Page 962«..1020..961962963964..970980..»

Efforts at coronavirus vaccines and treatments abound in the Bay Area – San Francisco Chronicle

Posted: June 23, 2020 at 12:50 am

The frenetic search for the miracle that will rid the world of COVID-19 is branching out in a thousand directions, and a large part of the microbial treasure hunt is going on in the Bay Area, where major progress has been made in the 100 days since residents were ordered to shelter in place.

Scientists at universities, laboratories, biotechnology companies and drug manufacturers are combing through blood plasma taken from infected patients for secrets that will help them fight the disease.

The key is likely a super-strength antibody found in some patients. But researchers must first figure out how those antibodies work and how they can be harnessed and used to stop the many health problems associated with COVID-19, particularly acute respiratory distress syndrome, or ARDS, which has killed more people than any other complication connected to the disease.

Other developments showing promise include injections of mesenchymal stem cells, found in bone marrow and umbilical cords, that doctors are studying to battle inflammation caused by ARDS. And a steroid called dexamethasone reduced the number of deaths by halting the overreactive immune responses in seriously ill patients in the United Kingdom.

In all, more than 130 vaccines and 220 treatments are being tested worldwide.

What follows is a list of some of the most promising elixirs, medications and vaccines with ties to the Bay Area:

Monoclonal antibodies / Vir Biotechnology, San Francisco: Scientists at Vir and several institutions, including Stanford and UCSF, are studying monoclonal antibodies, which are clones of coronavirus-fighting antibodies produced by COVID-19 patients.

The idea is to utilize these neutralizing antibodies which bind to the virus crown-like spikes and prevent them from entering and hijacking human cells.

Only about 5% of coronavirus patients have these super-strength antibodies, and those people are believed to be immune to a second attack.

The trick for scientists at Vir is to identify these neutralizing antibodies, harvest, purify and clone them. If they succeed, the resulting monoclones could then be used to inoculate people and it is hoped give them long-term immunity against the coronavirus. The company recently signed a deal with Samsung Biologics, in South Korea, to scale up production of a temporary vaccine in the fall after clinical trials are complete.

Another monoclonal antibody, leronlimab, is being studied in coronavirus clinical trials by its Washington state drugmaker, CytoDyn. The companys chief medical officer is in San Francisco, and the company that does laboratory tests of leronlimab is in San Carlos.

Interferon-lambda / Stanford University: Doctors at Stanford are running a trial to see if interferon-lambda, which is administered by injection, helps patients in the early stages of COVID-19. Interferon-lambda is a manufactured version of a naturally occurring protein that has been used to treat hepatitis. Stanford doctors hope it will boost the immune system response to coronavirus infections.

Dr. Upinder Singh, a Stanford infectious-disease expert, said the trial has enrolled more than 50 patients and is halfway finished. We have noted that patients tolerate the drug very well, she said.

Mesenchymal stem cells / UCSF and UC Davis Medical Center: UCSF Dr. Michael Matthay is leading a study about whether a kind of stem cell found in bone marrow can help patients with ARDS. Matthay hopes that the stem cells can help reduce the inflammation associated with some of ARDS most dire respiratory symptoms, and help patients lungs to recover.

Matthay is aiming to enroll 120 patients in San Francisco, the UC Davis Medical Center in Sacramento and hospitals in a handful of other states. He said the trial, which includes a small number ARDS patients who dont have COVID-19, should have results within a year. So far 17 patients are enrolled in the trial, most of them in San Francisco.

Remdesivir / Gilead Sciences (Foster City): Remdesivir, once conceived as a potential treatment for ebola, was the first drug to show some promise in treating COVID-19 patients. The drug interferes with the process through which the virus replicates itself. A large study led by the federal government generated excitement in late April when officials said hospitalized patients who received remdesivir intravenously recovered faster than those who received a placebo.

A later study looking at dosage showed some benefit for moderately ill COVID-19 patients who received remdesivir for five days, but improvement among those who got it for 10 days was not statistically significant. Gilead, a drug company, recently announced that it will soon launch another clinical trial to see how remdesivir works on 50 pediatric patients, from newborns to teenagers, with moderate to severe COVID-19 symptoms. More than 30 locations in the U.S. and Europe will be involved in the trial, the company said.

Coronavirus crisis: 100 days

Editors note: Its been 100 days since the Bay Area sheltered in place, protecting itself from the coronavirus pandemic. What have we learned in that time? And what does the future hold for the region and its fight against COVID-19? The Chronicle explores the past 100 days and looks to the future in this exclusive report.

Favipiravir / Fujifilm Toyama Chemical (Stanford University): This antiviral drug, developed in 2014 by a subsidiary of the Japanese film company to treat influenza, is undergoing numerous clinical studies worldwide, including a Stanford University trial that began this month. Unlike remdesivir, it can be administered orally, so it can be used to treat patients early in the disease, before hospitalization is necessary.

