is refractory, in relapse posttransplant or in second or later relapse. Treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) after two or more lines of systemic therapy.

Dosage and administration:

B-cell patients: For patients 50 kg and below: 0.2 to 5.0 x 106 CAR-positive viable T-cells/kg body weight. For patients above 50 kg: 0.1 to 2.5 x 108 CAR-positive viable T-cells (non-weight based).

DLBCL Patients: 0.6 to 6.0108 CAR-positive viable T-cells (non-weight based).

Pretreatment conditioning (lymphodepleting chemotherapy): Lymphodepleting chemotherapy is recommended to be administered before Kymriah infusion unless the white blood cell (WBC) count within one week prior to infusion is 1,000 cells/L. The availability of Kymriah must be confirmed prior to starting the lymphodepleting regimen.

Precautions before handling or administering Kymriah: Kymriah contains genetically modified human blood cells. Healthcare professionals handling Kymriah should therefore take appropriate precautions (wearing gloves and glasses) to avoid potential transmission of infectious diseases.

Preparation for infusionThe timing of thaw of Kymriah and infusion should be coordinated. Once Kymriah has been thawed and is at room temperature (20C 25C), it should be infused within 30minutes to maintain maximum product viability, including any interruption during the infusion.

Administration Kymriah should be administered as an intravenous infusion through latexfree intravenous tubing without a leukocyte depleting filter, at approximately 10 to 20mL per minute by gravity flow. If the volume of Kymriah to be administered is 20mL, intravenous push may be used as an alternative method of administration.

All contents of the infusion bag(s) should be infused.

Clinical assessment prior to infusion: Kymriah treatment should be delayed in some patient groups at risk (see Special warnings and precautions for use).

Monitoring after infusion: Patients should be monitored daily for the first 10 days following infusion for signs and symptoms of potential cytokine release syndrome, neurological events and other toxicities. Physicians should consider hospitalisation for the first 10 days post infusion or at the first signs/symptoms of CRS and/or neurological events. After the first 10 days following the infusion, the patient should be monitored at the physicians discretion. Patients should be instructed to remain within proximity of a qualified clinical facility for at least 4 weeks following infusion.

Elderly (above 65 years of age): Safety and efficacy have not been established in B-cell patients. No dose adjustment is required in patients over 65 years of age in DLBCL patients.

Paediatric patients: No formal studies have been performed in paediatric patients with B-cell ALL below 3 years of age. The safety and efficacy of Kymriah in children and adolescents below 18 years of age have not yet been established in DLBCL. No data are available.

Patients seropositive for hepatitis B virus (HBV), hepatitis C virus (HCV), or human immunodeficiency virus (HIV): There is no experience with manufacturing Kymriah for patients with a positive test for HIV, active HBV, or active HCV infection. Leukapheresis material from these patients will not be accepted for Kymriah manufacturing.

Contraindications: Hypersensitivity to the active substance or to any of the excipients of Kymriah. Contraindications of the lymphodepleting chemotherapy must be considered.

Warnings and precautions: Reasons to delay treatment: Due to the risks associated with Kymriah treatment, infusion should be delayed if a patient has any of the following conditions: Unresolved serious adverse reactions (especially pulmonary reactions, cardiac reactions or hypotension) from preceding chemotherapies, active uncontrolled infection, active graft versus host disease (GVHD), significant clinical worsening of leukaemia burden or rapid progression of lymphoma following lymphodepleting chemotherapy. Blood, organ, tissue and cell donation: Patients treated with Kymriah should not donate blood, organs, tissues or cells.

Active central nervous system (CNS) leukaemia or lymphoma: There is limited experience of use of Kymriah in patients with active CNS leukaemia and active CNS lymphoma. Therefore the risk/benefit of Kymriah has not been established in these populations. Risk of CRS: Occurred in almost all cases within 1 to 10 days post infusion with a median time to onset of 3 days and a median time to resolution of8 days. See full prescribing information for management algorithm of CRS. Risk of neurological events: Majority of events, in particular encephalopathy, confusional state or delirium, occurred within 8 weeks post infusion and were transient. The median time to onset of neurological events was 8 days in B-cell ALL and 6 days in DLBCL; the median time to resolution was 7 days for B-cell ALL and 13 days for DLBCL. Patients should be monitored for neurological events. Risk of infections: Delay start of therapy with Kymriah until active uncontrolled infections have resolved. As appropriate, administer prophylactic antibiotics and employ surveillance testing prior to and during treatment with Kymriah. Serious infections were observed in patients, some of which were life threatening or fatal. After Kymriah administration observe patient and ensure prompt management in case of signs of infection Risk of febrile neutropenia: Frequently observed after Kymriah infusion, may be concurrent with CRS. Appropriate management necessary. Risk of prolonged cytopenias: Appropriate management necessary. Prolonged cytopenia has been associated with increased risk of infections. Myeloid growth factors, particularly granulocyte macrophage colony stimulating factor (GM CSF), not recommended during the first 3 weeks after Kymriah infusion or until CRS has been resolved. Risk of secondary malignancies: Patients treated with Kymriah may develop secondary malignancies or recurrence of their cancer and should be monitored lifelong for secondary malignancies. Risk of hypogammaglobulinemia or agammaglobulinemia: Infection precautions, antibiotic prophylaxis and immunoglobulin replacement should be managed per age and standard guidelines. In patients with low immunoglobulin levels preemptive measures such as immunoglobulin replacement and rapid attention to signs and symptoms of infection should be implemented. Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment was not studied. Vaccination with live virus vaccines is not recommended at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah. Risk of tumor lysis syndrome (TLS): Patients with elevated uric acid or high tumor burden should receive allopurinol or alternative prophylaxis prior to Kymriah infusion. Continued monitoring for TLS following Kymriah administration should also be performed. Concomitant disease: Patients with a history of active CNS disorder or inadequate renal, hepatic, pulmonary or cardiac function are likely to be more vulnerable to the consequences of the adverse reactions of Kymriah and require special attention. Prior stem cell transplantation: Kymriah infusion is not recommended within 4 months of undergoing an allogeneic stem cell transplant (SCT) because of potential risk of worsening GVHD. Leukapheresis for Kymriah manufacturing should be performed at least 12weeks after allogeneic SCT. Serological testing: There is currently no experience with manufacturing Kymriah for patients testing positive for HBV, HCV and HIV. Screening for HBV, HCV and HIV, must be performed before collection of cells for manufacturing. Hepatitis B virus (HBV) reactivation, can occur in patients treated with medicinal products directed against B cells and could result in fulminant hepatitis, hepatic failure and death. Prior treatment with anti CD19 therapy: There is limited experience with Kymriah in patients exposed to prior CD19 directed therapy. Kymriah is not recommended if the patient has relapsed with CD19 negative leukaemia after prior anti-CD19 therapy. Interference with serological testing: Due to limited and short spans of identical genetic information between the lentiviral vector used to create Kymriah and HIV, some commercial HIV nucleic acid tests (NAT) may give a false positive result. Sodium and potassium content: This medicinal product contains 24.3 to 121.5mg sodium per dose, equivalent to 1 to 6% of the WHO recommended maximum daily intake of 2g sodium for an adult. This medicinal product contains potassium, less than 1mmol (39mg) per dose, i.e. essentially potassium free. Content of dextran 40 and dimethyl sulfoxide (DMSO): Contains 11 mg dextran 40 and 82.5 mg dimethyl sulfoxide (DMSO) per mL. Each of these excipients are known to possibly cause anaphylactic reaction following parenteral administration. Patients not previously exposed to dextran and DMSO should be observed closely during the first minutes of the infusion period.

