Page 874«..1020..873874875876..880890..»

Researchers receive more than $53 million to study role of white matter lesions in dementia – Newswise

Posted: October 9, 2020 at 1:50 am

Newswise A $53.6 million grant from the National Institutes of Health will aid brain scientists, including a researcher from The University of Texas Health Science Center at Houston (UTHealth), in studying the role of incidental white matter lesions, or WMLs, in dementia among diverse people with cognitive complaints.

The study is led by UC Davis School of Medicine in partnership with UTHealth. It is a new and critical part of the NIHsVascular Contributions to Cognitive Impairment and Dementia(VCID) research program.

Co-principal investigator isMyriam Fornage, PhD, professor of genetics at theBrown Foundation Institute of Molecular Medicine for the Prevention of Human Diseasesat McGovern Medical School at UTHealth. Fornage is a leading researcher on the molecular genetics of cerebrovascular disease.

Our team has been at the forefront of genetic studies of WMLs for two decades, Fornage said. Through the genetic risk profiles we will develop, we will have an opportunity to apply what we have discovered and improve the precision with which we identify patients with a higher prior probability of cognitive impairment and dementia. At the same time, we will be contributing new resources for dementia research everywhere.

The principal investigator isCharles DeCarli, MD, professor of neurology, director of theUC Davis Alzheimers Disease Centerand the nations foremost expert on the role of subcortical cerebrovascular disease in cognitive decline. In the last few years, DeCarli has been awarded national and state research grants exceeding $33 million.

The magnitude of this NIH grant underscores UC Davis Alzheimers Disease Centers national prominence and research leadership, said UC Davis School of Medicine Dean Allison Brashear,MD, a neurologist nationally known for her groundbreaking research in movement disorders. This multiyear research award will enable us to make game-changing advancements in our understanding and treatment of dementia.

WMLs occur when tissue deep in the brain becomes injured, often due to changes in small blood vessels. They are common and often found on brain MRIs of people who have concerns about their brain health.

Why or how WMLs are associated with cognitive decline is not known. Questions surround whether certain WML characteristics, such as size and location, make them greater risk factors for dementia. It also isnt clear how comorbidities additional health conditions such as heart disease or diabetes together with WMLs increase risk for cognitive decline. Defining these connections is essential to improving outcomes for the 5.7 million people in the U.S. affected by cognitive impairment and dementia.

DeCarli and Fornages landmark research is expected to answer these questions and lead to standards for assessing, diagnosing, and treating individuals with WML-related cognitive problems.

This grant gives us the chance to study WMLs from every angle and definitively understand their roles in age- and disease-related cognitive decline and risk for future dementia, DeCarli said. Its the culmination of our three decades of research that has given us great directions, but no final answers yet.

DeCarli and Fornage will conduct a study of patients with WMLs on their MRIs and concerns about cognitive symptoms, but no dementia diagnosis. It will be the first large study of a diverse population on the long-term effects of these lesions on thinking and dementia risk.

Beginning September 2021, study participants will be recruited at UC Davis Health and at least 10 other locations throughout the U.S. They will be from a variety of backgrounds, so the researchers can identify how WML outcomes differ by race, ethnicity, and sex, better representing those at risk for dementia.

Our ultimate goals are to develop a risk profile that identifies the likelihood of WML-related cognitive impairment and dementia over the course of five to 10 years and to identify clear targets for interventional trials, DeCarli said.

Resources to advance all dementia research

Another exciting part of the grant, according to the researchers, is the chance to fund additional studies aimed at refining diagnostic and predictive tools and methods for dementia. The outcomes will enhance dementia research and clinical care worldwide.

Data and samples from these studies will be shared with the wider research community via theNational Alzheimers Coordinating Center at the University of Washingtonand theNational Centralized Repository for Alzheimers Disease and Related Dementias at Indiana University. Images will be shared through theLaboratory of Neuro Imaging at the University of Southern California.

DeCarli and Fornage also participate in theMarkVCID Consortium, supported by the NIHsNational Institute of Neurological Disorders and Stroke. The consortium was established in 2016 to identify biological markers of vascular cognitive impairment and dementia.

This award is co-sponsored by the NIHs National Institute of Neurological Disorders and Stroke andNational Institute on Agingthrough grant 1U19NS120384.

The Brown Foundation Institute of Molecular Medicine (IMM) for the Prevention of Human Diseases is part of McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth). The IMM is focused on studying and preventing diseases at the genetic, cellular, and molecular levels using DNA and protein technologies and animal models. The IMM is part of the Texas Therapeutics Institute, a multi-institutional collaboration encouraging drug discovery. For more information, visitwww.uth.edu/imm/mission.htm.