Stanford epidemiologists want to see if favipiravir, which has shown promising results in other trials, prevents the coronavirus from replicating in human cells, halts the shedding of the virus and reduces the severity of infection. The Stanford study, the only outpatient trial for this drug in the nation, is enrolling 120 people who have been diagnosed with COVID-19 within the past 72 hours. Half of them will get a placebo. People can enroll by emailing treatcovid@stanford.edu.

Colchicine / UCSF (San Francisco and New York): The anti-inflammatory drug commonly used to treat gout flare-ups is being studied in the U.S. by scientists at UCSF and New York University. The drug short-circuits inflammation by decreasing the bodys production of certain proteins, and researchers hope that it will reduce lung complications and prevent deaths from COVID-19. About 6,000 patients are receiving colchicine or a placebo during the clinical trial, dubbed Colcorona, which began in March and is expected to be completed in September.

Selinexor / Kaiser Permanente: Kaiser hospitals in San Francisco, Oakland and Sacramento are studying selinexor, an anticancer drug that blocks a key protein in the cellular machinery for DNA processing, as a potential COVID-19 treatment. The drug has both antiviral and anti-inflammatory properties, and its administered orally, according to Kaisers Dr. Jacek Skarbinski. The trial aims to enroll 250 patients with severe symptoms at Kaiser and other hospitals that are participating nationwide.

VXA-COV2-1 / Vaxart, South San Francisco: The biotechnology company Vaxart is testing this drug to see if it is as effective at controlling COVID-19 as trials have shown it to be against influenza. VXA-COV2-1, the only potential vaccine in pill form, uses the genetic code of the coronavirus to trigger a defensive response in mucous membranes. The hope is that the newly fortified membranes will prevent the virus from entering the body.

Its the only vaccine (candidate) that activates the first line of defense, which is the mucosa, said Andrei Floroiu, Vaxarts chief executive, noting that intravenous vaccines kill the virus after it is inside the body. Our vaccine may prevent you from getting infected at all.

The drug was effective against influenza and norovirus in trials and appears to work on laboratory animals, Floroiu said. He expects trials of VXA-COV2-1 on humans to begin later this summer.

VaxiPatch / Verndari (Napa and UC Davis Medical Center): Napa vaccine company Verndari makes a patented adhesive patch that can deliver a vaccine instead of a shot. Now, the company is trying to make a vaccine for COVID-19 that they can administer through that patch. At UC Davis Medical Center in Sacramento, Verndari researchers are developing a potential vaccine that relies on the coronavirus spike-shaped protein. When injected into a person, the substance would ideally train their body to recognize the virus and fight it off without becoming ill.

A spokeswoman told The Chronicle that the companys preclinical tests have shown early, positive data in developing an immune response. Verndari hopes to move into the next phase of testing in the coming weeks and start clinical trials in humans this year.

If the vaccine is proved effective and safe, patients could receive it through the mail, according to company CEO Dr. Daniel Henderson. The patch would leave a temporary mark on the skin that patients could photograph and send to their doctor as proof they have taken the vaccine, Henderson has said.

Peter Fimrite and J.D. Morris are San Francisco Chronicle staff writers. Email: pfimrite@sfchronicle.com, jd.morris@sfchronicle.com Twitter: @pfimrite, @thejdmorris

See original here:
Efforts at coronavirus vaccines and treatments abound in the Bay Area - San Francisco Chronicle

Posted in Stem Cells | Comments Off on Efforts at coronavirus vaccines and treatments abound in the Bay Area – San Francisco Chronicle

Outlook on the Worldwide Regenerative Medicine Industry to 2024 – Rising Global Healthcare Expenditure Presents Opportunities – GlobeNewswire

Posted: June 23, 2020 at 12:50 am

Dublin, June 22, 2020 (GLOBE NEWSWIRE) -- The "Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024)" report has been added to ResearchAndMarkets.com's offering.

This report provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Region Coverage:

Company Coverage:

Regenerative medicines emphasise on the regeneration or replacement of tissues, cells or organs of the human body to cure the problem caused by disease or injury. The treatment fortifies the human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimer's, diabetes, Parkinson's, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Key Topics Covered:

1. Executive Summary

2. Introduction2.1 Regenerative Medicine: An Overview2.2 Regeneration in Humans: An Overview2.3 Expansion in Peripheral Industries of Regenerative Medicine2.4 Approval System for Regenerative Medicine Products2.5 Regenerative Medicine Segmentation

3. Global Market Analysis3.1 Global Regenerative Medicine Market: An Analysis3.1.1 Global Regenerative Medicine Market by Value3.1.2 Global Regenerative Medicine Market by Products (Cell Therapy, Tissue Engineering, Gene Therapy and Small Molecules and Biologics)3.1.3 Global Regenerative Medicine Market by Material (Biologically Derived Material, Synthetic Material, Genetically Engineered Materials and Pharmaceuticals)3.1.4 Global Regenerative Medicine Market by Region (North America, Europe, Asia Pacific and ROW)

