Stem Cells, Regenerative Medicine, and Tissue Engineering

Posted: December 4, 2013 at 4:44 pm

Stem Cells, Regenerative Medicine, and Tissue Engineering

Loading...

Regenerative medicine helps natural healing processes to work faster and better. These technologies and techniques create an environment in which missing or damaged tissue that would not ordinarily regrow in fact regenerates fully.

Strategies presently under development include transplants of stem cells, the manipulation of the patient's own stem cells, and the use of scaffold materials that emit biochemical signals to spur stem cells into action. Regenerative therapies have been demonstrated (in trials or the laboratory) to heal broken bones, bad burns, blindness, deafness, heart damage, nerve damage, Parkinson's disease, and a range of other conditions. Work continues to bring these advances to patients.

Research undertaken since 2004 suggests that the stem cells in the adult body - which become less effective at their job of repair with age - could be rejuvenated, restored to action with the right biochemical cues. Furthermore, researchers already regularly manipulate the genes and biochemistry of stem cells taken from partients for use in trials of new therapies: there is every reason to expect that future medicine will involve the repair and restoration of aged stem cells prior to their use in regenerative medicine.

Reports on a few of the more promising applications of stem cell technologies in recent years are linked below:

Regenerative medicine will help to produce extended healthy longevity, as we will be able to repair some of the damage caused by aging, organ by organ. Aging damages every part of our bodies, however - including the stem cells required for regenerative therapies! Until we can address the root causes of age-related degeneration, we must learn how to regenerate every part of the human body.

We must also become capable of reliably preventing and defeating cancer in all its forms and repairing age-related damage to the brain in situ - increasing risk of cancer with age cannot be prevented through regenerative medicine, and the brain cannot simply be replaced with new tissue. These tasks will be a mammoth undertaking. Nonetheless, like all great advances in medicine, it is a worthy, noble cause. Today, hundreds of millions of people live in pain and suffering - and will eventually die - as a result of degenerative conditions of aging. Today, we stand within reach of alleviating all this death and anguish, preventing it from ever occuring again. We should rise to the challenge!

As of 2008, researchers have found what may be a shortcut to the growth of replacement organs from a patient's own stem cells. Called recellularization or decellularization, the process takes a human or animal donor organ and chemically strips the cells from it, leaving only the scaffolding of the extracellular matrix behind. Stem cells from the organ recipient are then used to repopulate the scaffold, creating a functioning organ ready for transplant that has little to no risk of rejection.

Some of the most impressive demonstrations of regenerative medicine since the turn of the century have used varying forms of stem cells - embryonic, adult, and most recently induced pluripotent stem cells - to trigger healing in the patient. A great deal of press attention, for example, has been given to successes in alleviating life-threatening heart conditions. However, successes have been demonstrated in repairing damage in other organs - such as the liver, kidneys, and so forth.

Continue reading here:
Stem Cells, Regenerative Medicine, and Tissue Engineering

Related Posts