The UC Davis Alzheimers Disease Research Center is one of only31 research centers designated and funded by the NIHs National Institute on Aging. The center's goal is to translate research advances into improved diagnosis and treatment for patients while focusing on the long-term goal of finding a way to prevent or cure Alzheimers disease and other dementias. The center also allows researchers to study the effects of the disease on a uniquely diverse population. For more information, visithealth.ucdavis.edu/alzheimers.

Continued here:
Researchers receive more than $53 million to study role of white matter lesions in dementia - Newswise

Posted in Molecular Genetics | Comments Off on Researchers receive more than $53 million to study role of white matter lesions in dementia – Newswise

Students with disabilities, university accommodations adapt to virtual learning – OSU – The Lantern

Posted: October 9, 2020 at 1:50 am

Ohio State students with disabilities are adjusting to new accommodations for virtual learning. Credit: Mackenzie Shanklin | Assistant Photo Editor

Online classes are decreasing commute times, allowing students to rewatch live lectures and keeping the university community safe from COVID-19; however, for students with disabilities, the technological interface and isolation pose difficulties they dont face in a typical semester.

As a majority of Ohio State courses have moved to distance learning, Scott Lissner, the universitys Americans with Disabilities Act coordinator, said his office is working to provide students with disabilities a comprehensive education while also keeping them safe during the pandemic. For some of those accommodations, online learning is making the process easier.

If everybody is [taking classes] online, it removes a lot of challenges and simplifies things. We know how to integrate captioning in Zoom. We know how to integrate ASL interpreting into Zoom, Lissner said.

CarmenZoom offers captioning of class and lecture recordings, but did not offer live, automated captioning until recently.

Amy Shuman, a professor in the Department of English and former director of disability studies in the department, said although she records all her classes and uploads the videos with transcripts to make them more accessible, she hasnt seen a widespread shift toward the practice.

Ive talked to some of the older faculty who have hearing aids, and theyre frustrated by the lack of the closed captioning, Shuman said.

Lissner said in an email that Zoom tested live, automated captioning over the summer and Ohio State evaluated the system before releasing it Friday. A Friday press release from Ohio States IT department stated that live captioning is a setting Zoom meeting hosts must manually enable for their classes.

Lindsay Rogers, a first-year in molecular genetics who is hearing impaired, said online classes are easier for her than in-person classes because professors can talk directly into her hearing implants via Bluetooth, but shes had difficulty getting accommodations she typically gets each semester.

I requested [note taking assistance] for this semester, and no one contacted me about getting any sort of note taking assistance, Rogers said.

Lissner said students who do not have proper technology for their classes such as small monitors or devices that cannot connect to hearing aids via Bluetooth are sometimes able to borrow devices from the university. The university has screen-reader compatible monitors, for example, and high-quality speakers that can play sound at higher volumes.

Lissner said these loans are offered on a case-by-case basis depending on students specific disabilities. Students with disabilities are encouraged to participate in live class sessions and are provided with the materials necessary to successfully take part, he said.

We work with faculty and students to make sure accessible versions of whatever is being presented on the shared screen are distributed to students who need them prior to class. So they can either open it up in another window or have a dual monitor setup, Lissner said.

Hybrid courses and discussion-based courses can be difficult to replicate for students who require accommodations, but the ADA office tries to make students feel included while working virtually, Lissner said.

For example, if a student needs ADA accommodations in a hybrid class and is unable to attend in-person sessions, monitors can be set up in a circle around the student, with a wide angle camera used in the physical classroom. This creates an environment closer to that of an in-person class.

Isaac Meisner, a second-year in environmental policy and decision making, said having mostly online courses presents challenges with their mental illnesses.

When youre having classes that are completely online, it makes my mental disorders more difficult to handle just because I need that interaction with other people, and Im not really getting it outside of where I live, Meisner said.

Kayden Gill, a third-year in health sciences and co-president of Buckeyes for Accessibility, said as a wheelchair user and someone with a visual impairment, online courses present both positives and negatives. One of the main cons, Gill said, is it is harder to find ways to exercise without traveling across campus.

From a visual disability standpoint, its a lot easier not to have to worry about finding the place in the lecture hall that you can see, or just always having something as large as your screen can make it is nice, Gill said.

Students can register for accommodations on the Student Life Disability Services website.