3.2 Global Regenerative Medicine Market: Product Analysis3.2.1 Global Cell Therapy Regenerative Medicine Market by Value3.2.2 Global Tissue Engineering Regenerative Medicine Market by Value3.2.3 Global Gene Therapy Regenerative Medicine Market by Value3.2.4 Global Small Molecules and Biologics Regenerative Medicine Market by Value

3.3 Global Regenerative Medicine Market: Material Analysis3.3.1 Global Biologically Derived Material Market by Value3.3.2 Global Synthetic Material Market by Value3.3.3 Global Genetically Engineered Materials Market by Value3.3.4 Global Regenerative Medicine Pharmaceuticals Market by Value

4. Regional Market Analysis4.1 North America Regenerative Medicine Market: An Analysis4.2 Europe Regenerative Medicine Market: An Analysis4.3 Asia Pacific Regenerative Medicine Market: An Analysis4.4 ROW Regenerative Medicine Market: An Analysis

5. COVID-195.1 Impact of Covid-195.2 Response of Industry to Covid-195.3 Variation in Organic Traffic5.4 Regional Impact of COVID-19

6. Market Dynamics6.1 Growth Drivers6.1.1 Growth in Geriatric Population6.1.2 Rising Global Healthcare Expenditure6.1.3 Increasing Diabetic Population6.1.4 Escalating Number of Cancer Patients6.1.5 Rising Prevalence of Cardiovascular Disease6.1.6 Surging Obese Population6.2 Challenges6.2.1 Legal Obligation6.2.2 High Cost of Treatment6.3 Market Trends6.3.1 3D Bio-Printing6.3.2 Artificial Intelligence to Advance Regenerative Medicine

7. Competitive Landscape7.1 Global Regenerative Medicine Market Players: A Financial Comparison7.2 Global Regenerative Medicine Market Players' by Research & Development Expenditure

8. Company Profiles8.1 Bristol Myers Squibb (Celgene Corporation)8.1.1 Business Overview8.1.2 Financial Overview8.1.3 Business Strategy8.2 Medtronic Plc8.2.1 Business Overview8.2.2 Financial Overview8.2.3 Business Strategy8.3 Smith+Nephew (Osiris Therapeutics, Inc.)8.3.1 Business Overview8.3.2 Financial Overview8.3.3 Business Strategy8.4 Novartis AG8.4.1 Business Overview8.4.2 Financial Overview8.4.3 Business Strategy

For more information about this report visit https://www.researchandmarkets.com/r/w15smu

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

See more here:
Outlook on the Worldwide Regenerative Medicine Industry to 2024 - Rising Global Healthcare Expenditure Presents Opportunities - GlobeNewswire

Posted in Stem Cells | Comments Off on Outlook on the Worldwide Regenerative Medicine Industry to 2024 – Rising Global Healthcare Expenditure Presents Opportunities – GlobeNewswire

Global Canine Stem Cell Therapy Market with (Covid-19) Impact Analysis: Future Development, Business Growth and Applications to 2025 – Cole of Duty

Posted: June 23, 2020 at 12:50 am

Researchstore.biz has released a new research report titled Global Canine Stem Cell Therapy Market 2020 by Company, Type and Application, Forecast to 2025 which offers a strategic evaluation of the market. The report presents prime parameters such as market size, revenue, sales analysis, and key drivers, and projection of the market by product, area, and use. The report delivers an in-depth analysis of the market with current and future trends. The report recognizes overall growth opportunities, industry drivers, obstacles, latest discoveries, and openings available for newcomers in the global Canine Stem Cell Therapy market.

Competitive Outlook:

The report further contains a competitive scenario of the major market players focusing on their sales revenue, customer demands, company profile, import/export scenario, business strategies that will help the emerging market segments in making major business decisions. In addition, their product portfolio, respective product applications, and product features have been emphasized in the report. The report also provides company shares and distribution shares data for the Canine Stem Cell Therapy market category and global corporate-level profiles of the key market participants.

DOWNLOAD FREE SAMPLE REPORT: https://www.researchstore.biz/sample-request/48453

NOTE: This report takes into account the current and future impacts of COVID-19 on this industry and offers you an in-dept analysis of Canine Stem Cell Therapy market.

The study profiles and examines leading companies and other prominent companies operating in the global Canine Stem Cell Therapy industry, covering: VETSTEM BIOPHARMA, VetMatrix, Aratana Therapeutics, Cell Therapy Sciences, Vetbiologics, Regeneus, ANIMAL CELL THERAPIES, Okyanos, Medivet Biologics, Magellan Stem Cells, Stemcellvet,

The far-reaching market study enlists a focused assessment of this business space and the regional landscape of this vertical. As per the report, the Canine Stem Cell Therapy market has established its presence across regions such as: North America (United States, Canada and Mexico), Europe (Germany, France, United Kingdom, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina), Middle East & Africa (Saudi Arabia, UAE, Egypt and South Africa)

On the basis of product, this report displays the production, revenue, price, market share, and growth rate of each type, primarily split into: Allogeneic Stem Cells, Autologous Stem cells

On the basis of the end users/applications, this report focuses on the status and outlook for major applications/end users, consumption (sales), market share market growth rate for each application, including: Veterinary Hospitals, Veterinary Clinics, Veterinary Research Institutes

This search provides an analysis of indirect and direct sales channels, helps you to plan the right distribution strategy. The study also predicts the influence of different industry aspects on the global Canine Stem Cell Therapy market segments and regions. It delivers analysis on consumption volume, region-wise import/export analysis, and forecast Canine Stem Cell Therapy market from 2020-2025. At last, the report exhibits an analysis of leading marketing players, product specification, company profiles along with the contact details, production cost.

