Page 942«..1020..941942943944..950960..»

In college, Elon Musk thought these 5 things would change the world – CNBC

Posted: July 5, 2020 at 6:48 am

The internet

Musk believed the internet, nascent in the '90s, would "fundamentally change humanity," he said on the podcast.

"I would not regard this as a profound insight but rather an obvious one," Musk said.

He compared the internet to the human nervous system: "If you didn't have a nervous system, you wouldn't know what's going on. Your fingers wouldn't know what's going on. Your toes wouldn't know what's going on. You'd have to do it by diffusion," he said.

"The way information used to work was by diffusion. One human would have to call another human or write them in a letter. [That was] extremely slow diffusion. And if you wanted access to books, and you did not have a library, you don't have it. That's it."

He knew the internet could change all that.

And while Musk only had minimal access to the internet at the time (only to use it for his physics studies, he said), he knew the internet would be a "fundamental and profound change."

"Now, you have access to all books instantly, and you can be in a remote mountaintop location and have access to all of humanity's information if you got a link to the internet," he said on the podcast. "Now suddenly, human organisms anywhere would have access to all the information instantly."

Musk believed "making life multi-planetary and making consciousness multi-planetary" would change the world, he said on the podcast.

As a child, Musk was influenced by a variety of science fiction booksand he believed he'd one day "[build] spaceships to extend the human species's reach," according tothe book"Elon Musk." (Musk previously said that theseven-book "Foundation" science fiction series by scientist and author Isaac Asimov, for example, was "fundamental to the creation of his aerospace company, SpaceX.")

On May 30, SpaceXsuccessfully launched two NASA astronautsinto orbit for the first time. It was a milestone forhuman spaceflightand got Musk one step closer to achievinghis Mars ambitions.

Just as a character in the 1997 movie Gattaca undergoes genetic engineering to pursue his dream of space travel, according to Musk, when he was younger he believed being able to change human genetics could change the world.

And it's happening today, with technology like Crispr, Musk said on the podcast.

"It will become normal, I think, to change the human genome for getting rid of diseases or propensity to various diseases," he said. "That's going to be like the first thing you'd want headed out. If you've got a situation where you're definitely going to die of some cancer at age 55, you'd prefer to have that edited out."

"There's the Gattaca sort-of extreme thing where it's not really edited out but it's edited in for various enhancements and that kind of thing," he said, "which probably will come too."

"I'm not arguing for or against it," Musk said. "I'm just saying it's more likely to come than not down the road."

As a teenager, Musk felt a "personal obligation" for the fate of mankind and felt inspired to create "cleaner energy technology" one day, according to the book"Elon Musk."

So he believed that sustainable energy would change the future.

"Sustainability, actually, was something that I thought was important before the environmental implications became as obvious as they are," he said on the podcast. "If you mine and burn hydrocarbons[compounds that form the basis of natural gas, oil and coal], then you're going to run out of them. It's not like mining metals.... We will never run out of metals, but we will run out of hydrocarbons."

He said the future may bring a carbon taxthat would raisethe cost of burning fossil fuels to mitigate climate change, which is a "no brainer."

In 2004, Musk invested in and became a co-founder ofelectric car companyTesla.Hebecame CEO in 2008. On Wednesday, Tesla became the world's most valuable automakerwhen the electric vehicle company's market capitalization surpassed Toyota's for the first time.

"AI is a really major one" too, Musk said on the podcast.

In 2019,at the World Artificial Intelligence Conference in Shanghai, Musk (who co-founded non-profit AI research lab OpenAIbut laterleft the company's board) said computers will "surpass us in every way," including scary things, likejob disruptionfrom robots or even apotentialAIracethatleadstoa third World War.

AI is "capable of vastly more than almost anyone knows and the rate of improvement is exponential," he saidhe said at the 2018 South by Southwest tech conference.

Musk also founded machine intelligence venture Neuralink, because he believes humans must merge with AI to avoid becoming irrelevant.

"We do want a close coupling between collective human intelligence and digital intelligence,"he said at the SXSW conference, "and Neuralink is trying to help in that regard by trying creating a high bandwidth interface between AI and the human brain."

Check out: The best credit cards of 2020 could earn you over $1,000 in 5 years

Don't miss:

Read more from the original source:
In college, Elon Musk thought these 5 things would change the world - CNBC

Posted in Genetic Engineering | Comments Off on In college, Elon Musk thought these 5 things would change the world – CNBC

Improve alignment of research policy and societal values – Science Magazine

Posted: July 5, 2020 at 6:48 am

Historically, scientific and engineering expertise has been key in shaping research and innovation (R&I) policies, with benefits presumed to accrue to society more broadly over time (1). But there is persistent and growing concern about whether and how ethical and societal values are integrated into R&I policies and governance, as we confront public disbelief in science and political suspicion toward evidence-based policy-making (2). Erosion of such a social contract with science limits the ability of democratic societies to deal with challenges presented by new, disruptive technologies, such as synthetic biology, nanotechnology, genetic engineering, automation and robotics, and artificial intelligence. Many policy efforts have emerged in response to such concerns, one prominent example being Europe's Eighth Framework Programme, Horizon 2020 (H2020), whose focus on Responsible Research and Innovation (RRI) provides a case study for the translation of such normative perspectives into concrete policy action and implementation. Our analysis of this H2020 RRI approach suggests a lack of consistent integration of elements such as ethics, open access, open innovation, and public engagement. On the basis of our evaluation, we suggest possible pathways for strengthening efforts to deliver R&I policies that deepen mutually beneficial science and society relationships.