Interaction with other medicinal products and other forms of interaction

Live vaccines: The safety of immunisation with live viral vaccines during or following Kymriah treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least 6 weeks prior to the start of lymphodepleting chemotherapy, during Kymriah treatment, and until immune recovery following treatment with Kymriah.

Fertility, pregnancy and lactation

Women of childbearing potential/Contraception in males and females: Pregnancy status for females of reproductive potential should be verified prior to starting treatment with Kymriah. Consider the need for effective contraception in patients who receive the lymphodepleting chemotherapy. There are insufficient exposure data to provide a recommendation concerning duration of contraception following treatment with Kymriah.

Pregnancy: There are no data from the use of Kymriah in pregnant women. It is not known whether Kymriah has the potential to be transferred to the foetus via the placenta and could cause foetal toxicity, including B cell lymphocytopenia. Kymriah is not recommended during pregnancy and in women of childbearing potential not using contraception. Pregnant women should be advised on the potential risks to the foetus. Pregnancy after Kymriah therapy should be discussed with the treating physician. Pregnant women who have received Kymriah may have hypogammaglobulinaemia. Assessment of immunoglobulin levels is indicated in newborns of mothers treated with Kymriah.

Breast feeding: It is unknown whether Kymriah cells are excreted in human milk, a risk to the breast fed infant cannot be excluded. Women who are breast feeding should be advised of the potential risk to the breast fed infant. Breast-feeding should be discussed with the treating physician.

Fertility: There are no data on the effect of Kymriah on fertility.

Effects on ability to drive and use machinesDriving and engaging in hazardous activities in the 8 weeks following infusion should be refrained due to risks for altered or decreased consciousness or coordination.

Adverse drug reactions:

B-Cell ALL patients and DLBCL patients:

Very common (10%): Infections - pathogen unspecified, viral infections, bacterial infections, fungal infections, anaemia, haemorrhage, febrile neutropenia, neutropenia, thrombocytopenia, cytokine release syndrome, hypogammaglobulinaemia, decreased appetite, hypokalaemia, hypophosphataemia, hypomagnesaemia, hypocalcaemia, anxiety, delirium, sleep disorder, headache, encephalopathy, arrhythmia, hypotension, hypertension, cough, dyspnoea, hypoxia, diarrhoea, nausea, vomiting, constipation, abdominal pain, rash, arthralgia, acute kidney injury, pyrexia, fatigue, oedema, pain, chills, lymphocyte count decreased, white blood cell count decreased, haemoglobin decreased, neutrophil count decreased, platelet count decreased, aspartate aminotransferase increased.

Common (1 to 10%): Haemophagocytic lymphohistiocytosis, leukopenia, pancytopenia, coagulopathy, lymphopenia, infusion-related reactions, graft versus host disease, hypoalbuminaemia, hyperglycaemia, hyponatraemia, hyperuricaemia, fluid overload, hypercalcemia, tumor lysis syndrome, hyperkalaemia, hyperphosphataemia, hypernatraemia, hypermagnesaemia, dizziness, peripheral neuropathy, tremor, motor dysfunction, seizure, speech disorder, neuralgia, ataxia, visual impairment, cardiac failure, cardiac arrest, thrombosis, capillary leak syndrome, oropharyngeal pain, pulmonary oedema, nasal congestion, pleural effusion, tachypnea, acute respiratory distress syndrome, stomatitis, abdominal distension, dry mouth, ascites, hyperbilirubinaemia, pruritus, erythema, hyperhidrosis, night sweats, back pain, myalgia, muscolosceletal pain, influenza-like illness, asthenia, multiple organ dysfunction syndrome, alanine aminotransferase increased, blood bilirubin increased, weight decreased, serum ferritin increased, blood fibrinogen decreased, international normalized ratio increased, fibrin D dimer increased, activated partial thromboplastin time prolonged, blood alkaline phosphate increased, prothrombin time prolonged.

Uncommon: B-cell aplasia, ischaemic cerebral infarction, flushing, lung infiltration.

Packs and prices: Country-specific.

Legal classification: Country-specific.

DisclaimerThis press release contains forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements can generally be identified by words such as potential, can, will, plan, may, could, would, expect, anticipate, seek, look forward, believe, committed, investigational, pipeline, launch, or similar terms, or by express or implied discussions regarding potential marketing approvals, new indications or labeling for the investigational or approved products described in this press release, or regarding potential future revenues from such products. You should not place undue reliance on these statements. Such forward-looking statements are based on our current beliefs and expectations regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that the investigational or approved products described in this press release will be submitted or approved for sale or for any additional indications or labeling in any market, or at any particular time. Nor can there be any guarantee that such products will be commercially successful in the future. In particular, our expectations regarding such products could be affected by, among other things, the uncertainties inherent in research and development, including clinical trial results and additional analysis of existing clinical data; regulatory actions or delays or government regulation generally; global trends toward health care cost containment, including government, payor and general public pricing and reimbursement pressures and requirements for increased pricing transparency; our ability to obtain or maintain proprietary intellectual property protection; the particular prescribing preferences of physicians and patients; general political, economic and business conditions, including the effects of and efforts to mitigate pandemic diseases such as COVID-19; safety, quality, data integrity or manufacturing issues; potential or actual data security and data privacy breaches, or disruptions of our information technology systems, and other risks and factors referred to in Novartis AGs current Form 20-F on file with the US Securities and Exchange Commission. Novartis is providing the information in this press release as of this date and does not undertake any obligation to update any forward-looking statements contained in this press release as a result of new information, future events or otherwise.

About NovartisNovartis is reimagining medicine to improve and extend peoples lives. As a leading global medicines company, we use innovative science and digital technologies to create transformative treatments in areas of great medical need. In our quest to find new medicines, we consistently rank among the worlds top companies investing in research and development. Novartis products reach nearly 800 million people globally and we are finding innovative ways to expand access to our latest treatments. About 110,000 people of more than 140 nationalities work at Novartis around the world. Find out more at https://www.novartis.com.

Novartis is on Twitter. Sign up to follow @Novartis at https://twitter.com/novartisnewsFor Novartis multimedia content, please visithttps://www.novartis.com/news/media-libraryFor questions about the site or required registration, please contact media.relations@novartis.com

References

1.Kymriah (tisagenlecleucel) Summary of Product Characteristics (SmPC), 2018.