ACCESS FULL REPORT: https://www.researchstore.biz/report/global-canine-stem-cell-therapy-market-2020-48453

Important Aspects of Canine Stem Cell Therapy Market Report:

Customization of the Report:This report can be customized to meet the clients requirements. Please connect with our sales team ([emailprotected]), who will ensure that you get a report that suits your needs. You can also get in touch with our executives on +1-201-465-4211 to share your research requirements.

About Us

Researchstore.biz is a fully dedicated global market research agency providing thorough quantitative and qualitative analysis of extensive market research.Our corporate is identified by recognition and enthusiasm for what it offers, which unites its staff across the world.We are desired market researchers proving a reliable source of extensive market analysis on which readers can rely on. Our research team consist of some of the best market researchers, sector and analysis executives in the nation, because of which Researchstore.biz is considered as one of the most vigorous market research enterprises. Researchstore.biz finds perfect solutions according to the requirements of research with considerations of content and methods. Unique and out of the box technologies, techniques and solutions are implemented all through the research reports.

Contact UsMark StoneHead of Business DevelopmentPhone: +1-201-465-4211Email: [emailprotected]Web: http://www.researchstore.biz

Originally posted here:
Global Canine Stem Cell Therapy Market with (Covid-19) Impact Analysis: Future Development, Business Growth and Applications to 2025 - Cole of Duty

Posted in Stem Cells | Comments Off on Global Canine Stem Cell Therapy Market with (Covid-19) Impact Analysis: Future Development, Business Growth and Applications to 2025 – Cole of Duty

CRISPR trial shows promising results for sickle cell and thalassaemia – BioNews

Posted: June 23, 2020 at 12:50 am

22 June 2020

CRISPRgenome editing has been successfully used to treat three patients with blood disorders in a clinical trial.

Two US patients with beta-thalassaemia and one with sickle cell disease had their bone marrow stem cells edited to produce a different form of haemoglobin, which is normally only found in fetuses and newborns.

'The results [demonstrate] that CRISPR/Cas9 gene editing has the potential to be a curative therapy for severe genetic diseases like sickle cell and beta-thalassaemia,' said Dr Reshma Kewalrami, CEO and President of Vertex, which is running the study jointly with another US pharmaceutical company, CRISPR Therapeutics.

Both sickle cell and beta-thalassaemia are caused by mutations in a gene that produces haemoglobin, the protein in red blood cells that carries oxygen throughout the body. With limited treatment options, patients are often dependent on blood transfusions.

However, the human body is able to make another form of haemoglobin, encoded in a completely separate gene, which is normally only expressed during fetal development and is switched off soon after birth.

In the clinical trial, blood stem cells were removed from the patients and a control gene that turns off the production of fetal haemoglobin was inactivated. Patients were given chemotherapy to remove remaining bone marrow stem cellsbefore they were replaced by the editedcells. The patients were then able to make fetal haemoglobin as adults.

The results of the ongoing trial, presented at the virtual Annual European Hematology Association Congress, reported that two beta-thalassaemia patients were transfusion independent at five and fifteen months after treatment, and the sickle cell patient was free from painful crises at nine months after treatment.

All three patients suffered significant side effects (from which they all recovered), but these were thought to be as a result of the chemotherapy rather than genome editing. Chemotherapy can also have long-term effects including infertility.

It is hoped that this treatment will have long-lasting and durable effects in patients with inherited blood diseases, and early clinical data appear promising. However, patients will need to be followed up throughout their lives to record any changes.

'These highly encouraging early data represent one more step toward delivering on the promise and potential of CRISPR/Cas9 therapies as a new class of potentially transformative medicines to treat serious diseases,' said Dr Samarth Kulkarni, CEO of CRISPR Therapeutics.

Read the original:
CRISPR trial shows promising results for sickle cell and thalassaemia - BioNews

Posted in Stem Cells | Comments Off on CRISPR trial shows promising results for sickle cell and thalassaemia – BioNews

Bone Marrow Processing System Market to Grow at Robust CAGR in the COVID-19 Lockdown Scenario – 3rd Watch News

Posted: June 23, 2020 at 12:50 am

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

Request For Report [emailprotected]https://www.trendsmarketresearch.com/report/sample/3184

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

Get Complete TOC with Tables and [emailprotected]https://www.trendsmarketresearch.com/report/discount/3184

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

<<< Get COVID-19 Report Analysis >>>https://www.trendsmarketresearch.com/report/covid-19-analysis/3184

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

More here:
Bone Marrow Processing System Market to Grow at Robust CAGR in the COVID-19 Lockdown Scenario - 3rd Watch News

Posted in Stem Cells | Comments Off on Bone Marrow Processing System Market to Grow at Robust CAGR in the COVID-19 Lockdown Scenario – 3rd Watch News

AMU scientist discovers proteins that form Cancer in liver – National Herald

Posted: June 23, 2020 at 12:50 am

An Aligarh Muslim University (AMU) zoologist, Dr Hifzur R. Siddique, has collaborated with Prof Keigo Machida of the University of Southern California, to discover the protein forming cancerous cells in the body, causing growth of tumour in the liver.