See original here:
Improve alignment of research policy and societal values - Science Magazine

Posted in Genetic Engineering | Comments Off on Improve alignment of research policy and societal values – Science Magazine

Genome Editing Market to Exhibit Rapid Surge in Consumption in the COVID-19 Crisis 2025 – 3rd Watch News

Posted: July 5, 2020 at 6:48 am

[98 pages report] This market research report includes a detailed segmentation of the global genome editing market by technology (CRISPR, TALEN, ZFN, and Others), by application (Cell Line Engineering, Genetic Engineering, and Others), By end-user (Research Institutes, Biotechnology and Pharmaceutical Companies, and Contract Research Organizations), by regions (North America, Europe, Asia Pacific, and Rest of the World).

Request For Report[emailprotected]https://www.trendsmarketresearch.com/report/sample/9845

Overview of the Global Genome Editing Market

Infoholics market research report predicts that the Global Genome Editing Market will grow at a CAGR of 14.4% during the forecast period. The market has witnessed steady growth in the past few years with the development in technology and the introduction of highly sensitive, robust, and reliable systems in the market. The market is fueled due to increase in genetic disorders, increasing investment and funds, and technological advancements in genome editing.

The market continues to grow and is one of the increasingly accepted market in many countries worldwide. Vendors are focusing towards obtaining funds and collaborating with universities to enlarge their research and development capabilities. The majority of the revenue is generated from the leading players in the market with dominating sales of ThermoFisher Scientific, GenScript Corp., Sangamo Therapeutics, Lonza Group, and Horizon Discovery Group plc.

According to Infoholic Research analysis, North America accounted for the largest share of the global genome editing market in 2018. US dominates the market with majority of genome editing companies being located in this region. However, China has not been too far behind and has great government support for the research in genome editing field.

Genome Editing Market by Technology:

In 2018, the CRISPR segment occupied the largest share due to specific, effective, and cost-effective nature of the technology. Many companies are focusing on providing genome editing services. For instance, in January 2019, Horizon Discovery extended CRISPR screening service to primary human T cells.

Get Complete TOC with Tables and[emailprotected]https://www.trendsmarketresearch.com/report/discount/9845

Genome Editing Market by Applications:

In 2018, the cell line engineering accounted the maximum share followed by genetic engineering. Increase in the number of people suffering with genetic disorders has driven the growth of the genome editing market.

Genome Editing Market by End Users:

In 2018, the biotechnology and pharmaceutical companies gained the highest market share for genome editing market due to increased pervasiveness of cancer and infectious diseases are driving research goings-on in biotechnology & pharmaceutical companies segment.

Genome Editing Market by Regions:

The market is dominated by North America, followed by Asia Pacific and Europe. The major share of the North America market is from the US due to quick adoption of new and advanced technologies.

Genome Editing Market Research Competitive Analysis The market is extremely fragmented with several smaller companies struggling for market share. Big pharmaceutical establishments have also united with venture capitalists to provide funding to the start-ups. In 2015, Bayer financed $335 million and in the very same year, Celgene combined with Abingworth invested $64 million in CRISPR Therapeutics. The NIH recently granted 21 somatic cell genome editing grants of almost $86 million over the next half a decade. These endowments are the foremost to be granted through the Somatic Cell Genome Editing (SCGE) program that was initiated in January 2018 with NIH Common Fund.

The companies are collaborating and licensing to increase their capabilities in the market. CRISPR, TALEN, ZFN, Meganuclease, ARCUS, and RTDS are some of the key technology areas concentrated by key players in the market. Since 2015, the deals on the CRISPR technology has drastically increased.

Key vendors:

Key competitive facts

Benefits The report provides complete details about the usage and adoption rate of genome editing market. Thus, the key stakeholders can know about the major trends, drivers, investments, vertical players initiatives, and government initiatives towards the healthcare segment in the upcoming years along with details of the pureplay companies entering the market. Moreover, the report provides details about the major challenges that are going to impact the market growth. Additionally, the report gives complete details about the key business opportunities to key stakeholders in order to expand their business and capture the revenue in specific verticals, and to analyze before investing or expanding the business in this market.

<<< Get COVID-19 Report Analysis >>>https://www.trendsmarketresearch.com/report/covid-19-analysis/9845

Key Takeaways:

Here is the original post:
Genome Editing Market to Exhibit Rapid Surge in Consumption in the COVID-19 Crisis 2025 - 3rd Watch News

Posted in Genetic Engineering | Comments Off on Genome Editing Market to Exhibit Rapid Surge in Consumption in the COVID-19 Crisis 2025 – 3rd Watch News

Soon we’ll be able to engineer the wild, can the policies keep up with the science? | TheHill – The Hill

Posted: July 5, 2020 at 6:48 am

Humans have been able to genetically alter the world around them for thousands of years. With the domestication of dogs at least 14,000 years ago, genetically modified organisms (GMOs) have been a constant feature of human society; only recently have we gained the ability to perform these modifications at the molecular level.

Even more recently, gene drive technology has fundamentally added the ability of humans to modify wild organisms, not only domesticated organisms. With the ability to make rapid, permanent changes to wild species on the near horizon, we must act now to implement policies that will carefully regulate their use while allowing for vital scientific research to continue.

While GMOs have become fundamental to the farming industry, they always have the same limitation: they must be protected and maintained on farms, in pens, or other human-maintained environments. If released into the wild, GMOs find themselves out-competed by their naturally occurring cousins, since genetic modifications made to suit human tastes (think seedless watermelons) typically have a hard time surviving in the wild. An exception to this rule is the survival of invasive species when introduced into a different environment and have no natural competition in their new habitat.

Gene drive technology now makes it possible for humans to engineer species that are currently and will remain, wild such as the mosquito. Gene drive engineering can create an artificial selective pressure to transmit the gene drive from parent to offspring at a higher rate than would naturally occur.

Eventually, offspring with the gene drive replace the unaltered form of the organism, an overwhelming natural section that would normally favor the unaltered form. This profoundly new capability makes gene drives different from GMOs which are not designed to replace wild organisms and do not have the capability to overtake wild populations if accidentally released.