# # #

Novartis Media RelationsE-mail: media.relations@novartis.com

Novartis Investor RelationsCentral investor relations line: +41 61 324 7944E-mail: investor.relations@novartis.com

Continue reading here:
Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia - GlobeNewswire

Posted in Cell Therapy | Comments Off on Novartis expands Kymriah manufacturing footprint with first-ever approved site for commercial CAR-T cell therapy manufacturing in Asia – GlobeNewswire

BioHealth Capital Region Showcases Strengths of Cutting Edge Therapies – BioBuzz

Posted: November 4, 2020 at 5:56 am

Biopharma and Life Science companies in the BioHealth Capital Region are known for their work with cutting edge technologies such as gene and cell therapies. Those strengths were on display at the 6th annual BioHealth Capital Region Forum.

The Strengths of our Region: Cutting Edge Therapies panel, which was moderated by Mark Cobbold, vice president of Discovery in Early Oncology at AstraZeneca, brought together leaders from three other companies to discuss their disruptive pipelines, the strength of the region and challenges brought by the COVID-19 pandemic. Cobbold touted the work performed by the three companies joining him on the panel, Cartesian Therapeutics, Adaptive Phage Therapeutics, and Ziel Bio. Pointing to the work being done by those three companies and AstraZeneca, Cobbold said they are representative of why the BioHealth Capital Region has become one of the most successful BioHubs in the United States.

Youre really pushing the boundaries of whats possible in treating patients, Cobbold told the panelists.

Murat Kalayoglu, Founder, President and Chief Executive Officer of Gaithersburg, Md.-based Cartesian Therapeutics, noted his companys attempts to develop CAR-T treatments for autoimmune diseases, a first-of-its-kind attempt, as well as for respiratory diseases, including acute respiratory distress syndrome, which is associated with COVID-19. Kalayoglu said the concept for the ARDS CAR-T program went from concept to the clinic in a matter of about seven months, making it the first engineered cell therapy in respiratory disease. He said that would not have happened had the company not been flexible in its attempts to combat COVID-19.

Over the past few years, CAR-T treatments have become promising therapies for some hematological cancers, however, they come with a certain safety risk due to toxicity issues. Kalayoglu said Cartesians assets have been engineered with a predictable half-life in order to mitigate those concerns. Because of increased safety, Cartesians RNA-based programs have the potential to become front-line treatments for some diseases.

Unlike many companies, Charlottesville, Va.-based Ziel Bio did not pivot its pipeline to combat COVID-19. Instead, the company remained focused on its core mission of developing treatments for cancer, particularly a monoclonal antibody against cell surface plectin, a target that is highly expressed on the plasma membrane of multiple types of cancer cells. Kimberly Kelly, President and Chief Scientific Officer of Ziel Bio, said the company has been preparing to take that monoclonal antibody, ZB131, into the clinic in 2021. Kelly said cell surface plectin plays a key role in proliferation, migration, and cell survival and as such, has a significant potential as a drug target for a range of difficult to treat cancers.

Ziel is primarily using funds from a $25 million Series A financing round last year to drive the development of that product, as well as other oncology assets that are in the discovery phase. Having additional assets in development is important because that will help the company grow, she said.

Greg Merrill, CEO of Adaptive Phage Therapeutics, also based in Gaithersburg, Md., said breakthroughs in genomics have boosted his companys ability to use phage therapy with fewer complications in order to better address multi-drug resistant infectious diseases. The company has been able to harness its expanding phage library, known as PhageBank, which was originally developed by the U.S. Department of Defense. The company is preparing to begin a Phase I/II study of a phage therapy in conjunction with antibiotics for patients with culture-proven chronic prosthetic joint infection who are candidates for two-stage exchange arthroplasty.

In addition to that movement in its pipeline, Merrill said the company is working with the Department of Defense to develop a phage-based COVID-19 vaccine program. He said the use of phage in humans is well-understood and has the potential to address the growing concern of drug-resistant infections. Merrill added the company has been harnessing the power of machine learning to predict an earlier stage where a particular phage can be effective against a particular bacteria and to predict which phage could be effective based on genomics of a bacterial infection.

While these companies are blazing trails in the BioHealth Capital Region, there are some challenges, particularly in the lack of wet-lab space and less involvement from venture capitalists than in other regions, such as the greater Boston area. While those may currently be lacking, for the most part, the region is filled with strengths, particularly the ability to attract top personnel. Cobbold suggested that the work conducted by biopharma and life science companies in the area is cutting edge, which makes it easier for people to relocate to the area.

Its a magnet for them, he said.

Looking ahead, each of the company representatives suggested that 2021 will bring about multiple milestones, including advancement in clinical development, as well as company growth. Replays of the 6th Annual BioHealth Capital Region forum are available online by visiting https://eventmobi.com/biohealth2020.

Alex Keown is a freelance journalist who writes about a variety of subjects including the pharma, biotech, and life science industries. Prior to freelancing, Alex has served as a staff writer and editor for several publications.

See more here:
BioHealth Capital Region Showcases Strengths of Cutting Edge Therapies - BioBuzz

Posted in Cell Therapy | Comments Off on BioHealth Capital Region Showcases Strengths of Cutting Edge Therapies – BioBuzz

Making Progress Against Relapsed/ Refractory DLBCL Without CAR T – OncLive

Posted: November 4, 2020 at 5:56 am

Approximately of patients with diffuse large B-cell lymphoma (DLBCL) experience refractory disease after initial treatment or have a relapse after achieving remission.1 Until the advent of chimeric antigen receptor (CAR) T-cell therapies, treatment options for these patients had been mostly palliative, especially for those ineligible for autologous stem-cell transplantation (ASCT) and those who relapsed after ASCT. Although CAR T-cell therapies have revolutionized the treatment landscape for relapsed/refractory (R/R) DLBCL, not all patients are candidates for this treatment. Of those who do receive it, 30% to 35% experience long-term benefit, demonstrating a great unmet need for others in the treatment landscape.

Emerging agents have started to shake up the R/R DLBCL armamentarium, but there is still a long road ahead to fully define their role. During an OncLive Peer Exchange, a panel of lymphoma experts discussed several novel agents for R/R DLBCL, some of which have been recently approved. They examined the clinical trial data, discussed how these agents compare with CAR T-cell therapy, and provided insights on how they might be used in clinical practice. Before long, well need more sophistication in how we approach patients, moderator John P. Leonard, MD, said. Hopefully, that means well be using treatments more effectively and have more tools at our disposal.