Their research could serve as a potential therapeutic target for the drug design and give a direction to the management strategy for this deadly disease.

The AMU scientist said that he had been working on these cells for a decade and has established a dedicated lab to initiate pioneer research on Cancer Stem Cells at AMU.

Dr Siddiqui elaborated through his paper that alcohol consumption and hepatitis infection lead to liver cancer formation through stem cell factor and generation of cancer stem cells. Cancer stem cells are rare cells found in the tumour which are responsible for cancer initiation recurrence, invasion and metastasis. Thus, these cells were considered as 'root cause' of almost all cancer.

Follow this link:
AMU scientist discovers proteins that form Cancer in liver - National Herald

Posted in Stem Cells | Comments Off on AMU scientist discovers proteins that form Cancer in liver – National Herald

Stem cell therapies receive MRFF funding – Mirage News

Posted: June 23, 2020 at 12:50 am

Associate Professor Rebecca Lim has been awarded more than $470,000 from the Australian Governments Medical Research Future Fund to pursue research into stem cell therapies for liver disease.

A/Prof Lim leads the Regenerative Medicine and Cellular Therapies group at Hudson Institute. Together with Monash University, Obstetrics and Gynaecology (Material Science and Engineering) and Baker Heart and Diabetes Institute, she was awarded the $472,680 Department of Health funding to work on gastroenterology, regenerative medicine and cellular biology (including stem cells and tissue engineering).

The Stem Cell Therapies Mission is funded via the MRFF and will invest $150 million over nine years to develop innovative, safe and effective treatments accessible to all Australians who need them.

Congratulations also to our collaborators, the Australian and New Zealand Childrens Haematology Oncology Group (ANZCHOG), who were awarded three MRFF grants, totalling $1,965,011 for their studies on childhood brain cancer. The three trials were funded through the MRFF Clinical Trials Activity (Rare Cancers, Rare Diseases and Unmet Need) Childhood Brain Cancer Opportunity, which will enable ANZCHOG to continue to provide Australian children diagnosed with brain cancer access to innovative clinical trials.

CONNECT-1903 is an international study that will assess if treatment with lactrotrectinib is safe and can control the growth of tumours in children with high grade gliomas. The second international study is the MET-MED trial, examining if metformin can improve cognitive recovery in paediatric medulloblastoma patients. The final successful application, the TiNT Trial, is a phase II trial using trametinib (a promising MEK inhibitor) in patients with neurofibromatosis type 1 associated progressive optic pathway gliomas. This trial was designed and developed by Australian and New Zealand researchers, essential for capacity building and leading innovative trial research in the paediatric oncology space.

Liver disease is responsible for one quarter of all organ transplants in Australia and represents a significant healthcare burden. The most common liver disease is non-alcoholic fatty liver disease (NAFLD), which itself is benign but in association with chronic inflammation (non-alcoholic steatohepatitis; NASH), can progress to cirrhosis and liver cancer.

By 2020, NASH will have replaced hepatitis C as the number one reason for liver transplantation. There is no cure for NAFLD/NASH. Alternatives are urgently needed for patients with end stage NAFLD/NASH who are not candidates for liver transplantation or for whom no donor is available.

The research team aim to develop a multivalent therapeutic for this complex disease based on extracellular vesicles (EV) released by amniotic epithelial cells (hAEC) that addresses fibrosis, apoptosis, oxidative stress and endogenous repair.

Preliminary research has shown that EVs released by hAECs are anti-fibrotic and support the differentiation of liver progenitor cells, promoting recovery of liver function in chronic liver disease.

The teams pilot data indicates that hAECs cultured on softer 3D microcarriers can significantly increase EV yield as well as biological potency compared to culture on traditional 2D tissue culture plastic.

They hypothesise that it is possible to tune the potency of hAEC-EVs by manipulating mechanotransduction through culture on softer microcarriers which are specifically functionalised to improve anti-fibrotic effects for NAFLD/NASH.

The aim is to

(i) Develop a novel method of hAEC-EV manufacturing for optimal EV yield and potency through the manipulation of microcarrier stiffness and functionalisation and;

(ii) Evaluate an oral formulation of hAEC-EVs against competitor treatments in preclinical mouse model of NASH.

The team brings combined expertise of hAEC and EV biology, materials science, NAFLD/NASH management and clinical translation to address this urgent unmet medical need.