Because gene drives, as tools for the management and engineering of species in the wild, are intrinsically different from GMOs, it is not adequate to regulate them like other GMOs or rely only upon the framework of existing GMO regulations. We need a series of policy goals to prevent missteps in the deployment of this powerful tool.

It is unlikely that gene drives will see direct use in agricultural crops and animals, despite the agricultural application being the main concern of gene drive opposers. Such cultivated species are already under de facto genetic control by farmers who decide which animals to breed and which seeds are sown. As such, a gene drive in farmed species would be a very expensive and complex way to achieve something already possible through conventional agricultural methods.

It is, however, quite likely that gene drives will soon be used to control malaria, either to suppress malaria-carrying mosquito populations or genetically alter them such that they are unable to transmit malaria to humans. Should this public health application prove to be safe and beneficial, further applications of gene drives may soon follow. Another near-term application could be to control agricultural pest species such as leafhoppers or aphids in order to improve crop yield.

The management of human-influenced species with gene drives presents a potential flashpoint where conflicting economic and environmental interests intersect. We define human-influenced species as those that live and breed wild but are harvested heavily by humans. In other words, humans do not actively alter the environment of these species for agricultural purposes, but human harvesting activities have direct and indirect impacts on their population dynamics. Oceanic fish are an example of human-influenced species. These fish may live and travel across international and national territorial waters, and thus the release of a gene drive in these species would result in significant and competing economic interests. The ability of genes to drive fish to move from jurisdiction to jurisdiction presents a unique problem to international biodiversity protocols.

With the first release of gene drives for malaria control is likely to occur within the next 5-10 years, there is a need for immediate national regulation of gene drives and a need for broad international harmonization of gene drive regulation. While great care has been taken by researchers to safely and ethically advance malaria control gene drive research, explicit regulation is required to mitigate risks from future efforts and to hold all deployable gene drives to appropriate standards.

As we have experienced during COVID-19 with poorly functioning antibody tests, a loose regulatory environment can lead to products entering the market that have not been properly validated. In the case of gene drives, a loose regulatory environment could lead to irreversible damage to wild ecosystems.

The U.S. government should create nationally-mandated tiered registries of gene drive research. Coordinated, nationally-mandated registries would allow for the fast adoption of clear gene drive documentation. In time, the multiple national registries can hopefully be harmonized into a single international registry. These registries should be tiered in such a way that gene drives that are closer to possible deployment must report more detailed information than research projects that are in the exploratory phase.

As projects approach deployment, public transparency and independent review become more important considering the potential for gene drives to radically alter a wild environment. To realize the potential benefits of this technology, we now must act practically, proactively, and carefully to regulate their progress from small-scale research all the way through large-scale deployment.

Michael Montague, Ph.D. is a senior scholar and Amanda Kobokovich, MPH is a senior analyst at the Johns Hopkins Center for Health Security at the Bloomberg School of Public Health. The authors recently published a report Gene Drives: Pursuing Opportunities, Minimizing Risk.

Follow this link:
Soon we'll be able to engineer the wild, can the policies keep up with the science? | TheHill - The Hill

Posted in Genetic Engineering | Comments Off on Soon we’ll be able to engineer the wild, can the policies keep up with the science? | TheHill – The Hill

Minister ties smart farming to food security – The News International

Posted: July 5, 2020 at 6:48 am

ISLAMABAD: Minister for National Food Security and Research Fakhar Imam on Saturday said the government was working hard in applying genetic engineering, crop diversification, and biotechnology in agriculture sector to ensure countrys food security.

The government is committed to double the income of the farmers and this can be achieved only if they use technology and opt for crop diversification, he said.

There is also a dire need to move towards precision agriculture technology, big data, and quality assurance to meet international quality parameters.

The minister said the government wanted to focus on agricultural research, education, and extension to promote export-focused production and that could not be avoided anymore as it was vital for agro-based industrial development.

He said the universities and research departments should be groomed and advanced technology be applied for the benefit of agriculture, adding, there was no doubt Pakistan was an agro-based country but we had not focused on it as we should have over the years.

We should continue to work together towards climate change resilient research, mechanisation in pulses cultivation and processing, improving seed replacement rate to fill the gap of technology adoption in the farming fields.

He said the government would take all-out measures to facilitate the farmers as development of the agriculture sector was among its priorities.

Agriculture is not only the basis for countrys economy, but it also ensures the supply chain of foods to the masses. That is why it is of paramount importance to focus on agriculture sector to avoid food security issues, the minister said.

He explained the agriculture sector was faced with multiple issues including water scarcity, low quality seeds and pesticides.

Moreover, the locust swarms and climate change, were also emerging threat for the sector as it had become a huge challenge for the crops the same way COVID-19 had become a threat to human life, Imam added.

Food availability will be ensured through increase in production of food items, he said, adding, Improved farm techniques will also be promoted and issues like land and water management will also be addressed.

See the article here:
Minister ties smart farming to food security - The News International

Posted in Genetic Engineering | Comments Off on Minister ties smart farming to food security – The News International

The Future of Sports – Bleacher Report

Posted: July 5, 2020 at 6:48 am

Each night, around 7 o'clock, I drift off into a little daydream. This has been the case for weeks now. My beloved Mets are jogging onto the grass at Citi Field, taking their positions; their ace, Jacob deGrom, making a beeline to the mound. I am up out of my seat, applauding, gazing out onto the field. I look up to the sky, and that's it, really. The scene tends to slip away from there. I look down to see the gates of my apartment's window guard and the emptied streets of Manhattan beyond them. I really am clapping, but it's got nothing to do with baseball. It's in support of local nurses and doctors at work or changing shifts. Across New York City, this ritual plays out night after night (the clapping for health care workersnot the Mets fantasies, I don't think).