Read the original:
Students with disabilities, university accommodations adapt to virtual learning - OSU - The Lantern

Posted in Molecular Genetics | Comments Off on Students with disabilities, university accommodations adapt to virtual learning – OSU – The Lantern

Dolly the Sheep: ’90s Media Sensation – Mental Floss

Posted: October 9, 2020 at 1:50 am

It was Saturday, February 22, 1997, and Scottish researchers Ian Wilmut and Keith Campbell were expecting a final moment of calm before the results of their unprecedented scientific experiment were announced to the world.

The team had kept the breakthrough under wraps for seven months while they waited for their paper to be published in the prestigious journal Nature. Confidential press releases had gone out to journalists with the strict instruction not to leak the news before February 27.

But that night, the team was tipped off that journalist Robin McKie was going to break the story the very next day in the British newspaper The Observer.

Wilmut and Campbell raced to the lab at the Roslin Institute on Sunday morning as McKie's story hit the media like a thunderbolt. International news outlets had already started swarming at the institute for access to Wilmut and Campbell's creation: Dolly the sheep, the world's first mammal successfully cloned from a single adult cell. Shielded from the general public, she stuck her nose through the fence and munched calmly on the hay in her pen, unperturbed by the horde of news photographers. Dolly, a woolly, bleating scientific miracle, looked much like other sheep, but with a remarkable genetic difference.

By the end of that Sunday, February 23, nearly every major newspaper in the world carried headlines about Dolly the sheep.

Born on July 5, 1996, Dolly was cloned by Wilmut and Campbell's team at the Roslin Institute, a part of the University of Edinburgh, and Scottish biotechnology company PPL Therapeutics. The scientists cloned Dolly by inserting DNA from a single sheep mammary gland cell into an egg of another sheep, and then implanting it into a surrogate mother sheep. Dolly thus had three mothersone that provided the DNA from the cell, the second that provided the egg, and the third that carried the cloned embryo to term. Technically, though, Dolly was an exact genetic replica of only the sheep from which the cell was taken.

Following the announcement, the Roslin Institute received 3000 phone calls from around the world. Dolly's birth was heralded as one of the most important scientific advances of the decade.

But Dolly wasn't science's first attempt at cloning. Researchers had been exploring the intricacies of cloning for almost a century. In 1902, German embryologists Hans Spemann and Hilda Mangold, his student, successfully grew two salamanders from a single embryo split with a noose made up of a strand of hair. Since then, cloning experiments continued to become more sophisticated and nuanced. Several laboratory animal clones, including frogs and cows, were created before Dolly. But all of them had been cloned from embryos. Dolly was the first mammal to be cloned from a specialized adult cell.

Embryonic stem cells, which form right after fertilization, can turn into any kind of cell in the body. After they modify into specific types of cells, like neurons or blood cells, they're call specialized cells. Since the cell that gave rise to Dolly was already specialized for its role as a mammary gland cell, most scientists thought it would be impossible to clone anything from it but other mammary gland cells. Dolly proved them wrong.

Many scientists in the '90s were flabbergasted. Dollys advent showed that specialized cells could be used to create an exact replica of the animal they came from. It means all science fiction is true, biology professor Lee Silver of Princeton University told The New York Times in 1997.

The Washington Post reported that "Dolly, depending on which commentator you read, is the biggest story of the year, the decade, even the century. Wilmut has seen himself compared with Galileo, with Copernicus, with Einstein, and at least once with Dr. Frankenstein."

Scientists, lawmakers, and the public quickly imagined a future shaped by unethical human cloning. President Bill Clinton called for review of the bioethics of cloning and proposed legislation that would ban cloning meant ''for the purposes of creating a child (it didn't pass). The World Health Organization concluded that human cloning was "ethically unacceptable and contrary to human integrity and morality" [PDF]. A Vatican newspaper editorial urged governments to bar human cloning, saying every human has "the right to be born in a human way and not in a laboratory."

Meanwhile, some scientists remained unconvinced about the authenticity of Wilmut and Campbells experiment. Norton Zinder, a molecular genetics professor at Rockefeller University, called the study published in Nature "a bad paper" because Dolly's genetic ancestry was not conclusive without testing her mitochondriaDNA that is passed down through mothers. That would have confirmed whether Dolly was the daughter of the sheep that gave birth to her. In The New York Times, Zinder called the Scottish pair's work ''just lousy science, incomplete science." But NIH director Harold Varmus toldthe Times that he had no doubt that Dolly was a clone of an adult sheep.

Because she was cloned from a mammary gland cell, Dolly was nameddad joke alertafter buxom country music superstar Dolly Parton. (Parton didnt mind the attribution.) Like her namesake, Dolly the sheep was a bona fide celebrity: She posed for magazines, including People; became the subject of books, journal articles, and editorials; had an opera written about her; starred in commercials; and served as a metaphor in an electoral campaign.