The rest is here:
Stem cell therapies receive MRFF funding - Mirage News

Posted in Stem Cells | Comments Off on Stem cell therapies receive MRFF funding – Mirage News

AMU scientist discovers proteins that form Cancer in liver (IANS Special) – Outlook India

Posted: June 23, 2020 at 12:50 am

AMU scientist discovers proteins that form Cancer in liver (IANS Special)

Aligarh (UP), June 22 (IANS) An Aligarh Muslim University (AMU) zoologist, Dr Hifzur R. Siddique, has collaborated with Prof Keigo Machida of the University of Southern California, to discover the protein forming cancerous cells in the body, causing growth of tumour in the liver.

Their research could serve as a potential therapeutic target for the drug design and give a direction to the management strategy for this deadly disease.

The AMU scientist said that he had been working on these cells for a decade and has established a dedicated lab to initiate pioneer research on Cancer Stem Cells at AMU.

Dr Siddiqui elaborated through his paper that alcohol consumption and hepatitis infection lead to liver cancer formation through stem cell factor and generation of cancer stem cells. Cancer stem cells are rare cells found in the tumour which are responsible for cancer initiation recurrence, invasion and metastasis. Thus, these cells were considered as ''root cause'' of almost all cancer.

At initial stage of therapy, the cancer cells are killed either by chemotherapeutic drugs or radiation. However, a few cells survive and they form tumour and cancer reappear after a gap some time interval.

He informed that annually, more than half million new cases of liver cancer patients are diagnosed and on 5-year survival rate is only 10-20 per cent till today against 91 per cent for breast cancer. Liver cancer is largely traced in developing or under developed countries where 80-83 per cent of patients are found.

The study was recently published in the prestigious journal, Nature Communications 11 (2020).

"Liver is considered as the powerhouse of the body. Due to the change in lifestyle, chronic alcohol consumption, Hepatitis virus infection, incidence of liver cancer is increasing by the day. However, exactly how these normal liver cells become cancerous is only partially understood," the scientist said.

Siddique and Machida discovered the molecular mechanisms of a cancer-causing protein, TBC1D15.

"This degrades P53, known as guardian of genome, and activates the cancer-causing notch path activation," he told IANS on Monday.

These cells were considered as root cause of almost all cancer. At initial stage of therapy, the cancer cells are killed either by chemotherapeutic drugs or radiation. However, a few cells survive and they form tumour and cancer reappears after a certain period.

In 2014, Siddique''s work on therapy-resistant cancer was selected as one of the three ''Featured Prostate Cancer Research'' work by the US department of Defence''s ''2014 Research Highlights'' section -- a rare achievement by any scientist.

--IANS

amita/rs/

More:
AMU scientist discovers proteins that form Cancer in liver (IANS Special) - Outlook India

Posted in Stem Cells | Comments Off on AMU scientist discovers proteins that form Cancer in liver (IANS Special) – Outlook India

Stem cell study aims to fight the COVID-19 ‘storm’ – Cayman Compass

Posted: June 21, 2020 at 11:46 pm

Residents of the Caribbean know that between a tropical storm and a major hurricane, there is a world of difference. Both bring rain and winds, but weathering and surviving a hurricane requires much greater response and resilience.

Dr. Javier Perez Fernandez, a specialist in critical care medicine and pulmonology at Baptist Health South Florida, views COVID-19 infections in a similar way. While some hospitalised patients face a tropical storm, others are battling a category five hurricane.

Through a new stem-cell treatment, Perez says doctors at Baptist Health and Miami Cancer Institute hope to control the magnitude of COVID-19 storms and mitigate the viruss effects in the most severely affected patients.

As researchers worldwide work against the clock to fight the novel coronavirus, Perez views the stem-cell treatment as one with potential for widespread adoption, including in the Cayman Islands.

It converts this category five hurricane that you have inside into a tropical storm, Perez said, explaining that while the treatment cannot cure the virus, it may save lives.

The investigational drug, developed from sentinel or original cells attached to the umbilical cord, takes aim at another kind of storm, produced when the bodys immune system goes into overdrive.

A cytokine storm, seen in fatal COVID-19 cases, occurs when cytokine molecules are released by the body as an immune system response to fight infection. An excessive release of these molecules can result in hyperinflammation, organ failure and death.

With a stem cell injection, however, Perez says doctors have been able to control this cytokine storm and reduce COVID-19 impacts, such as respiratory distress.

As the cytokine storms really affect the lungs, mostly weve seen significant changes on oxygenation of people while we are delivering the cells, Perez said.

Weve seen very good responses on the patients that we have infused, and we have seen responses that lead to a reduction in the oxygen level [administered] by 50% of what they were using.

The studys results are still not ready to disclose, and Perez said the rate of research is contingent on the number of patients admitted to critical care units at partner facilities.

In that sense, he hopes the study will remain unfinished, due to a lack of severely ill patients.

I think the main limitation for faster development has been the lower number of patients that we have on intensive care units, he said.