There's a crossing of wires at play, like my precious sports memories are mingling with the signatures of my life during the COVID-19 eraclapping, quarantining, boredom. Will it stay this way? For a while, at least, I think it will.

As MLB, the NBA and other leagues near their returns, I find myself fascinated by questions pertaining to the virus and the ways it will ripple through our leagues. How many players will contract it? How will leagues' models evolve as they move forward? Even for mea lifelong overcommitted fan who sends excessive, neurotic text threads (unresponded to) during regular-season gamesI think most of the drama in sports will come not from daily games but from daily tests results. This is the virus overpowering the once-invincible sports machine.

Already, so much of the mystique of sports has been lost. I miss the steady, circular rhythm of leagues in-season, the way they appeared day after day, overlapping only a few sacred times a year as if choreographed by the moon instead of computers and marketing teams. I miss the shameless self-importance of teams playing no matter what. (Spring training continued for 10 days after the first cases of COVID-19 appeared in Florida.) It was simply more fun back when we could view athletes as impervious superheroes rather than as bored video-gamersor, worse, as medical patients. There is something uncomfortable about having seen a dominant, intimidating player like Rudy Gobert briefly exposed as reckless and unhygienic. Games will return soon enough, but what about the underlying myths that lend them relevance and depth?

The NBA's bubble-based return, set for July 30, cuts against team fandomso driven by proximityby moving everyone to Disney World. It admits that the game could go on without us, the fans, rowdy old faithful, by playing in near silence. Game rules are changing, too, yielding to the virus' demands. There are smaller coaching staffs to protect older people from exposure, and expanded rosters for when the inevitable happens. Every league is making compromises: MLB might ban its most endearing prop, the sunflower seed, and tweak its most fundamental, unique feature, the nine-inning game.

These leagues are right to weigh these measures and to take them. They are preventing tragedies, not creating them. But the bending of tradition makes me wonder about the future of sports, about how things just changed overnight, and how they might change again in 10 years or 50. Maybe that will be the enduring impact of COVID-19 when it comes to sportsthat it opened the gates to change.

Naturally, this is where things get strange. Stick it out anyway. Consider the ways that fans and leagues are already adapting to this odd time, this time of no sports, and then imagine what comes next, and what after that. One small bit of innovation leads to an unpredictable new one, and on it goes. Very quickly, this evolution brings us into the realm of science fiction.

We might be there already. While games were on hold, the public embraced something that in the past seemed both silly and dystopian: game simulations. Las Vegas offered sim-game betting lines; we hosted virtual Madden watch parties right here at B/R. They were and are an obvious placeholder for real sports. Still, their popularity made me curious about their power down the road, if animated graphics improve enough to match real sports. Technologically speaking, could that day be coming? I asked an expert.

Nicholas Bostrom is a professor at Oxford and a pioneer of the simulation theory, which posits that we may be living in a knockoff version of Earth created by a more advanced (real-life) society. (Assuming that computers will someday be able to produce unlimited realistic simulations of life, we might be wise, he suggests, to already "think that we are likely among the simulated minds rather than among the original biological ones.") Bostrom published Are You Living in a Computer Simulation? way back in 2003. Today, few are better equipped to tell us about the future of sims. So, Professor, how good can they get?

"Eventually we will have completely realistic virtual reality simulations that would be indistinguishable from physical reality," he says. "I don't see why in theory you couldn't have a purely artificial creature that was competing against another in a way that would create a sports event."

You might be wondering what the point of this would be once sports return. Well, consider the NBA's most exhausting debate topic: load (or injury) management. Back when there were regularly scheduled games, we wasted much time meditating on the notion of, say, Kawhi Leonard taking a night off, letting his teammates dominate the lowly Cavaliers or Knicks in front of a crowd that paid to see him play. It's obvious that if there were fewer games, the need to skip some of them would decrease. Fewer games would also soothe another of the league's concerns: players' lack of sleep amid a busy travel schedule.

Simulations could merge these issues and resolve them at once. Why not simulate lopsided games like Clippers-Cavs, providing rest for Leonard and everybody else involved? Each year, each team could sim 10 or 12 games, allowing a 70- or 72-game schedule for playersalready a desired ballparkand a full 82-game slate for the league's partners, like TV networks and casinos, who would package the simulated visuals and box scores.

Maybe this idea seems a little far out, but the NBA rarely minds. It is already welcoming the ideas of the future, from the four-point shot to aerospace revolution.

Indeed, Commissioner Adam Silver has long seen supersonic flight as the key to a truly global league. With it, Portland could face Sydney and return four hours later, in time for bed. We already have an Atlantic Division with teams from America's Northeast; how about adding a Transatlantic Division featuring Brazil, Spain and Nigeria? For now, the problem is a logistical one. "Under existing airline technology, the planes aren't fast enough to at least play in the current framework of our regular season," Silver told USA Today in 2017. Fortunately, with help from Elon Musk, Richard Branson and more, supersonic jets are on their way. Just one of many game-changers to come.

Robots have perfected three-point shooting and will someday make flawless floor-spacers. Salaries paid in cryptocurrency will provide a cap loophole and threaten the league's financial structure. Augmented reality on-screen willsomehowincrease complaints about players' shot selection. Advanced tracking through biometric data will grow into a major concern regarding personal privacy. How much should bidding teams know about a free agent's body? Who gets to dictate the right body fat percentage for somebody else or whether a balky ankle is strong enough to play on? And, as the Wall Street Journal once asked: If a fan gains access to a player's medical status and uses it to wager on a game, is that insider trading? (If the answers to these questions seem like a privacy violation, then consider how quickly athletes' COVID-19 test results became expected public information, even though they're irrelevant so long as sports are on hold. If there is already a demand to know whether Ezekiel Elliott, a running back, is experiencing an inability to smell, then there's no doubting the future demand for intimate insight about his legs.)