And that wasn't all: New York Times reporter Gina Kolata, one of the first journalists to give readers an in-depth look at Dolly, wroteClone: The Road to Dolly, and the Path Ahead and contrasted the animal's creation with the archetypes in Frankenstein and The Island of Dr. Moreau. American composer Steve Reich was so affected by Dolly's story that he featured it in Three Tales, a video-opera exploring the dangers of technology.

The sheep also became an inadvertent political player when the Scottish National Party used her image on posters to suggest that candidates of other parties were all clones of one another. Appliance manufacturer Zanussi used her likeness for a poster with her name and the provocative caption "The Misappliance of Science" (the poster was later withdrawn after scientists complained). In fact, so widespread was the (mis)use of her name that her makers eventually trademarked it to stop the practice.

Following Dolly, many larger mammals were cloned, including horses and bulls. Roslin Biomed, set up by the Roslin Institute to focus on cloning technology, was later sold to the U.S.-based Geron Corporation, which combined cloning technology with stem cell research. But despite her popularityand widespread fearDolly's birth didn't lead to an explosion in cloning: Human cloning was deemed too dangerous and unethical, while animal cloning was only minimally useful for agricultural purposes. The sheep'sreal legacy is considered to be the advancement in stem cell research.

Dollys existence showed it was possible to change one cells gene expression by swapping its nucleus for another. Stem cell biologist Shinya Yamanaka told Scientific American that Dollys cloning motivated him to successfully develop stem cells from adult cells. He later won a Nobel Prize for his results, called induced pluripotent stem cells (iPS) because they're artificially created and can have a variety of uses. They reduced the need for embryonic stem cells in research, and today, iPS cells form the basis for most stem cell research and therapies, including regenerative medicine.

Dolly had sixoffspring, and led a productive, sociable life with many human fans coming to visit her. In 2003, a veterinary examination showed that Dolly had a progressive lung disease, and she was put down. But four clonescreated from the same cell line in 2007 faced no such health issues and aged normally.

Dolly is still a spectacle, though, nearly 25 years after her creation: Her body was taxidermied and puton display at the National Museum of Scotland in Edinburgh.

Read more here:
Dolly the Sheep: '90s Media Sensation - Mental Floss

Posted in Molecular Genetics | Comments Off on Dolly the Sheep: ’90s Media Sensation – Mental Floss

Over-Exchange of DNA in Sperm and Eggs Results in Chromosome Defects That Can Increase Infertility – SciTechDaily

Posted: October 9, 2020 at 1:50 am

Fluorescent image shows chromosomes (green) segregating in two developing eggs. In each egg, one chromosome (the largest green one) has too many crossovers and is having problems segregating. The image was taken on a deconvolution fluorescent microscope. Credit: Image courtesy of Diana Libuda

University of Oregon and Northwestern University biologists show that too many crossover events can increase infertility.

The exchange of DNA between chromosomes during the early formation of sperm and egg cells normally is limited to assure fertility.

But when there are too many of these genetic exchanges, called crossover events, the segregation of chromosomes into eggs is flawed, biologists have learned in a project done across three labs at the University of Oregon and Northwestern University.

In a paper published online in September 2020 in the journal PLOS Genetics, researchers documented how the disruptions, as seen in basic research with microscopic roundworms (Caenorhabditis elegans), lead to a range of meiotic defects as the chromosomes are subjected to improper spindle forces.

Inaccurate chromosome segregation in humans is associated with Down syndrome and miscarriages. Such segregation defects as seen in the research can result in increased infertility, said UO biologist Diana E. Libuda, the studys principal investigator.

Over the past century, research has focused on making sure enough crossovers are made during sperm and egg development, said Libuda, a professor in the UOs Department of Biology and Institute of Molecular Biology. It was known that developing sperm and eggs had ways to make sure that not too many crossovers are made, but it was unclear why.

The research team identified two mechanisms that help counteract defects triggered by excess crossover activity in developing eggs and, thus, assist the coordination of the process that helps assure genomic integrity in new generations.

Libuda had reported in the October 9, 2013, issue of Nature the discovery of a mechanism that inhibits the overproduction of crossovers in roundworms. However, Libuda said, it was not possible at that time to study the downstream effects in cases where too many crossovers did occur. Since then, her lab developed a way to generate extra crossovers on a single chromosome.

That ability led to a National Institutes of Health-funded collaboration with Sadie Wignall of Northwestern University, an expert on high-resolution imaging of structures involved in segregation of chromosomes into developing eggs. What Wignall found led Libuda back to Bruce Bowermans UO lab to take a look at chromosome segregation in live developing eggs.