Tafasitamab-cxix (Monjuvi) is a humanized anti-CD19 monoclonal antibody that has been mostly studied as a combination therapy, particularly with lenalidomide (Revlimid). On July 31, 2020, the FDA granted accelerated approval to the combination for adult patients with R/R DLBCL not otherwise specified, including DLBCL arising from low-grade lymphoma, who are not eligible for ASCT.2

The Fc portion has been enhanced to increase ADCC [antibody-dependent cell-mediated cytotoxicity] and ADCP [antibody-dependent cellular phagocytosis], Kami J. Maddocks, MD, said. She noted that investigators initially examined tafasitamab in a single-arm study as monotherapy in patients with R/R non-Hodgkin lymphoma, the data from which demonstrated responses in DLBCL, including a few complete responses (CRs). In this phase 2a study (NCT01685008), investigators observed responses in 9 of the 35 patients (26%) with DLBCL (2 CRs and 7 partial responses [PRs]), with a median duration of response of 20.1 months (range, 1.1-26.5).3 [This study] signaled that there might be some activity with this agent in large cell lymphoma, Maddocks said. She proceeded to explain that the rationale for combining this agent with lenalidomide is that lenalidomide activates natural killer cells, thereby optimizing the tumor environment for tafasitamab.

Data from L-MIND (NCT02399085) provided the basis for the approval of tafasitamab in combination with lenalidomide. The phase 2, open label, multicenter, single-arm trial included 71 patients with DLBCL who received tafasitamab 12 mg/kg intravenously (days 1, 8, 15 and 22 of each 28-day cycle for 3 cycles, then days 1 and 15 only) with lenalidomide 25 mg orally (days 1-21) for a maximum of 12 cycles, followed by biweekly tafasitamab as monotherapy.4 It was really targeted at those patients who relapsed after their initial therapy or maybe received a first salvage and then were not candidates for ASCT, she said. All patients in the study had previously received 1 to 4 systemic regimens, at least 1 of which was an anti-CD20 therapy.4

Maddocks noted that the combination was well tolerated and that the adverse effects (AEs) were in line with expected AEs for lenalidomide monotherapy. The most common grade 3 or higher treatment-emergent AEs were hematologic abnormalities, including neutropenia (48%), thrombocytopenia (17%), and febrile neutropenia (12%).4 There were very few infusion-related reactions. Approximately three-quarters of the patients were able to stay on lenalidomide 20 mg or higher, Maddocks said.

Tafasitamab/Lenalidomide vs CAR T-Cell Therapy

The panelists proceeded to discuss tafasitamab plus lenalidomide in the context of CAR T-cell therapy and when it might be most useful. They noted that the patients in the L-MIND trial were not heavily pretreated, were not refractory to their first-line treatment, and did not have more aggressive disease subtypes, such as double- or triple-hit biology.

Subsequently, this population was different from those included in the CAR T-cell studies, such as ZUMA-1 (NCT02348216), JULIET (NCT02445248), and TRANSCEND-NHL-001 (NCT02631044), in which 77%, 54%, and 67% of patients, respectively, had primary refractoriness, and 69%, 51%, and 50% received more than 3 lines of therapy.5 Further, in reported data from the JULIET and TRANSCEND-NHL-001 studies, 27% and 22% of patients had double-hit lymphoma, respectively. [CAR T-cell therapy] doesnt care that youre a double-hit. You can still respond and have durability. Its the same thing if youre primary refractory, Matthew Lunning, DO, said. Thus far, there are no data to clarify whether this is also the case for tafasitamab plus lenalidomide.

It is also unknown whether tafasitamab plus lenalidomide can be used as a bridge to CAR T-cell therapy. National Comprehensive Cancer Network guidelines state, It is unclear if tafasitamab will have a negative impact on the efficacy of subsequent anti-CD19 CAR T-cell therapy.6 Lunning said that preclinical data have shown that there is no negative affect with tafasitamab.

[Cell line studies show] that it does engage the same CD19 antigen that youd expect the CAR T cell to go after but, at least in cell lines, it did not appear to affect the CAR T cells, he said. Maddocks added that there was 1 patient enrolled in the L-MIND trial who received CAR T-cell therapy after progression on tafasitamab plus lenalidomide and who has been in remission for more than a year. However, she warned that you cannot draw conclusions based on 1 patient. As this combination becomes available to people, well hopefully know more about whether there is an effect on the efficacy of CAR T, she said.

Despite the unknown effect of tafasitamab plus lenalidomide as a bridging therapy to CAR T, the panelists agreed this may be a reasonable use. If it takes a couple of weeks to get patients to their apheresis and then another 3 weeks to get them [to delivery], maybe tafasitamab is the best option. Its 8 weekly doses early on and youre getting drug exposure with the intent to go to CAR T-cell therapy or a patient could say no, and you havent lost anything if theyre responding, Lunning said.

Lunning suspects tafasitamab plus lenalidomide will get a lot of use because it is an IV [intravenous] therapy, given weekly for a lot of doses up front, and lenalidomide is an oral therapy that people are very comfortable using in lymphoma and multiple myeloma. Subsequently, he emphasized the importance of capturing the data for those patients previously exposed to tafasitamab/lenalidomide who do not respond or who get a PR and go on to CAR T-cell therapy to determine the true durability of the combination. Thats only going to come out with real-world experience data rather than a commercially funded experience, Lunning said.

The FDA granted selinexor (Xpovio) accelerated approval on June 22, 2020, as a single agent for adult patients with R/R DLBCL, not otherwise specified, including DLBCL arising from follicular lymphoma, after at least 2 lines of systemic therapy.7 The oral agent represents a whole new class of drugs. Its unlike anything that we have for large cell lymphoma or any other cancers. Its called a SINE [selective inhibitor of nuclear export] and it targets certain proteins that are exported out of the nucleus that give cells a prosurvival advantage. It is not necessarily specific to large cell lymphoma, but it targets the mechanism that large cell lymphoma probably uses to keep itself alive and potentially resistant, Nathan H. Fowler, MD, said.

The drugs approval was based on data from SADAL (NCT02227251), a multicenter, single-arm, open-label phase 2b trial in which 134 patients received selinexor 60 mg orally on days 1 and 3 of each week. All patients in the study had previously received 2 to 5 systemic regimens. Thirty-nine patients (29%) responded, with 18 (13%) achieving a CR and 21 (16%) achieving a PR.8 Unlike the L-MIND study, SADAL included patients with double- or triple-expressor status and data showed responses in these patients. If you think about [selinexor in the context of] CAR T-cell data and others, its not quite as good, but its a single drug so its fairly easy to give. It is effective in a subset of patients with large cell lymphoma that is pretty difficult to treat, including patients who have double-hit lymphoma, Fowler said. He also noted that responses appear durable. If you look at patients who have PR or better, the duration of response is over 2 years, [so] there is a select group of patients who do achieve durable benefit with the drug, he explained.