Yes, the future can seem vast and spookythough not to Thomas Frey. Frey is an author and member of the Association of Professional Futurists. His job is to burst with ideas, and he's bursting all right, riffing on the future of medicine, tech, sports, you name it. He envisions not only the events of the future but also the issues that will counter those eventsthe future's future. "Drone racing is kind of a hot area right now," he says, "but my sense is that the drone racing eventually gets so fast that you can't even see it, and so I'm not sure that sport sticks around." Dang. What else? Frey wants to elevate existing sportsthe ones played on the groundthrough the control and reduction of gravity. (Think NFL meets Quidditch or Slamball with no need for trampolines.) He wonders about anti-aging, tooin this case, what 3,000-year lifespans might mean for athletic primes.

Other revolutions are impossible to imagine playing out (unless you happen to be a member of the APF). "We're close to reviving extinct species like woolly mammoths," Frey notes, before pondering the cruelty of secluding them from other, natural-born animals. An idea strikes him. "Creating a sport with woolly mammoth riders going around the trackthat would seem bizarre today," he says. "But I would definitely pay to go see that."

Of course, there is not only the matter of tweaking (or inventing) sports, but also that of tweaking the players themselves. One of Frey's favorite topics is genetic engineeringthe process of tinkering with human genes before birth. "We're reinventing people. We're making people more durable. We're giving rights to CRISPR [the bio-tech giant], who will give us superbabies who grow up to be superhumans," he says. OK then. Frey thinks it's inevitable that, someday, we'll be able to genetically manufacture superior athletes: bigger, faster, smarterto an uncanny degree. He wonders about "downloading the human brain" and uploading it into the mind of another person. In time, if this all gets easy and silly enough, a supertoddler could have the basketball IQ of LeBron James. (Just imagine the recruiting violations that would follow.)

Bostrom has explored genetic engineering as well. "The enhancement options being discussed," he wrote in 2003, "include radical extension of human health-span, eradication of disease, elimination of unnecessary suffering" and more. A superhuman ability to ward off illnesssay, a coronaviruswould certainly come in handy. So too would advancements that eliminate athletic limitations. Imagine how a perfect set of knees would have changed the careers of Greg Oden, Brandon Roy and others; imagine Shaquille O'Neal with a sprinter's endurance; imagine Jimmer Fredette at 7'3".

Sounds pretty greator actually it sounds like it would look pretty great, visually. But would this be good for sports? Is it ethical? Or the right spirit? And how would this impact the lives of the athletes we love?

Every tech innovation takes something away from the humans it replaces or (ostensibly) aids. Flawless three-and-D bots entering the NBA would not only change the game but also eliminate dozens or hundreds of lucrative jobs. Supersonic travel, alluring as it may be, could have untold effects on passengersespecially international-league athletes, flying overseas day after day. Genetic engineering could draw a devastating, permanent line between the haves and the have-nots.

When it arrives in full force, Frey says, crafting a given attribute"20/10 vision, a perfect heart"may well cost tens of thousands of dollars. There's no telling what else will be at the disposal of fortunate young athletes then (though Frey, of course, has some ideas, including advanced VR headsets).

Already, financial inequality pervades all of sports. Young basketball players need to be able to cover the costs of trainers and AAU travel teams to earn recognition; it's probably not a coincidence that the children of well-off former players are entering the league at a higher rate than ever. Young baseball players need not only training but also equipment, toomitts, balls, bats, helmets, cleats. (Cleveland pitcher Mike Clevinger recently blamed these costs for the sport's declining popularity among young athletes.) Golf, football, hockeyevery major sport operates behind a financial barrier to entry. In 2018, The Atlantic noted that "just 34 percent of children from families earning less than $25,000 played a team sport at least once a day in 2017, versus 69 percent from homes earning more than $100,000." (Those numbers came from a study by the Aspen Institute, which found that the gap was rapidly growing.)

Imagine a world in which the NBA MVP is an 8'6" trust-fund kid. It seems awfully shallow. Could a souped-up superhuman celebrate the award with the same tenderness as Kevin Durant did in 2014? Even if they did, would we bother to cry along with them? There is no great story in sports without long odds and a dash of relatability.Genetic engineering would destroy the enduring notion of the underdog. It would dull the sweetness of our games, the unpredictability, the misery, the reward. What, then, would be left?

"I'm not particularly excited about sports enhancements," Bostrom says, speaking broadly. "We shouldn't make the mistake of thinking everything that makes the sport easier or makes performance better makes the sport more enjoyable. I think we should think of these things more as, You're designing a game. Think creatively about what would make the most fun game. It's not always the easiest thing."

So far, leagues have mostly welcomed new tech as it arrives, a concerning trend. Consider the modern obsession with instant replay.

Think back to the men's NCAA title game last April. With the season on the line, the ball was knocked out of a Texas Tech dribbler's hands and flew out of bounds. For anybody who has ever picked up a basketball and played a game on any level, it was instantly recognizable as Tech's ball. But after several minutes of replaywhich included referee consultant Gene Steratore saying, "At times, guys, I will tell you, when you start running replay really, really slow, you get a little bit of distortion in there as well, so you've gotta be cognizant to that," suggesting that looking more closely may bring us further from the truththe ball was given to Virginia, the underlying logic being that the most important thing is to get the call right. Is it? What about the flow of the game, the sanity of the viewer, the unspoken understandingsI knocked it out; it's your ballthat run between players and fans, deepening the sport?

This, I will always believe, is the good stuff. Even Bostromwho is so technical that he at one point connects sports fandom to ancient Greek war and says, "You can speculate that, from an evolutionary point of view, being able to detect small differences in fitness would be valuable"agrees these intangibles are worth protecting. Even at the cost of, say, letting simulations run wild.