Overall, it was a great joining of scientific strengths to take a multipronged approach to answer this important question, Libuda said.

The research provides fundamental insights that can guide research in other organisms to better understand the mechanisms and, eventually, lead to potential clinical applications.

The same proteins that we are studying in C. elegans are also in humans, Libuda said. In fact, most proteins required for fertility are used across organisms that include yeast, fruit flies, nematodes, zebrafish, mice and humans. Research using these microscopic worms has been shown in numerous contexts to have relevance in human health.

Reference: Excess crossovers impede faithful meiotic chromosome segregation in C. elegans by Jeremy A. Hollis, Marissa L. Glover, Aleesa J. Schlientz, Cori K. Cahoon, Bruce Bowerman, Sarah M. Wignall and Diana E. Libuda, 4 September 2020, PLOS Genetics.DOI: 10.1371/journal.pgen.1009001

Co-authors with Libuda, Bowerman and Wignall on the paper were: Jeremy A. Hollis, a technician in Wignalls lab; former UO biology undergraduate student Marissa L. Glover, now a doctoral student at the University of California, Santa Cruz; Aleesa J. Schlientz, who earned a doctorate from the UO this year; and Cori K. Cahoon, a postdoctoral researcher working in Libudas lab under a fellowship from the Jane Coffin Childs Memorial Fund for Medical Research.

See the article here:
Over-Exchange of DNA in Sperm and Eggs Results in Chromosome Defects That Can Increase Infertility - SciTechDaily

Posted in Molecular Genetics | Comments Off on Over-Exchange of DNA in Sperm and Eggs Results in Chromosome Defects That Can Increase Infertility – SciTechDaily

VERIFY: Was the antibody cocktail used to treat President Trump developed using human embryonic stem cells? – CBS News 8

Posted: October 8, 2020 at 9:55 am

Social media is buzzing with the claim President Trump, who is pro-life, used an antibody cocktail developed using human embryonic stem cells.

The antibody cocktail used to treat President Donald Trump for COVID-19 is getting a lot of attention on social media.

Some users are claiming Regeneron - the company that developed the treatment - used human embryonic stem cells to create it, but is this true?

News 8 reached out to Regeneron for comment.

"This particular discovery program (regn-cov2) did not involve human stem cells or embryonic stem cells," wrote Regeneron spokesperson Alexandra Bowie in a statement.

So, where did that claim about human embryonic stem cells come from?

It appears to have developed from this statement Regeneron issued back in April 2020 regarding stem cell research:

"As is the case with many other science-focused biotechnology companies, Regeneron uses a wide variety of research tools and technologies to help discover and develop new therapeutics. stem cells are one such tool. the stem cells most commonly used at Regeneron are mouse embryonic stem cells and human blood stem cells. currently, there are limited research efforts employing human-induced pluripotent stem cell lines derived from adult human cells and human embryonic stem cells that are approved for research use by the national institutes of health and created solely through in vitro fertilization."

According to the American Association for the Advancement of Science, here's what the antibody cocktail used to treat the president is made of:

"One antibody comes from a human who had recovered from a SARS-COV-2 infection; a B cell that makes the antibody was harvested from the person's blood and the genes for the immune protein isolated and copied. The other antibody is from a mouse, which was engineered to have a human immune system, that had the spike protein injected into it."

Bowie also told News 8 the statement about stem cell research on its website reflects the company's general position on stem cell research, but does not mean human embryonic stem cells were used in creating the antibody cocktail used to treat the president.

Nevertheless, some said the company's position on using stem cells in general contradicts President Trump's pro-life stance and that of Supreme Court Nominee Amy Coney Barrett.

But the bottom line, were human embryonic stem cells used in Regeneron's antibody cocktail to treat the president? News 8 can verify the answer is no.

Read the original here:
VERIFY: Was the antibody cocktail used to treat President Trump developed using human embryonic stem cells? - CBS News 8

Posted in Stem Cell Research | Comments Off on VERIFY: Was the antibody cocktail used to treat President Trump developed using human embryonic stem cells? – CBS News 8

Proposition 14 would authorize state to borrow $5.5 billon for stem cell research – KESQ

Posted: October 8, 2020 at 9:55 am

California voters are once again considering the issue of stem cell research.

After approving spending $3 billion on the work in 2004, taxpayers are being asked for another $5.5 billion under Proposition 14.

Some of the initial funding was used to create the California Institute for Regenerative Medicine which would get more money if the measure passes.