A challenge with selinexor is its toxicity. The most common grade 3 and 4 AEs observed in the SADAL study included thrombocytopenia (49% and 18%, respectively), neutropenia (21% and 9%), fatigue (grade 3/4, 15%), and nausea (grade 3/4, 6%).7 Maddocks said that in her experience gastrointestinal toxicity was most problematic but once this was addressed with antiemetics, it became less concerning. The FDA recommends that selinexor be administered with antiemetic prophylaxis.7

The panelists emphasized that selinexor is not a replacement for CAR T-cell therapy but added that it may help fill an unmet need for patients who have limited treatment options. For patients who are failing [ASCT or CAR T], we dont have a lot of options. We can do lenalidomide and lenalidomide plus a CD19-targeted agent. Patients who fail CAR T-cell therapy, those who would not qualify [for CAR T], and those who are not near a [CAR T] center are the obvious population [for selinexor], Fowler said. Maddocks and Lunning agreed.

The panelists noted that many other agents are in clinical trials for R/R DLBCL, including bispecific antibodies such as glofitamab and epcoritamab. [These are] going to be generating data but not a lot of data will follow [treatment with] CAR T, Lunning said. Nevertheless, he is excited to see what kind of durability these drugs will ultimately show. In contrast, another investigational bispecific antibody, mosunetuzumab, has shown favorable efficacy in a phase 1/1b study that included patients with heavily pretreated R/R DLBCL, including those with disease progression after CAR T-cell therapy. Of the 7 evaluable patients with DLBCL who received prior CAR T-cell therapy, 2 achieved a CR.9

When we were looking at the BiTE [bispecific T-cell engager] molecules a couple of years ago, there was some sense that they would maybe displace CAR Ts. But a lot of the data that were seeing now are immature. I dont think the durable CR rate appears to be at the same level that were seeing with CAR T, at least in large cell lymphoma. So, I dont see these replacing CAR T-cell therapy, but I agree with Drs Maddocks and Lunning that they will probably follow CAR T as a salvage for these patients, Fowler said.

The other treatment the panelists discussed were anti-CD19 antibody-drug conjugates (ADCs). There are 3 CD19 ADCs that have been developed, all showing pretty similar responses; however, 2 are no longer being developed due to toxicity, Maddocks said. She remarked that the third ADC had good initial responses but they were not durable. Subsequently, she noted this agent would probably have to be used as part of a combination therapy to achieve good remissions.

A major challenge in treating DLBCL is that there are no biological markers to guide treatment decision-making. We really need to define the biology by some assay and then use that to put patients into different treatment groups. Thats the holy grail because a one-size-fits-all approach can only move the bar so much in large cell lymphoma, Fowler said.

Its great that were getting all of these new drug classesmore drugs to have the discussions about, Lunning said. Its a chess match against large cell lymphoma and its important to know what piece to play next. You may be moving 1 piece to make a move 3 turns down the road.

References

1. Skrabek P, Assouline S, Christofides A, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Curr Oncol. 2019;26(4):253-265. doi:10.3747/co.26.5421

2. FDA grants accelerated approval to tafasitamab-cxix for diffuse large B-cell lymphoma. FDA. Updated August 3, 2020. Accessed October 9, 2020. https://bit.ly/3nmOT43

3. Jurczak W, Zinzani PL, Gaidano G, et al. Phase IIa study of the CD19 antibody MOR208 in patients with relapsed or refractory B-cell non-Hodgkins lymphoma. Ann Oncol. 2018;29(5):1266-1272. doi:10.1093/annonc/mdy056

4. Monjuvi. Prescribing information. MorphoSys US Inc; 2020. Accessed October 9, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761163s000lbl.pdf

5. Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol. 2019;10:2040620719841581. doi:10.1177/2040620719841581

6. NCCN. Clinical Practice Guidelines in Oncology. B-cell lymphomas, version 4.2020. Accessed October 9, 2020. https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf

7. FDA approves selinexor for relapsed/refractory diffuse large B-cell lymphoma. FDA. June 22, 2020. Accessed October 9, 2020. https://bit.ly/36Am12o

8. Xpovio. Prescribing information. Karyopharm Therapeutics Inc; 2020. Accessed October 9, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212306s001lbl.pdf

9. Schuster SJ, Bartlett NL, Assouline S, et al. Mosunetuzumab induces complete remissions in poor prognosis non-Hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-cell (CAR-T) therapies, and is active in treatment through multiple lines. Blood. 2019;134(suppl 1):6. doi:10.1182/blood-2019-123742

Originally posted here:
Making Progress Against Relapsed/ Refractory DLBCL Without CAR T - OncLive

Posted in Cell Therapy | Comments Off on Making Progress Against Relapsed/ Refractory DLBCL Without CAR T – OncLive

Cell Therapy Market Report: Price, New Entrants SWOT Analysis, Competitive Landscape and Gross Margin Forecasted by 2027 – KYT24

Posted: November 4, 2020 at 5:56 am

The latest market report published by Reports and Data, titled Global Cell Therapy Market, presents an accurate analysis of the estimated market size, share, revenue, and sales & distribution networks of the global Cell Therapy market over the forecast period. The report offers an exhaustive overview of the market, along with a precise summary of the markets leading regions. Our team of analysts has studied the existing competitive landscape of the market inside out, focusing on the leading companies and their business expansion strategies. The report ends with conclusive data offering useful insights into the market growth on both regional and global levels.

The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:

JCR Pharmaceuticals Co. Ltd., Fibrocell Science, Inc., Kolon TissueGene, Inc., Osiris Therapeutics, Inc., PHARMICELL Co., Ltd., MEDIPOST, Stemedica Cell Technologies, Inc.

Get a sample of the report @ https://www.reportsanddata.com/sample-enquiry-form/3269

The report draws the focus of the reader on the grave impact of the ongoing COVID-19 pandemic on the Cell Therapy industry and its vital segments and sub-segments. It elaborates on the adverse effects of the pandemic on the global economic scenario, as well as this particular business sphere. The report takes into account the key influencing factors influencing market performance in the present COVID-19 times. The market has been substantially affected by the pandemic, and significant changes have been observed in the market dynamics and demand trends. The report examines the major financial difficulties brought about by the pandemic and offers a future COVID-19 impact assessment.

The market intelligence study takes the reader through the key parameters of the Cell Therapy market, including the strengths and weaknesses of the leading players, using analytical tools like the SWOT analysis and Porters Five Forces analysis. The report includes broad market segmentation based on the different product types, a wide application spectrum, the key regions, and the existing competition among players.

In market segmentation by types of Cell Therapy, the report covers-

Therapy Type

Therapeutic Area

Cell Type

In market segmentation by applications of the Cell Therapy, the report covers the following uses-

Request a discount on the report @ https://www.reportsanddata.com/discount-enquiry-form/3269

The investigative study further assesses the market on the basis of market reach and consumer base in the key geographical segments. Alongside reviewing the sales network, distribution channels, pricing analysis, profit margins, cost and demand volatility, import/export dynamics, gross revenue, and various other aspects of the market, the report studies several factors affecting market growth over the forecast period, such as drivers, restraints, limitations, growth prospects, and numerous macro- and micro-economic indicators.

Key Geographies Encompassed in the Report:

Key questions addressed in the report:

To read more about the report, visit @ https://www.reportsanddata.com/report-detail/cell-therapy-market

Thank you for reading our report. For further queries regarding the report, please get in touch with us. Our team will ensure your report is customized as per your requirements.