"You can't predict how an actual game will play out just by sort of measuring the circumference of the biceps and the speed on the treadmill of the athletes," Bostrom says. "And I think if you could predict it, in some sense it could reduce interest. It's not the same as seeing the struggle, the human spirit, the grit, the audience cheering them on."

The question, then, is not so much whether replay or sims or any other technical advance are helpful or efficient but whether we have the ability to recognize when they are aiding sports versus when they are harming them, and when the time is right to rein them in.

"Rather than just allowing everything that makes the performance better," Bostrom says, "we should think more about changes that make the game more fun and rewarding for both the players and the audience."

Are we doing this now? It's hard to say. The COVID-19 pandemic is accelerating change and the acceptance of change. It is clouding the rule-changing thought process. Already, long-standing traditions and powerful illusions have been altered across sports. After years of debate within baseball about the designated hitter, it will be implemented leaguewide as part of MLB's plan for a safe return. It is but a footnote to a much more complex story, which is fine. But also, how does the DH protect anybody from the coronavirus?

The NBA's bubble league will introduce its own oddities, though not everyone will be there to experience them firsthand. Several players have already tapped out of the NBA reboot, some fearing the virus, some having tested positive for it, some unwilling to separate from their loved ones. Others are sitting out so they can focus on social justice reform after expressing concerns that basketball could detract from those efforts. For those traveling to Disney World, it will be a lonely undertaking. Players themselves "are not permitted to enter each other's hotel rooms." Card games, if they do occur, will be monitored closely, and decks will be swapped out frequently.

Every league is drawing its own unprecedented game plan. The NFL is planning to cover the seats closest to the sidelines to keep fans away from players (though the league of course will advertise on the tarp). The NHL will reportedly route its action through two hub cities, Toronto and Edmonton. The measures that college sports will need to takeassuming anybody is on campus come Septemberfigure to be the most drastic of all.

Tech innovation will accompany each return: temperature screenings, artificial crowd noise, broadcasting from home. As quarantine warps our collective sense of time, it feels as though we've known these quirks forever. But not long ago they would have seemed quite strange, impossible, unwelcome, like somebody somewhere out there was toying with our settings.

Leo Sepkowitz joined B/R Mag in 2018. Previously, he was a Senior Writer at SLAM Magazine. You can follow him on Twitter: @LeoSepkowitz.

Original post:
The Future of Sports - Bleacher Report

Posted in Genetic Engineering | Comments Off on The Future of Sports – Bleacher Report

The biotech IPO boom is becoming ‘historic’ as four more throw their hats in – Endpoints News

Posted: July 5, 2020 at 6:47 am

Four more US biotechs filed to go public Friday as yet more companies clamber to get through a yawning IPO window and onto a market thats signaled its willingness to reward nearly any new drugmaker.

The new entrants are led by ALX Oncology and the biological analytics biotech Berkeley Lights, each of whom filed to raise $100 million. The autoimmune company Pandion Therapeutics also filed for $75 million, and Kiromic Biopharma, a tiny immuno-oncology startup based in San Antonio, filed for $25 million.

These companies will try to capitalize on a 2020 biotech IPO boom that the investment firm Renaissance Capital recently called historic. The spree began in January and, after a brief interlude when the pandemic first hit the US and Europe, has only picked up in the last two months. The 23 companies that have gone public averaged an 80% return on their offering price, according to Renaissance Capital numbers. Every single one priced above their midpoint or upsized their offering.

Unlike most of their fellow newly or would-be public biotechs, Berkeley Lights will enter the market with significant revenue on the books. The company doesnt make drugs but instead has built a digital cell biology platform that can analyze living cells from a variety of different dimensions and, in principal, accelerate drug development. Theyve partnered with Sanofi and Pfizer on antibody discovery and last year, signed a $150 million pact with Ginkgo Bioworks to help the synthetic biology unicorn advance its genetic engineering capabilities.

All told, the company earned $51 million in revenue last year. Unlike a drug developer, they have no cash earmarked for specific pipeline products, and said they will use proceeds for research, potential acquisitions and general corporate purposes.

For ALX Oncology, a successful offering would mean their second $100 million tranche of the year. In February, the California biotech raised $105 million to help advance its sole pipeline candidate: an antibody designed to target CD-47. Thats the same dont-eat-me signal targeted by Irv Weissmans Forty Seven Inc., the biotech Gilead paid $5 billion for in January. ALXs pitch is that their antibodys FC receptor is engineered to not attract macrophages, reducing toxicity. The biotech will use their proceeds to push the drug through its ongoinghead and neck squamous cell carcinomaand gastric cancer trial and begin new trials for it in acute myeloid leukemia and myelodysplastic syndrome. A portion is also earmarked for CMC work.

Founded out of Polaris in 2018, Pandion Therapeutics was tapped last year for an up-to $800 million partnership to help a reorganizing Astellas develop antibodies for auto-immune disorders. That deal included $45 million upfront and the company also earned $80 million from a Series B in April. The new funding will be used to push their lead molecule through Phase I/II trials in ulcerative colitis while also backing preclinical research, particularly on a pair of antibodies meant to turn on the PD-1 checkpoint and tamp down the immune system.

Kiromic, meanwhile, is in part just trying to stay alive. With less than $2 million 5 million when a subsequent $3 million Series B is included in the bank at years end, they acknowledged in their S-1 that theres substantial doubt regarding the Companys ability to continue as a going concern. In this climate, though, thats worked out just fine for other companies. Applied Molecular Transport went publicin May with the same concerns. They ultimately raised $177 million.