The stem cell study has incorporated partners from several US universities, including Florida International University and University of South Dakota, and RESTEM, a California biotechnology company that develops treatments for degenerative and immune-system disorders.

Once the treatment has gone through the full development and approval process, Perez sees Cayman as one of the locations that could benefit from its use.

Well be absolutely happy [to bring] not only that treatment but any other form of treatment, to be there for the people of Cayman, Perez said.

During the 17 June press briefing, Caymans Chief Medical Officer Dr. John Lee mentioned another novel COVID-19 treatment, a steroid called dexamethasone, that is showing promise in the United Kingdom.

Its been shown to reduce deaths by up to a third and has already received approval for emergency use in the United Kingdom, Lee said, adding that he anticipates the drug will be approved and made available elsewhere.

The drug, developed by scientists at the University of Oxford, is the first treatment shown to aid severely ill COVID-19 patients. Similar to the stem-cell treatment being studied by Baptist Health, dexamethasone treatment aims to reduce the effects of cytokine storms and mitigate the potentially deadly impact of an uncontrolled immune-system response.

If you value our service, if you have turned to us in the past few days or weeks for verified, factual updates, if you have watched our live streaming of press conferences or sent an article to a friend... please consider a donation. Quality local journalism was at risk before the coronavirus crisis. It is now deeply threatened. Even a small amount can go a long way to sustaining our mission of informing the public. We need our readers financial support now more than ever.

View post:
Stem cell study aims to fight the COVID-19 'storm' - Cayman Compass

Posted in California Stem Cells | Comments Off on Stem cell study aims to fight the COVID-19 ‘storm’ – Cayman Compass

The race is on to grow crops in seawater and feed millions – Wired.co.uk

Posted: June 21, 2020 at 11:46 pm

In December 2015, as representatives from United Nations member states were finalising what would become the Paris Agreement on climate change, Duncan Cameron stood before a crowd of delegates and warned them about an environmental catastrophe happening right beneath their feet.

A soil biologist and co-director of the University of Sheffields Institute for Sustainable Food, Cameron had long known that the amount of farmland capable of growing nutrient-rich crops was shrinking, but he didnt know how fast. For the previous year, Camerons team had analysed the scattershot data available on arable land loss, and what they found was disturbing: in the past four decades, the world lost up to one-third of its arable land to soil degradation and resulting erosion. Without alternatives, already fragile agricultural systems are on the verge of collapse, raising the prospect of a world filled with farms that cant grow enough food.

Its quite a terrifying amount, Cameron says. We hear that we can solve a lot of these problems in terms of food insecurity by wasting less and getting more efficient, but that isn't going to give us everything we need. Now, an emerging group of startups and researchers are convinced that answers to the impending food crisis may not lie on land at all instead theyre looking to the ocean and to feed future populations with crops grown on floating farms and fed by seawater.

These ambitious initiatives target a thorny mess of environmental and humanitarian issues freshwater and land scarcity, global hunger, crop security, and agricultures enormous carbon footprint amongst others but the scientific and logistical challenges they face are enormous. In a field where there are few easy answers, one problem looms above all others: what do we do about all the salt?

Soil scientists and farmers have waged war against salt for decades. As sea levels rise, salt levels are creeping up in the rivers and underground aquifers that irrigate fields particularly those low-lying areas close to vast river deltas. Across the world, farmland is drying out which raises salt levels and interferes with nutrient uptake and damages tissues. Excessive salt causes massive global crop loss an estimated 21.7 billion each year and that's expected to increase as factors like sea level rise and higher-intensity weather events driven by climate change push ocean water further into farmland, hitting the poorest coastal communities hardest.

Once there, salt requires significant resources to remove from soil the most common methods involve large amounts of freshwater, which is already scarce for an estimated four billion people worldwide sending researchers on a long-running race to find staple crops that can grow despite constantly increasing salinity. Several countries including China, India, the Netherlands, and the United Arab Emirates have developed crop varieties that can withstand some soil salinity, but the real white whale is a staple crop that can thrive regardless of how much seawater is thrown at it.

In principle, it could be done, but it's complicated, says Exequiel Ezcurra, a plant ecologist at the University of California, Riverside who studies desert and ocean ecosystems. Ezcurra says that creating seawater-tolerant crops would require at least one, and possibly both, of the basic biological mechanisms plants like black mangroves have adapted to survive in salty waters. One mechanism is freshwater filtration in the roots, which for staple crops would require fundamentally altering the roots dermal tissue to keep salt out. The other is specialised glands in the leaves that excrete salt as the plant pumps seawater throughout its system.

Changing a staple crop to have either mechanism is a challenge so big, many researchers aim for far more modest gains in salt tolerance and arent yet gunning for crops that grow in straight seawater. Plant breeders have been working on salt-resistant crops for decades but in rice a crop notoriously sensitive to salinity even the most salt-resistant varieties cant cope with anything like the saltiness of seawater. I'm not saying that nobody will be able to do it. Probably somebody will at some point, Ezcurra says. I simply have never seen a patent or anybody being able to do that now.