About Us:

Our in-house experts assist our clients with advice based on their proficiency in the market that helps them in creating a compendious database for the clients. Our team offers expert insights to clients to guide them through their business ventures. We put in rigorous efforts to keep our clientele satisfied and focus on fulfilling their demands to make sure that the end-product is what they desire. We excel in diverse fields of the market and with our services extending to competitive analysis, research and development analysis, and demand estimation among others, we can help you invest your funds in the most beneficial areas for research and development. You can rely on us to provide every significant detail you might need in your efforts to make your business flourish.

Contact Us:

John Watson

Head of Business Development

Reports and Data|Web:www.reportsanddata.com

Direct Line:+1-212-710-1370

E-mail:[emailprotected]

Go here to see the original:
Cell Therapy Market Report: Price, New Entrants SWOT Analysis, Competitive Landscape and Gross Margin Forecasted by 2027 - KYT24

Posted in Cell Therapy | Comments Off on Cell Therapy Market Report: Price, New Entrants SWOT Analysis, Competitive Landscape and Gross Margin Forecasted by 2027 – KYT24

Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 – PRnews Leader

Posted: November 2, 2020 at 11:54 pm

AllTheResearch, now has a research study on the Canine Stem Cell Therapy market which delivers a precise summary of the industry estimates, SWOT analysis, industry size, profit estimation and regional outlook of the business. The report offers a concise estimation of future growth prospects and obstacles awaiting market players of this industry, while further examining their existing competitive settings and business strategies.

The global Canine Stem Cell Therapy market was valued at US$ 118.5 Mn in 2018 year and is expected to reach US$ 240.7 Mn in 2026, growing at a CAGR of 9.3% during the forecast period.

Key Questions Answered in the Report:

Request for Sample with Complete TOC and Figures & Graphs @ https://www.alltheresearch.com/sample-request/206

The research report on Canine Stem Cell Therapy market, covering the COVID-19 impact, provides a comparative analysis of the historical data with the current market scenario to unveil the growth projections for the industry over the analysis period. As per the study, the Canine Stem Cell Therapy market is expected to garner substantial returns and showcase a healthy growth rate throughout the forecast duration.

The Major Players Covered in Canine Stem Cell Therapy Market Study are:

Check all key players mentioned in this report. Lets connect with the analyst @ https://www.alltheresearch.com/speak-to-analyst/206

Major Segments Covered in Canine Stem Cell Therapy Market Reports are based on types and Applications as Follows:

Based on Types Canine Stem Cell Therapy Market Segmentation:

Based on Applications Canine Stem Cell Therapy Market Segmentation:

COVID-19 Impact on Canine Stem Cell Therapy Market:

The outbreak of COVID-19 has brought along a global recession, which has impacted several industries. Along with this impact COVID Pandemic has also generated few new business opportunities for Canine Stem Cell Therapy Market. Overall competitive landscape and market dynamics of Canine Stem Cell Therapy has been disrupted due to this pandemic. All these disruptions and impacts has been analysed quantifiably in this report, which is backed by market trends, events and revenue shift analysis. COVID impact analysis also covers strategic adjustments for Tier 1, 2 and 3 players of Canine Stem Cell Therapy Market.

Get Brief Information on Pre COVID-19 Analysis and Post COVID-19 Opportunities in Canine Stem Cell Therapy Market @https://www.alltheresearch.com/impactC19-request/206

How Report will help you to make decisions for business:

About AllTheResearch:

AllTheResearch was formed with the aim of making market research a significant tool for managing breakthroughs in the industry. As a leading market research provider, the firm empowers its global clients with business-critical research solutions. The outcome of our study of numerous companies that rely on market research and consulting data for their decision-making made us realise, that its not just sheer data-points, but the right analysis that creates a difference. While some clients were unhappy with the inconsistencies and inaccuracies of data, others expressed concerns over the experience in dealing with the research-firm. Also, same-data-for-all-business roles was making research redundant. We identified these gaps and built AllTheResearch to raise the standards of research support.

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan S.

Email: [emailprotected]

Phone: +1 (407) 768-2028

See the original post here:
Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 - PRnews Leader

Posted in Stem Cell Therapy | Comments Off on Canine Stem Cell Therapy Market Size, Share Analysis by Manufacturers, Regions, Type and Application to 2026 – PRnews Leader

AgeX Therapeutics Sublicenses Stem Cell Line ESI-053 to ImStem Biotechnology for Development of Cell Therapy Candidate IMS001 for COVID-19 and Acute…

Posted: November 2, 2020 at 11:54 pm

Oct. 28, 2020 12:00 UTC

ALAMEDA, Calif. & FARMINGTON, Conn.--(BUSINESS WIRE)-- AgeX Therapeutics, Inc.(AgeX: NYSE American: AGE), a biotechnology company developing innovative regenerative therapeutics to treat human diseases to increase healthspan and combat the effects of aging, and Imstem Biotechnology, Inc. (ImStem), a biopharmaceutical company developing embryonic stem cell (ESC) derived mesenchymal stem cells (MSCs), today announced that ImStem has obtained from AgeX a non-exclusive, royalty-bearing sublicense to use AgeXs clinical-grade ESC line ESI-053 to derive ImStems investigational MSC product candidate IMS001 for development in COVID-19 as well as acute respiratory distress syndrome (ARDS) from other causes.

ImStem will endeavor to file one or more investigational new drug (IND) applications for IMS001 in COVID-19 and/or ARDS with the U.S. Food and Drug Administration (FDA) or equivalent EU regulatory agency within 18 months. Under the agreement, AgeX will be entitled to receive revenues in the form of royalties on the sale of IMS001 if successfully developed by ImStem and approved for marketing by the FDA or foreign regulatory authorities, as well as a share of certain other revenues that ImStem may receive in connection with the development or commercialization of IMS001, in COVID-19 and ARDS.

This latest sublicensing arrangement between AgeX and ImStem is a continuation of AgeXs strategy to expand access to its ESI stem cell lines for use in the generation of cellular therapies. An ImStem publication in Stem Cell Reports (2014;3:115-130) showed in a mouse model of multiple sclerosis that MSCs derived from ESCs outperformed adult bone marrow MSCs. This ultimately led to research and commercial sublicense agreements for the ESI-053 ESC line by ImStem to develop IMS001 as an allogeneic, off-the-shelf and industrially scalable MSC product candidate. Earlier this year, the FDA cleared an IND application for IMS001 in multiple sclerosis. IMS001 is believed to be the first MSC product derived from an ESC line to be accepted for a human trial by the FDA.