Excerpt from:
The biotech IPO boom is becoming 'historic' as four more throw their hats in - Endpoints News

Posted in Genetic Engineering | Comments Off on The biotech IPO boom is becoming ‘historic’ as four more throw their hats in – Endpoints News

Fakhar Imam stresses importance of biotechnology, crop diversification for food security – Associated Press of Pakistan

Posted: July 5, 2020 at 6:47 am

ISLAMABAD, Jul 4 (APP):Minister for National Food Security and Research Fakhar Imam Saturday said that government was working hard in applying genetic engineering, crop diversification and biotechnology in agriculture sector to ensure food safety in the country.His government was committed to double the income of the farmers and this can be achieved only if farmers use technology and opt for crop diversification, he said while speaking to PTV news channel.He said there is a dire need to move towards precision agriculture technology, big data and quality assurance to meet international quality parameters.The PTI government wants to focus on agricultural research, education and extension to promote export-focused production that cannot be avoided anymore as it is vital for agro-based industrial development, headded.Imam stated that universities and research departments should be groomed and advanced technology be applied for the benefit of agriculture.The minister said there was no doubt that Pakistan was an agro-based country but we had not focused on it as we should have over the years.We should continue to work together towards climate change resilient research, mechanization in pulses cultivation and processing, improving seed replacement rate to fill the gap of technology adoption in the farmers fields.He said the government would take all-out measures to facilitate the farmers as development of the agriculture sector was among its priorities.Imam said agriculture is not only the basis for countrys economy but it also ensures the supply chain of foods to the masses. That is why it is of paramount importance to focus on agriculture sector to avoid food securityissues.He further explained that the agriculture sector of the country was being faced with multiple issues including water scarcity, low quality seeds and pesticides.Moreover, the locust swarms and climate change, were also emerging threat for the sector as it had become a huge challenge for the crops the same way COVID-19 had become a threat to human life.Food availability will be ensured through increase in production of food items, he said, adding, improved farm techniques will also be promoted and issues like land and water management will also be addressed.He said the present government of PTI had also formulated different policies, which would became especially important in the wake of climate change and water shortages.

See the original post here:
Fakhar Imam stresses importance of biotechnology, crop diversification for food security - Associated Press of Pakistan

Posted in Genetic Engineering | Comments Off on Fakhar Imam stresses importance of biotechnology, crop diversification for food security – Associated Press of Pakistan

Stem Cell and Cancer Research Institute terminated by McMaster University – TheSpec.com

Posted: July 5, 2020 at 6:44 am

McMaster University is terminating a high-profile research institute that investigates novel stem cell and cancer therapies.

The loss of the multimillion dollar Stem Cell and Cancer Research Institute (SCC-RI) may extend to its prominent leader as questions remain about whether Mick Bhatia will stay in Hamilton. Two other researchers Kristin Hope and Karun Singh are already leaving for Toronto.

McMaster and Bhatia tell very different stories about how a university board of governors meeting on June 4 came to include the recommendation to end the nationally known institute.

My vision was to have an international presence and supremacy in stem cells, said Bhatia. McMaster, in the end, in my interpretation, really just didnt have the appetite to go in that direction.

The university claims SCC-RI has run its course because its researchers werent collaborating, which is the entire purpose of an institute.

They werent working together, said Jonathan Bramson vice-dean of research for the faculty of health sciences. We put people together because we think they will work together and achieve a situation where the sum is greater than the parts and that wasnt the case here.

Bhatia says he cant possibly compute that explanation, pointing out he has published at least one paper with every researcher at SCC-RI and the other researchers have done the same.

It doesnt make sense, he said. Its like saying the Raptors arent good at basketball.

In fact, it was collaboration that lured Bhatia to McMaster from California in 2006 in the first place. He was working toward leading a stem cell institute there when Dr. John Kelton, who was dean of the faculty of health sciences at the time, made Bhatia believe it would work better back home in Ontario.

I was completely enchanted of the idea that in Canada you could achieve that level of excellence and there was support to build something, he said. It was a great opportunity that I thought couldnt happen here in Canada and yet here it was in front of me.

The institute was set up with $10 million from Michael G. DeGroote and, over time, got another $15 million from David Braley and $24 million from the Boris family.

We were really starting from scratch, said Bhatia. There were no people working deeply in stem cell biology you had to recruit from outside because there is no pre-existing expertise, equipment or infrastructure.

At its height, SCC-RI had 13,000 square feet of state-of-the art facilities, 130 staff and millions in grants including $13 million from the Ontario Research Fund, roughly $10 million from the Canadian Foundation of Innovation and in the last fiscal year alone its scientists were awarded $3.28 million in research grants.

It had findings that were paradigm shifting for stem cell research, collaborated with biochemists which was a first for the field and took potential new cancer drugs into clinical trials.

John Kelton . was pretty visionary, said Bhatia. He was looking for areas to be truly excellent and his definition of excellence was very akin to mine ... It excited me that you could do this level of science and there was like-minded people thinking about that direction.

But at the 10-year-mark in 2016, Bhatia describes the beginning of a rift between his future vision of SCC-RI and that of McMaster. It was at the same time Kelton retired and was replaced by Dr. Paul OByrne.

We got to a point where I saw this as a Stage 1 achievement, whereas I think they were feeling this is where we needed to be and they were quite happy with it, said Bhatia. I thought we could do more.

About two years ago, funding ran out for two researchers Bhatia had recruited and trained over 10 years, and they ended up leaving McMaster. He also saw no way to recruit the senior scientists he felt he could now attract at the established institute.

By December 2019, Bhatia said he saw the writing on the wall and resigned as director of SCC-RI.

To some degree its understandable, said Bhatia. This type of science and at this level is very, very expensive. It requires an immense commitment There is a certain risk measure that comes with that.

In the wake of Bhatias resignation, McMaster spent about $8,000 on an external review which Bramson said concluded there was no collaboration.

Its a series of individuals who are operating independently, he said. Some of those individuals are quite successful which is great and they continue to operate independently but there was no value gained by having them work together.