"Prop 14 is targeted at treating and curing curable diseases that we all care about," said Dr. Larry Goldstein, a professor at UC San Diego, and the Scientific Director for the Sanford Consortium for Regenerative Medicine.

He a supporter of Prop 14, along with the California Democratic Party and the UC Board of Regents.

He says the funding is necessary to save lives.

"We lose family members prematurely to terrible diseases like cancer and Alzheimer's Disease," said Goldstein.

Proposition 14's total cost to tax payers, including interest on the general obligation bonds, is $7.8 billion according to the state legislate analyst.

That breaks down to $280 million a year over 30 years, with the money coming from the state general fund.

The highest profile opponent of Prop 14 points to what they call a "lack of legislative oversight" of the California Institute for Regenerative Medicine.

They also say the state budget deficit is already too high.

That opponent is the Oakland-based "Center for Genetics and Society".

Another opponent has close ties to the California Institute for Regenerative Medicine.

Jeff Sheehy is a member of the agency's Citizen's Oversight Committee.

"We have a lot of needs that are more pressing than stem cell research which is well funded by the federal government," said Sheehy.

Sheehy contends state funding for scientific research should be up to the state legislature.

"You don't vernally pay for programs like this with debt," said Sheehy.

ANALYSIS OF PROPOSITION 21 FROM BALLOTPEDIA:

https://ballotpedia.org/California_Proposition_14,_Stem_Cell_Research_Institute_Bond_Initiative_(2020)

Go here to see the original:
Proposition 14 would authorize state to borrow $5.5 billon for stem cell research - KESQ

Posted in Stem Cell Research | Comments Off on Proposition 14 would authorize state to borrow $5.5 billon for stem cell research – KESQ

Remember how urgent it was to support embryonic stem cell research? That was then; this is now – BioEdge

Posted: October 8, 2020 at 9:55 am

Remember how urgent it was to support embryonic stem cell research? That was then; this is now

The hot button bioethical issue of 2004 was embryonic stem cell research. Supporters spoke of life-saving cures and dismissed ethical misgivings. Surfing a wave of hope, Californian voters voted for a US$3 billion bond issue to establish the California Institute for Regenerative Medicine.

Sixteen years later, the CIRM has almost run out of money and its backers are rattling the tin in the hope that voters will approve a $5.5 billion bond issue to support its research.

Some of the states major newspapers have editorialised against it. With many of its critics, they contend that the CIRM has not delivered on its miracle cures, that its governance has been poor and that there was too much potential for conflict of interest.

The Los Angeles Times decried the earlier over-sell:

[The CIRM] hasnt yet yielded a significant financial return on investment for the state or the cures that were ballyhooed at the time. Though no one ever promised quick medical miracles, campaign ads strongly implied they were around the corner if only the funding came through. Proponents oversold the initiatives and voters cant be blamed if they view this new proposal with skepticism.

The San Francisco Chronicle, which exposed some of the CIRMs deficiencies in a 2018 expos, criticised the way its funds had been spent:

More than half the original funding went to buildings and other infrastructure, education and training, and the sort of basic research that, while scientifically valuable, is a long way from medical application. Theres nothing inherently wrong with that, but it is at odds with the vision of dramatic advancements put to voters."

Michael Cook is editor of BioEdge

Continue reading here:
Remember how urgent it was to support embryonic stem cell research? That was then; this is now - BioEdge

Posted in Stem Cell Research | Comments Off on Remember how urgent it was to support embryonic stem cell research? That was then; this is now – BioEdge

Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace

Posted: October 8, 2020 at 9:55 am

Advances in the stem cell therapy sector have been phenomenal over the years. Its assistance in curing humans of various diseases and disorders has generated expansive advancements. These advancements are not just limited to humans. Stem cell therapy has also acquired a prominent place in the veterinary sector.

The influence of animal stem cell therapy for the treatment of various animals for diverse diseases and disorders is growing rapidly. Therefore, this factor may help the global animal stem cell therapy market to generate exponential growth across the forecast period of 2019-2029. Stem cells help in the replacement of neurons affected by stroke, Parkinsons disease, spinal cord injury, Alzheimers disease, and others.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6816

This animal stem cell therapy market report has extensive information on various aspects associated with bringing growth. Important factors such as emerging trends, mergers and acquisitions, and the regional scenario of the animal stem cell therapy market have been analyzed and included in the report. The stakeholders can derive a treasure of information from this report. This report also includes a scrutinized take on the COVID-19 impact on the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Competitive Prospects

The competitive landscape of the animal stem cell therapy market can be described as mildly fragmented. With a considerable chunk of players, the animal stem cell therapy market is surrounded by substantial competition. Research and development activities form an important part of the growth landscape because they help gain novel insights.