Luke Young and Rory Hornby filed for a provisional patent in February for a technology they believe will break the seawater tolerance barrier. Young and Hornby are the cofounders of Agrisea, a Canadian startup thats working to develop gene-edited salt-tolerant crops with the goal of soon growing them in floating farms placed in sea-flooded plains or anchored directly in the ocean.

Agriseas proposed method involves first isolating stem cells from crops like rice, then using CRISPR gene editing technology to insert a DNA sequence specialised to the plant. The sequence targets one of eight different genes, each chosen because the only place in nature where all eight are switched on is in plants that have naturally adapted saltwater tolerance. The sequence alters how the gene expresses, then stem cells are grown into a full plant that produces its own seeds armed with the newly edited gene. Follow the same process for editing the remaining seven genes, and the Agrisea team says youll have a plant that can grow in the salty sea without fertiliser, freshwater, or pesticides.

Many researchers have edited single genes for salt tolerance, but editing a gene network is an approach Young and Hornby say are unique to Agrisea. But theyre not at the finish line yet.Thus far, Young and Hornby are working to grow rice plants in water one-third the salinity of seawater and plan to have small farms floating off the shores of Kenya and Grand Bahama Island by the end of the year. Young says that hes confident the process will work because similar strategies have been used in the past to gene edit plants for other traits and because I'm not proving something, I'm copying something. I'm copying what nature has already been able to do.

Julia Bailey-Serres, director of the Center for Plant Cell Biology at the University of California, Riverside, studies crop resilience and the molecular physiology of rice. She says that researchers routinely edit plants to knock out a genes function, but editing in a way that changes specific amino acids, which likely would be required for growing crops in the ocean, has only been done by a few researchers worldwide and not yet for the purposes of salt tolerance. That more granular type of editing will become more feasible in the future, she says, but I don't know if thats going to be in two years or 10 years.

Bailey-Serres adds that she would be excited to see Agrisea succeed and that any tolerance increases beyond one-third ocean salinity would be a huge win in places like Vietnam and Bangladesh where rice paddies are bombarded with seawater.

Agriseas approach to arable land scarcity relies on cracking the salt tolerance problem, but other teams are opting to sidestep the issue entirely. Floating farms that reduce demand for arable land have long been key to survival in many non-Western nations. These crops thrive in freshwater bodies like Myanmars Inle Lake, which locals have relied on for food possibly since as early as the nineteenth century in buoyant beds that bob along the surface as monsoons and floods sweep through. Floating farms have also gained interest in Western cities. Over the last few years, research groups and architectural firms in the UK, Spain, and Italy amongst others have produced designs for floating vertical farms and greenhouses that suck up seawater from the outside and desalinate it to nourish hydroponic crops grown inside.

These projects push crops out into the ocean, but Yanik Nybergs strategy is to bring the ocean in. Instead of making new space for crops offshore, Nybergs Scotland-based company Seawater Solutions takes degraded coastal farmland, seeds it with naturally salt-tolerant herbs like samphire and sea blite, then floods the area by removing seawalls or pumping in water from the ocean to create an artificial salt marsh. In this new wetland ecosystem, crops grow without fertilisers, pesticides, or freshwater. They also hold soil in place, preventing erosion, and feed on nitrates and carbon, both of which over-accumulate in waters near human populations due to factors like agricultural runoff and CO2 emissions. A solar-powered irrigation system recycles the remediated water back to its original source.

Seawater Solutions currently operates six marsh farms in Scotland and a handful of developing countries, including a nascent initiative to create a marsh farm in the middle of a desert in Malawi by tapping underground saltwater aquifers. These projects are small most around 10,000 square meters and are limited to global food markets that are much tinier than those for staple crops.

Duncan Cameron says that there isn't one right answer. Since the 2015 Paris climate talks, Camerons team has attacked arable land loss from a multitude of angles, including monitoring nutrients in soil, forecasting the agricultural impact of urban green spaces, and building a hydroponic greenhouse in Oman that relies on desalinated water pumped in from the ocean. Solving arable land scarcity will require novel approaches all focused around giving the worlds tired soil a much-needed break. We've got to take pressure off it somehow, he says.

Google got rich from your data. DuckDuckGo is fighting back

The Animal Crossing fans running in-game businesses

Inside the 'bullshit' get-rich-quick world of dropshipping

The secret behind the success of Apple's AirPods

The UK's lockdown rules, explained

Follow WIRED on Twitter, Instagram, Facebook and LinkedIn

Get The Email from WIRED, your no-nonsense briefing on all the biggest stories in technology, business and science. In your inbox every weekday at 12pm sharp.

by entering your email address, you agree to our privacy policy

Thank You. You have successfully subscribed to our newsletter. You will hear from us shortly.

Sorry, you have entered an invalid email. Please refresh and try again.

Follow this link:
The race is on to grow crops in seawater and feed millions - Wired.co.uk

Posted in California Stem Cells | Comments Off on The race is on to grow crops in seawater and feed millions – Wired.co.uk

Page 962«..1020..961962963964..970980..»