Results from early clinical studies conducted in China by unrelated groups using different MSC products suggest MSCs warrant further exploration in COVID-19. First, a human study published in Aging and Disease (2020;11:216-228) showed that an intravenous infusion of adult-derived MSCs reduced COVID-19 symptoms and improved functional outcomes in seven treated patients with COVID-19 pneumonia. The MSCs appeared to be safe and well tolerated. Second, a clinical study published in Stem Cell Research & Therapy (2020;11:361) demonstrated that 12 severe COVID-19 patients who received an infusion of umbilical cord MSCs recovered without requiring mechanical ventilation and were discharged home. Even before being explored in COVID-19, MSCs were being investigated as a therapeutic option in ARDS, and emerging data in preclinical models is encouraging. However, the manufacturing scalability of adult MSCs may limit their use. ARDS is a respiratory condition characterized by inflammation and increased endothelial and epithelial permeability to protein, leading to fluid accumulation in the lungs, hemorrhage, cell injury, diffuse alveolar damage, and blockage of oxygen from getting to vital organs. ARDS affects around 200,000 patients in the U.S. every year, accounts for 10% of intensive care admissions, and has a mortality of approximately 40%, with 75,000 deaths in the U.S. annually. No specific direct therapies exist for ARDS and only supportive treatment is available.

The COVID-19 pandemic continues to impact hundreds of millions of people, with many countries now in the midst of a second wave. Antivirals, antibodies and cell therapies may all ultimately play a role in combating this disease, depending upon severity or stage. We are glad to expand our relationship with ImStem, so it can now utilize AgeXs ESI-053 stem cell line to develop its cell therapy candidate IMS001 for COVID-19 as well as acute respiratory distress syndrome more broadly, said Dr. Nafees Malik, Chief Operating Officer of AgeX. This latest sublicense is an example of AgeXs strategy to place our technologies in the hands of high-quality industry and academic partners, with this deal marking the sixth research and commercial arrangement AgeX has entered into this year.

The ESI stem cell lines are distinguished as the first clinical-grade human pluripotent stem cell lines created under current Good Manufacturing Practice as described in Cell Stem Cell (2007;1:490-4). They are listed on the National Institutes of Health (NIH) Stem Cell Registry and are among the best characterized and documented stem cell lines in the world. ESI cells are among only a few pluripotent stem cell lines from which a derived cell therapy product candidate has been granted FDA IND clearance for human studies.

We welcome the opportunity to continue to collaborate with AgeX and explore future development of our mesenchymal stem cell IMS001 product in COVID-19 and ARDS from other causes. Importantly, our product may overcome the important issue of limited manufacturing scalability associated with adult tissue derived MSCs, commented Xiaofang Wang, M.D., Chief Technology Officer of ImStem Biotechnology.

About AgeX Therapeutics

AgeX Therapeutics, Inc. (NYSE American: AGE) is focused on developing innovative regenerative therapeutics to treat human diseases to increase healthspan and combat the effects of aging. AgeXs PureStem and UniverCyte manufacturing and immunotolerance technologies are designed to work together to generate highly-defined, universal, allogeneic, off-the-shelf pluripotent stem cell-derived young cells of any type for application in a variety of diseases with a high unmet medical need. AgeX has two preclinical cell therapy programs: AGEX-VASC1 (vascular progenitor cells) for tissue ischemia and AGEX-BAT1 (brown fat cells) for Type II diabetes. AgeXs revolutionary longevity platform induced Tissue Regeneration (iTR) aims to unlock cellular immortality and regenerative capacity to reverse age-related changes within tissues. HyStem is AgeXs delivery technology intended to stably engraft PureStem derived cell therapies in the body. AgeX is seeking opportunities to establish licensing and collaboration arrangements around its broad IP estate and proprietary technology platforms and therapy product candidates.

For more information, please visit http://www.agexinc.com or connect with the company on Twitter, LinkedIn, Facebook, and YouTube.

About ImStem Biotechnology

ImStem Biotechnology, Inc. is aspiring to revolutionize how serious diseases with significant unmet needs are treated with a new generation of regenerative and cellular therapies. Pioneering research by its current founder and Chief Technology Officer Dr. Xiaofang Wang and Dr. Ren-He Xu, former director of UConn Stem Cell Institute, led to the proprietary state-of-the-art pluripotent stem cell technology, enabling off-the-shelf, allogeneic stem cell-derived products to be manufactured in scale, differentiating itself from the typical challenges imposed by autologous adult cell therapy products. The company's mission is to advance the science and understanding of human pluripotent stem cell based regenerative cellular therapies through novel and creative development pathways and to fulfill unmet medical needs in serious diseases. And its development strategy focuses on neurologic, autoimmune, degenerative, and rare orphan diseases. ImStem Biotechnology Inc. is a privately held company headquartered in Farmington, CT.

For more information, please visit http://www.imstem.com.

About ES Cell International

ESI ES Cell International Pte Ltd (ESI). Established in 2000, ESI, a wholly owned subsidiary of Lineage Cell Therapeutics, Inc., developed ESI hESC lines in compliance with the principles of current Good manufacturing Practices and has made them available to various biopharmaceutical companies, universities and other research institutions, including AgeX. These ESI cell lines are extensively characterized and most of the lines have documented and publicly available genomic sequences.

Forward-Looking Statements for AgeX

Certain statements contained in this release are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not historical fact including, but not limited to statements that contain words such as will, believes, plans, anticipates, expects, estimates should also be considered forward-looking statements. Forward-looking statements involve risks and uncertainties. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of AgeX Therapeutics, Inc. and its subsidiaries, particularly those mentioned in the cautionary statements found in more detail in the Risk Factors section of AgeXs most recent Annual Report on Form 10-K and Quarterly Reports on Form 10-Q filed with the Securities and Exchange Commissions (copies of which may be obtained at http://www.sec.gov). Subsequent events and developments may cause these forward-looking statements to change. In addition, with respect to AgeXs sublicense agreement with ImStem there is no assurance that (i) ImStem will be successful in developing therapeutic products from the ESI-053 stem cell line sublicensed from AgeX or that any therapeutic products that may be developed will receive FDA or foreign regulatory approval, (ii) any therapeutic products that may be developed will be successfully commercialized, or (iii) AgeX will derive revenue or other financial benefits from the sublicense agreement. AgeX specifically disclaims any obligation or intention to update or revise these forward-looking statements as a result of changed events or circumstances that occur after the date of this release, except as required by applicable law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20201028005451/en/

See the original post here:
AgeX Therapeutics Sublicenses Stem Cell Line ESI-053 to ImStem Biotechnology for Development of Cell Therapy Candidate IMS001 for COVID-19 and Acute...

Posted in Stem Cell Therapy | Comments Off on AgeX Therapeutics Sublicenses Stem Cell Line ESI-053 to ImStem Biotechnology for Development of Cell Therapy Candidate IMS001 for COVID-19 and Acute…

Stem Cell Therapy Market Insights and Forecast by 2027 – TechnoWeekly

Posted: November 2, 2020 at 11:54 pm

The proposed Stem Cell Therapy Market report will encompass all the qualitative & quantitative aspects including the market size, market estimates, growth rates & forecasts & hence will give you a holistic view of the market. The study also includes detailed analysis of market drivers, restraints, technological advancements & competitive landscape along with various micro & macro factors influencing the market dynamics.