Activities such as mergers, acquisitions, joint ventures, collaborations, and partnerships form the foundation of the growth of the animal stem cell therapy market. These activities help manufacturers to gain influence and eventually help in increasing the growth rate of the animal stem cell therapy market. Prominent participants in the animal stem cell therapy market are Magellan Stem Cells, Medivet Biologics LLC, Kintaro Cells Power, U.S. Stem Cell, Inc., Celavet Inc., VETSTEM BIOPHARMA, and VetCell Therapeutics.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=6816&ltype=S

Animal Stem Cell Therapy Market: Key Trends

Infections are scaling up among animals at a rapid rate. The alarming increase is proving fatal for many animals. Therefore, to avoid such incidences and treat existing diseases and disorders, animal stem cell therapy is being applied seamlessly. Hence, this aspect may bring great growth opportunities for the animal stem cell therapy market.

Developments have been observed across the animal stem cell therapy market for long. Autologous adipose-derived mesenchymal stem cells are gaining traction for successfully resolving a range of issues in animals. These stem cells help in treating ligament and tendon injuries to a certain extent. The strengthening influence of this stem cell type in companion animals is also proving to be a prominent growth prospect for the animal stem cell therapy market.

Recent research has also found that stem cell-derived CC exosomes showed improved recovery from myocardial infarction (MI) among pigs. Such developments assure promising growth for the animal stem cell therapy market.

Animal Stem Cell Therapy Market: Regional Analysis

The animal stem cell therapy market is spread across North America, Latin America, the Middle East and Africa, Europe, and Asia Pacific. The animal stem cell therapy market may derive significant growth from North America. The escalating awareness regarding animal stem cell therapy may attract profound growth. Strengthening research and development activities in the region regarding animal stem cell therapy is further expanding the growth prospects.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6816

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Continue reading here:
Animal Stem Cell Therapy Market - Great Growth Opportunities for the Market in the Coming Year | TMR Research Study - BioSpace

Posted in Stem Cell Research | Comments Off on Animal Stem Cell Therapy Market – Great Growth Opportunities for the Market in the Coming Year | TMR Research Study – BioSpace

The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% – Yahoo…

Posted: October 8, 2020 at 9:55 am

during the forecast period. Market growth is driven by the rising prevalence of chronic diseases, genetic disorders, and cancer; rising investments in regenerative medicine research; and the growing pipeline of regenerative medicine products.

New York, Oct. 08, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Regenerative Medicine Market by Product, Application, Geography - Global Forecast to 2025" - https://www.reportlinker.com/p04700208/?utm_source=GNW However, the high cost of cell and gene therapies and ethical concerns related to the use of embryonic stem cells in research and development are expected to restrain the growth of this market during the forecast period.The cell therapies segment accounted for the highest growth rate in the regenerative medicine market, by product, during the forecast periodBased on products, the regenerative medicine market is segmented into tissue-engineered products, cell therapies, gene therapies, and progenitor and stem cell therapies.The cell therapies segment accounted for the highest growth rate in the regenerative medicine market in 2019.

The increasing adoption of tissue-engineered products for the treatment of chronic wounds and musculoskeletal disorders and the rising funding for the R&D of regenerative medicine products and therapies are the major factors driving the growth of this segment.

Oncology segment accounted for highest CAGRBased on applications, the regenerative medicine market is segmented into musculoskeletal disorders, wound care, oncology, ocular disorders, dental, and other applications.In 2019, the oncology segment accounted for the highest growth rate.

This can be attributed to the rising prevalence of orthopedic diseases, growing geriatric population, increasing number of stem cell research projects, growing number of clinical researches/trials, and the rich pipeline of stem cell products for the treatment of musculoskeletal disorders.

Europe: The fastest-growing region regenerative medicine marketThe global regenerative medicine market is segmented into North America, Europe, the Asia Pacific, and Rest of the World.The North America region is projected to grow at the highest CAGR during the forecast period in 2019.

The growth in the North American regenerative medicine market can be attributed to rising stem cell banking, tissue engineering, and drug discovery in the region; expansion of the healthcare sector; and the high adoption of stem cell therapy and cell immunotherapies for the treatment of cancer and chronic diseases.