Bramson said he doesnt know why they werent collaborating and the review didnt shed any light on that either.

Never miss the latest news from The Spectator, including up-to-date coronavirus coverage, with our email newsletters.

I cant tell you why people can or cannot work together, he said. Its their choice, they dont have to, youre not obliged to collaborate.

In fact, he says its not in a researchers nature to work together.

Scientists are mavericks, said Bramson. They are stallions, they are not trained to work together, theyre trained to work independently.

He also said this happens all the time about research institutes being terminated.

It didnt work out, I dont really see that as being a surprise, he said. Science is an experiment ... When you create an institute, you dont know how its going to shake out.

At some point between December and the board of governors meeting in June, two other principle investigators announced they were leaving.

People leave for their own reasons, said Bramson. Clearly, if they felt that they were gaining something from being part of the institute, they would have stayed.

Other principle investigators including Dr. Sheila Singh and Dr. Tobias Berg appear to be staying at McMaster and continuing their research independently.

The group was not the reason they were successful, said Bramson. Disbanding the group is not going to diminish that success. Theyre going to continue doing what theyre doing.

No principle investigators responded to The Spectators request for comment. Although Bhatia says the university made it clear to all that it was speaking on the institutes behalf. He was originally unable to speak himself but eventually got permission from McMaster.

For now, Bhatia is continuing on with his research here.

I love Canada, he said. I love McMaster.

But he added his priority is moving stem cell and cancer therapy science forward.

Well have to see how that unfolds, he said.

As for OByrnes decision to recommend terminating the institute, Bhatia says, It was the obvious decision.

Follow this link:
Stem Cell and Cancer Research Institute terminated by McMaster University - TheSpec.com

Posted in Stem Cells | Comments Off on Stem Cell and Cancer Research Institute terminated by McMaster University – TheSpec.com

IHS Pets: Bringing Cell And Gene Therapy To Cats, Dogs & Horses – Anti Aging News

Posted: July 5, 2020 at 6:43 am

Integrated Health System is bringing cell and gene therapy to cats, dogs, and horses. Recently IHS Pets has helped a paralyzed dog with a spinal cord injury to walk again after it was treated with experimental PRP and prolotherapy. Click here to see the video.

Telomeres

Aging is the root of virtually every complex noncommunicable disease in humans and animals. Telomeres are the protective end caps on the ends of our chromosomes, they are as important for the health of both humans and our pets, and they play roles in longevity.

One of the contributing factors in the lifespan in dog breeds is telomere length. As in humans researchers have found that telomere length is a strong predictor of average life span among 15 different breeds consistent with telomeres playing a role in life span determination. Dogs lose telomeric DNA ~10-fold faster than humans, which is similar to the ratio of average life spans between these species. As such telomerase therapy may be beneficial to pets as well as their human caretakers.

Telomerase gene therapy has been shown to extend lifespan in animals, this therapy may help to increase bone mineral density, improve motor performance, improve metabolism, and improve brain function.

Follistatin

The loss of muscle mass with age is just as problematic for animals as it is to humans; in cats for instance a study showed that for each 100g loss of lean body mass increased the risk of death by 20%. This is typically accompanied by frailty, and it is a contributing factor to metabolic syndrome, diabetes, heart disease, and overall mortality.

Diet and exercise have been shown to pay key roles in keeping pets healthy, but the loss of muscle mass is unavoidable without an effective intervention. Enter follistatin: myostatin blocks muscle growth, when it is inhibited then follistatin is able to let muscles grow freely to stop them from wasting away.

Follistatin gene therapy has been shown to be safe and effective in animals, this therapy may help to protect against frailty, increase muscle density, increase strength, and increase endurance.

Klotho: The Queen of Anti-Aging Proteins

1 in 3 cats will suffer from renal disease, but these numbers are under scrutiny with some suggesting that estimate may be too conservative. Chronic kidney failure can occur gradually over months or years, and it is one of the most common conditions affecting older cats with most cases progressing over time worsening the disease.

Klotho is known to play a significant role in the development of chronic kidney disease, and researchers are now turning to its broader role in the anging process as a whole; such as induces expression with gene therapy in mice has been shown to extend lifespan by targeting many of the same pathways as caloric restriction. Blocking Klotho has been shown to cause premature aging.

Klotho also helps to protect the brain, and contributes to more differences in intelligence than any one single gene. Research from the University of California has shown it to protect the brains of mice and improve brain function within 4 hours; and this result included young mice, old mice, and those that were models of Alzheimers disease.

In addition Klotho also plays a critical role in the inflammaging process. Inflammaging is the long term result of the chronic physiological stimulation of the innate immune system which can become damaging during the aging process.

Circulating levels of Kloto decreases with age, this decrease is associated with an increased risk of age related disease. Gene therapy with Klotho has been shown to increase lifespan in animal models, and it may improve kidney function, brain function, clear damage caused by oxidative stress, and protect against cardiovascular disease.

With the remarkable progress being made in genetics, gene therapy may play increasingly prominent and transformative roles in medicine for both humans and animals due to the potential to treat diseases and congenital disorders.

Pets can be an important part of life, they calm us, make us laugh, and create a bond of unconditional love. The company does note that all therapies are experimental, they are not approved by any regulatory body, and they make no claims that outcomes will be positive or beneficial.

IHS Pets is the veterinary wing of Integrated Health Systems, BioViva Sciences exclusive partner. IHS connects with doctors and patients who are interested in the power of gene therapy to pave the way to healthy aging and longevity.

Continued here:
IHS Pets: Bringing Cell And Gene Therapy To Cats, Dogs & Horses - Anti Aging News

Posted in Gene therapy | Comments Off on IHS Pets: Bringing Cell And Gene Therapy To Cats, Dogs & Horses – Anti Aging News

Page 942«..1020..941942943944..950960..»