The Stem Cell Therapy Market sample report includes an exclusive analysis of COVID-19 pandemic on the market space under scrutiny. The sample represents the format of the overall study which is designed to provide clarity on the structure of the report and some data points demonstrated in an attempt to provide insights into the study quality.

Furthermore, the Stem Cell Therapy Market full research study is designed on account of the fact that each segment is individually assessed and then collated to form the whole market, the study can be tailor-made to fit your exact requirements.

Request Sample Pages of this research study at https://www.theinsightpartners.com/sample/TIPHE100000991/

The structure of the Stem Cell Therapy Market report can be categorized into following sections:

The Prominent/Emerging Players in the Stem Cell Therapy Market Research include:

The Stem Cell Therapy Market Company Profiles are individually represented for all major participants and indices such as Financial Performance, Strategic Initiatives, Product Portfolio & Company Overview.

Company Overview:

Company overview provides the information about location of the company where it is headquartered along with the established year, employee strength as of 2017, regions where the company is operating and the key business areas.

Financial Performance:

Overall company/segment revenue for the year 2019, 2018, and 2017 is provided in the sub title Financial Performance (public listed companies) along with the analysis and explanation of the increase or decrease in the same due to factors such as mergers & acquisition, profit or loss in any strategic business unit (SBUs) and others.

Product Benchmarking:

Product benchmarking comprises the comprehensive list of products pertaining to the respective market along with the application and key features.

Strategic Initiatives:

Insights pertaining to the new product launch, strategic collaboration, mergers and acquisition, regulatory approval, and other developments by the company in market are covered under strategic initiatives section.

Order a copy of this research study at https://www.theinsightpartners.com/buy/TIPHE100000991/

The Stem Cell Therapy Market research study is designed keeping in focus all the major countries. Although, all these countries & their market trends were accounted for while composing it, detailed sections are available for only the spearheads. In case if you would be interested in specific countries which are not covered in the current scope, kindly share the list & we can customize the study based on the geographical scope defined by you.

ABOUT US:

The Insight Partners is a one stop industry research provider of actionable solutions. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are specialist in industries such as Semiconductor and Electronics, Aerospace and Defense, Automotive and Transportation, Biotechnology, Healthcare IT, Manufacturing and Construction, Medical Device, Technology, Media and Telecommunications, Chemicals and Materials.

Our research model is very simple. We believe in client servicing and delivering best quality to our customers. Through our research content, we are making sure that our customers get value of their money along with better quality data and analysis.

Our research content is majorly focused towards market trends in terms of market sizing, competitive landscaping, company analysis, regional or country analysis etc. We provide detailed break-up of segmentation in terms of geography, technology, product and services etc.; which helps our clients to get a deeper analysis on various research topics.

Contact US:

If you have any queries about this report or would like further information, please contact us:

North America: +1 646 491 9876

Asia-Pacific: +91 20 6727 8686

Email: [emailprotected]

See the article here:
Stem Cell Therapy Market Insights and Forecast by 2027 - TechnoWeekly

Posted in Stem Cell Therapy | Comments Off on Stem Cell Therapy Market Insights and Forecast by 2027 – TechnoWeekly

California Proposition 14 is about pikuach nefesh heres why – Forward

Posted: November 2, 2020 at 11:54 pm

Only two decades ago, stem cell therapy was highly regulated in the United States and other countries but it was well underway in Hadassah Hospitals labs in Jerusalem. Never would we have imagined that the US expansion of one of the key clinical trials conducted in our labs in Israel would be later funded by Californias Stem Cell Institute.

In 2004, California had the foresight to advance this critical area of research, and Hadassah advocates played a major role in the passing of an unprecedented statewide ballot initiative that authorized state funding for stem cell research. This marked the passage of Proposition 71 in 2004.

Fast forward to today. Hadassahs commitment to stem cell research led the Californians for Stem Cell, Research, Treatments and Cures Initiative effort in 2020 to reach out for help with their grassroots effort to qualify the latest stem cell funding initiative for the November ballot. It qualified with your help, and I hope that in a few short weeks well be celebrating the passage of Proposition 14, which will provide $5.5 billion to help accelerate development of treatments and cures for life-threatening diseases and conditions.

The power of stem cells is mind-blowing: We are able to use these cells to replace damaged or diseased tissue, and in this way, treatments or cures for diseases like age-related macular degeneration, ALS, MS, Parkinsons, Alzheimers and diabetes could be a reality in the foreseeable future.

I come to this subject from a place of personal sorrow.

I watched my father-in-law, Irv, suffer for 12 and a half years with ALS, a man I loved as if he were my own father. He fought and fought, he made every minute of his battle meaningful, soaking as much life as he could, until he couldnt. Irv is the reason why I became involved in Hadassah because of their cutting-edge medical research and he is the reason that Im writing to you now.

Today, Hadassah is doing incredible things in stem cell research, and the stunning results of their clinical trials have riveted the worldwide medical community.

Of course, the research most personal to me is the ALS research. Hadassah researchers conducted the worlds first clinical trial using the patients own bone marrow stem cells to treat ALS.Pikuach nefesh, the preservation of life, is the most important obligation in Judaism, and the one that drives Hadassah. With the potential of stem research, we have the ability to save millions of lives throughout the world.

And, with the promise of stem cells, we can accelerate the development of treatments and cures for life-threatening diseases and conditions that affect someone in nearly half of all California families.

I believe that stem cell research is going to allow our children to look at the major diseases that plague our modern world the way we now view polio.That potential will not reveal itself on its own, nor did it with polio. It took decades of research and funding for a polio vaccine to be fully developed, tested and made available widely.

There are no medical miracles. Medical advancement happens because of research. Research takes will, knowledge, chutzpah and, of course, money. The path to get a therapy approved by the Food and Drug Administration can take 12 to 15 years, requires thousands of patients for clinical trials and costs billions of dollars. from life-saving vaccines, to pioneering cancer treatments, to the sequencing of the human genome.w When research stalls for lack of funding, opportunities are missed. Promising avenues go unexplored.

The passage of Proposition 14 would help to overcome those hurdles and create a streamlined process that delivers much-needed treatments to patients who have few options. How amazing would it be to be part of making medical history.I am so proud to be a member of Hadassah, which is not only leading the way in stem cell research but also doing its research in service to humanity. Together, we can make medical discoveries happen and continue to set the pace for the worldwide medical community.

I wish that my father-in-law was here to give you his final thumbs up.

Stacey Dorenfeld is the National State Advocacy Co-Chair and the Hadassah Southern California Advocacy Chair.

The views and opinions expressed in this article are the authors own and do not necessarily reflect those of the Forward.

Original post:
California Proposition 14 is about pikuach nefesh heres why - Forward

Posted in Stem Cell Therapy | Comments Off on California Proposition 14 is about pikuach nefesh heres why – Forward

Page 838«..1020..837838839840..850860..»