The primary interviews conducted for this report can be categorized as follows: By Company Type: Tier 1 - 20%, Tier 2 - 45%, and Tier 3 - 35% By Designation: C-level - 30%, D-level - 20%, and Others - 50% By Region: North America - 36%, Europe - 25%, Asia Pacific - 27%, and Rest of the World 12%

Lits of companies Profiled in the Report: 3M (US) Allergan plc (Ireland) Amgen, Inc. (US) Aspect Biosystems (Canada) bluebird bio (US) Kite Pharma (US) Integra LifeSciences Holdings Corporation (US) MEDIPOST Co., Ltd. (South Korea) Medtronic plc (Ireland) Anterogen Co., Ltd. (South Korea) MiMedx Group (US) Misonix (US) Novartis AG (Switzerland) Organogenesis Inc. (US) Orthocell Limited (Australia) Corestem, Inc. (South Korea) Spark Therapeutics (US) APAC Biotech (India) Shenzhen Sibiono GeneTech Co., Ltd. (China) Smith & Nephew plc (UK) Stryker Corporation (US) Takeda Pharmaceutical Company Limited (Japan) Tego Science (South Korea) Vericel Corporation (US) Zimmer Biomet (US)

Research Coverage:This report provides a detailed picture of the global regenerative medicine market.It aims at estimating the size and future growth potential of the market across different segments, such as product, application, and region.

The report also includes an in-depth competitive analysis of the key market players, along with their company profiles, recent developments, and key market strategies.

Key Benefits of Buying the Report:The report will help market leaders/new entrants by providing them with the closest approximations of the revenue numbers for the overall regenerative medicine market and its subsegments.It will also help stakeholders better understand the competitive landscape and gain more insights to position their business better and make suitable go-to-market strategies.

This report will enable stakeholders to understand the pulse of the market and provide them with information on the key market drivers, restraints, opportunities, and trends.

Read the full report: https://www.reportlinker.com/p04700208/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Story continues

See more here:
The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% - Yahoo...

Posted in Stem Cell Research | Comments Off on The global regenerative medicine market is projected to reach USD 17.9 billion by 2025 from USD 8.5 billion in 2020, at a CAGR of 15.9% – Yahoo…

Election Guide: Here’s What You Need to Know About Proposition 14 – NBC Bay Area

Posted: October 8, 2020 at 9:55 am

Proposition 14 on the November ballot asks voters to approve $5.5 billion to continue funding stem cell research in California.

Supporters said the research has already lead to important medical breakthroughs, including for COVID-19 victims. Opponents said the proposition is more "shameless overpromising" with money that could be better spent elsewhere.

California voters have been though this before.

In 2004, state voters approved Proposition 71, which meant $3 billion for stem cell research and to establish the California Institute of Regenerative Medicine, or CIRM. The group's chairman and Proposition 14's financial backer, Robert Klein, said that money has lead to significant medical breakthroughs.

But now, CIRM is almost out of money, and Proposition 14 asks voters for $5.5 more for stem cell research.

"If 70 different patient advocacy organizations, from the Michael J. Fox Foundation to the American Diabetes Foundation and the American Association of Cancer Researchers all endorse us -- could they all be wrong?" Klein asked.

Longtime AIDS activist Jeff Sheehy is on the CIRM board and said residents are still paying $325 million a year for Proposition 71.

"We're going to add another $300 million on top of that -- that's two-thirds of $1 billion for stem cell research," Sheehy said. "We don't have a single FDA approved product yet."

Sheehy said taxpayer funding of stem cell research was needed back in 2004 when California was on its own, but now the feds and private industry are spending billions on it every year.

"So we're just duplicating," Sheehy said.

Marcy Darnovsky, executive director of the Center for Genetics and Society, opposes Proposition 14 because of CIRM's quote "Shameless overpromising and hype set the stage for hundreds of underregulated commercial stem cell clinics now offering unapproved treatments that have caused tumors and blindness."

"All those people who survive COVID-19, they are finding up to 50% have heart damage and other organ damage," Darnovsky said. "How are you going to regenerate those tissues? Regenerative medicine is still cell therapy."

Dr. Michael Matthay professor of critical care medicine at UCSF, said CIRM has provided grant money to help research COVID-19 treatments.

"We are using cell based therapy to reduce injury to longs from COVID-19 and to accelerate the recovery process," Matthay said.

It should be pointed out everyone interviewed for this story are in favor of stem cell research -- Darnovsky and Sheehy believe that the billions of dollars being asked of taxpayers could be better spent on education, healthcare, housing and jobs.

View original post here:
Election Guide: Here's What You Need to Know About Proposition 14 - NBC Bay Area

Posted in Stem Cell Research | Comments Off on Election Guide: Here’s What You Need to Know About Proposition 14 – NBC Bay Area

Page 874«..1020..873874875876..880890..»